Skip to main content
Log in

Grain size dependence of strength of nanocrystalline materials as exemplified by copper: an elastic-viscoplastic modelling approach

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The purpose of this work is to model the mechanical behavior of nanocrystalline materials. Based on previous rigid viscoplastic models proposed by Kim et al. (Acta Mater, 48: 493, 2000) and Kim and Estrin (Acta Mater, 53: 765, 2005), the nanocrystalline material is described as a two phase composite material. Using the Taylor–Lin homogenisation scheme in order to account for elasticity, the yield stress of nanocrystalline materials can be evaluated. The transition from a Hall–Petch relation to an inverse Hall–Petch relation is defined and is related to a change in plastic deformation mode in the crystallite phase from a dislocation glide driven mechanism to a diffusion-controlled process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Meyers MA, Mishra A, Benson DJ (2006) Prog Mater Sci 51:427

    Article  CAS  Google Scholar 

  2. Kim HS, Estrin Y, Bush MB (2000) Acta Mater 48:493

    Article  CAS  Google Scholar 

  3. Kim HS, Estrin Y (2005) Acta Mater 53:765

    Article  CAS  Google Scholar 

  4. Carsley JE, Ning J, Milligan WW, Hackney SA, Aifantis EC (1995) Nanostruct Mater 5:441

    Article  CAS  Google Scholar 

  5. Konstantinidis DA, Aifantis EC (1998) Nanostruct Mater 10:1111

    Article  CAS  Google Scholar 

  6. Gutkin MYu, Ovid’ko IA, Pande CS (2001) Rev Adv Mater Sci 2:80

    CAS  Google Scholar 

  7. Estrin Y, Kim HS, Bush MB (2004) In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol. 8. American Scientific Publishers, p 489

  8. Capolungo L, Jochum C, Cherkaoui M, Qu J (2004) Int J Plasticity 21:67

    Article  Google Scholar 

  9. Capolungo L, Cherkaoui M, Qu J (2005) J Eng Mater Techn 127:400

    Article  CAS  Google Scholar 

  10. Jiang B, Weng GJ (2004) J Mech Phys Solids 52:1125

    Article  CAS  Google Scholar 

  11. Christensen RM, Lo KH (1979) J Mech Phys Solids 27:315

    Article  CAS  Google Scholar 

  12. Luo HA, Weng GJ (1987) Mech Mater 6:347

    Article  Google Scholar 

  13. Lin TH (1957) J Mech Phys Solids 5:143

    Article  CAS  Google Scholar 

  14. Mori T, Tanaka K (1973) Acta Metall 21:571

    Article  Google Scholar 

  15. Molinari A (2002) J Engng Mater Technol 124:62

    Article  Google Scholar 

  16. Taylor GI (1983) J Inst Metals 62:307

    Google Scholar 

  17. Asaro RJ, Needleman A (1985) Acta Metall 33:923

    Article  CAS  Google Scholar 

  18. Bronkhorst CA, Kalidindi SR, Anand L (1992) Phil Trans Roy Soc London A 341:443

    CAS  Google Scholar 

  19. Zouhal N, Molinari A, Tóth LS (1996) Int J Plasticity 12:343

    Article  CAS  Google Scholar 

  20. Tóth LS, Molinari A, Zouhal N (2000) Mech Mat 32:99

    Article  Google Scholar 

  21. Saanouni K, Abdul-Latif A (1996) Int J Plasticity 12:1111

    Article  CAS  Google Scholar 

  22. Abdul-Latif A, Saanouni K (1996) Int J Plasticity 12:1123

    Article  CAS  Google Scholar 

  23. Zhu B, Asaro RJ, Krysl P, Bailey R (2005) Acta Mater 53:4825

    Article  CAS  Google Scholar 

  24. Jia D, Ramesh KT, Ma E (2003) Acta Mater 51:3495

    Article  CAS  Google Scholar 

  25. Estrin Y (1996) In: Krausz AS, Krausz K (eds) Unified contitutive laws of plastic deformation. Academic Press, New-York, p 489

  26. Cheng S, Ma E, Wang YM, Kecskes LJ, Youssef KM, Koch CC, Trociewitz UP, Han K (2005) Acta Mater 53:1521

    Article  CAS  Google Scholar 

  27. Sanders PG, Eastman JA, Weertman JR (1997) Acta Mater 45:4019

    Article  CAS  Google Scholar 

  28. Chokshi AH, Rosen A, Karch J, Gleiter H (1989) Scr Metall 23:1679

    Article  CAS  Google Scholar 

  29. Van Swygenhoven H, Weertman J (2003) Scripta Mater 49:625