Skip to main content
Log in

Effect of Synthesis Mode and Ni Particle Size on Microstructural Aspects and Hardness Properties of Combustion-Synthesized NiTi

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

NiTi intermetallic compound was fabricated via two modes of the combustion synthesis process, namely, thermal explosion (TE) and self-propagating synthesis (SHS). The effect of combustion synthesis mode as well as Ni particle size on the microstructure and microhardness of the final products was investigated. The phases in the products were determined using XRD technique, and microstructural investigations were performed using optical as well as SEM-EDS in order to make a comparison between microstructural evolutions in each mode, other conditions being constant. The analyses showed that the desired B2(NiTi) was successfully formed as the primary phase in all samples, and no unreacted Ni or Ti powders were present. The main secondary phase was NiTi2 which was invariably present in all samples; however, the percentage as well as the morphology of the detrimental NiTi2 phase was found out to be controllable by the mode of combustion as well as Ni particle size. A comparison between the two modes revealed that samples produced by TE showed coarse dendrites in the microstructure; they also presented higher average microhardness values. The SHS-synthesized samples exhibited microstructures similar to those observed in heat-treated and homogenized NiTi obtained from methods such as vacuum arc remelting and vacuum induction melting, and contained finely dispersed NiTi2 particles. It was shown that a decrease in Ni particle size presented a grain refining effect on NiTi2 in both modes.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Otsuka, X. Ren, Intermetallics 7, 511 (1999)

    Article  CAS  Google Scholar 

  2. N. Shayesteh Moghaddam, S.E. Saghaian, A. Amerinatanzi, H. Ibrahim, P. Li, G.P. Toker, H.E. Karaca, M. Elahinia, Mater. Sci. Eng. A724, 220 (2018)

    Article  Google Scholar 

  3. M. Saugo, D.O. Flamini, G. Zampieri, S.B. Saidman, Mater. Chem. Phys. 190, 136 (2017)

    Article  CAS  Google Scholar 

  4. J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson, Mater. Des. 56, 1078 (2014)

    Article  CAS  Google Scholar 

  5. A. Bansiddhi, T.D. Sargeant, S.I. Stupp, D.C. Dunand, Acta Biomater. 4, 773 (2008)

    Article  CAS  Google Scholar 

  6. X.X. Zhang, H.W. Hou, L.S. Wei, Z.X. Chen, W.T. Wei, L. Geng, J. Alloy Compd. 55, 297 (2013)

    Article  Google Scholar 

  7. A. Nespoli, E. Villa, F. Passaretti, Met. Mater. Int. 21, 504 (2015)

    Article  CAS  Google Scholar 

  8. C.E. Wen, J.Y. Xiong, Y.C. Li, P.D. Hodgson, Phys. Scr. T139, 1 (2010)

    Article  Google Scholar 

  9. M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri, Prog. Mater. Sci. 57, 911 (2012)

    Article  CAS  Google Scholar 

  10. G. Chen, K.-D. Liss, P. Cao, Acta Mater. 67, 32 (2014)

    Article  CAS  Google Scholar 

  11. M. Shekari, M. Adeli, A. Khobzi, M. Kobashi, N. Kanetake, Adv. Powder Technol. 28, 2974 (2017)

    Article  CAS  Google Scholar 

  12. S.-B. Kim, Met. Mater. Int. 8, 455 (2002)

    Article  CAS  Google Scholar 

  13. E. Godlewska, K. Mars, R. Mania, S. Zimowski, Intermetallics 19, 1983 (2011)

    Article  CAS  Google Scholar 

  14. H.-Y. Lee, G.-Y. Kim, Met. Mater. Int. 21, 147 (2015)

    Article  CAS  Google Scholar 

  15. K.C. Patil, S.T. Aruna, S. Ekambaram, Curr. Opin. Solid State Mater. Sci. 2, 156 (1997)

    Article  Google Scholar 

  16. A. Varma, A.S. Rogachev, A.S. Mukasyan, S. Hwang, Adv. Chem. Eng. 24, 79 (1998)

    Article  CAS  Google Scholar 

  17. H.C. Yi, J.J. Moore, Scr. Metal. 22, 1889 (1988)

    Article  CAS  Google Scholar 

  18. H.C. Yi, J.J. Moore, J. Mater. Sci. 27, 5067 (1992)

    Article  CAS  Google Scholar 

  19. P. Novák, A. Školáková, D. Pignol, F. Průša, P. Salvetr, T.F. Kubatík, L. Perriere, M. Karlík, Mater. Chem. Phys. 181, 295 (2016)

    Article  Google Scholar 

  20. A. Biswas, Acta Mater. 53, 1415 (2005)

    Article  CAS  Google Scholar 

  21. M. Adeli, M. Mahvi, K. Rezaei Jahromi, M.R. Aboutalebi, S.H. Seyedein, Adv. Mater. Process. Technol. 2, 266 (2016)

    Google Scholar 

  22. C.L. Chu, C.Y. Chung, P.H. Lina, S.D. Wang, Mater. Sci. Eng. A 366, 114 (2004)

    Article  Google Scholar 

  23. P. Novák, L. Mejzlíková, A. Michalcová, J. Capek, P. Beran, D. Vojtech, Intermetallics 42, 85 (2013)

    Article  Google Scholar 

  24. M. Whitney, S.F. Corbin, R.B. Gorbet, Intermetallics 17, 894 (2009)

    Article  CAS  Google Scholar 

  25. M. Whitney, S.F. Corbin, R.B. Gorbet, Acta Mater. 56, 559 (2008)

    Article  CAS  Google Scholar 

  26. C.L. Yeh, W.Y. Sung, J. Alloys Compd. 376, 79 (2004)

    Article  CAS  Google Scholar 

  27. S.L. Zhu, X.J. Yang, M.F. Chen, C.Y. Li, Z.D. Cui, Mater. Sci. Eng. C Mater. Biol. Appl. 28, 1271 (2008)

    Article  CAS  Google Scholar 

  28. P. Bassani, S. Panseri, A. Ruffini, M. Montesi, M. Ghetti, C. Zanotti, A. Tampieri, A. Tuissi, J. Mater. Sci. Mater. Med. 25, 2277 (2014)

    Article  CAS  Google Scholar 

  29. B.Y. Li, L.J. Rong, Y.Y. Li, V.E. Gjunter, Metall. Mater. Trans. 31A, 1865 (2000)

    Google Scholar 

  30. B.Y. Li, L.J. Rong, Y.Y. Li, V.E. Gjunter, Acta Mater. 48, 3895 (2000)

    Article  CAS  Google Scholar 

  31. M. Thier, M. Hiihner, E. Kobus, D. Drescher, C. Bourauel, Mater. Charact. 27, 133 (1991)

    Article  CAS  Google Scholar 

  32. H.Y. Wang, W. Wang, M. Zha, N. Zheng, Z.H. Gu, D. Li, Q.C. Jiang, Mater. Chem. Phys. 108, 353 (2008)

    Article  CAS  Google Scholar 

  33. M. Zha, H.Y. Wang, P.F. Xue, L.L. Li, B. Liu, Q.C. Jiang, J. Alloy Compd. 472, L18 (2009)

    Article  CAS  Google Scholar 

  34. A. Foroozmehr, A. Kermanpur, F. Ashrafizadeh, Y. Kabiri, Mater. Sci. Eng. A 528, 7952 (2011)

    Article  CAS  Google Scholar 

  35. J. Frenzel, E.P. George, A. Dlouhy, Ch. Somsen, M.F.-X. Wagner, G. Eggeler, Acta Mater. 58, 3444 (2010)

    Article  CAS  Google Scholar 

  36. M. Kaya, O. Çakmak, Met. Mater. Trans. A47, 1499 (2016)

    Article  Google Scholar 

  37. C.L. Chu, C.Y. Chung, P.K. Chu, Trans. Nonferrous Met. Soc. China 16, 49 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandana Adeli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khobzi, A., Adeli, M., Sabour-Bagherzadeh, A. et al. Effect of Synthesis Mode and Ni Particle Size on Microstructural Aspects and Hardness Properties of Combustion-Synthesized NiTi. Met. Mater. Int. 27, 1273–1281 (2021). https://doi.org/10.1007/s12540-019-00497-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00497-8

Keywords

Navigation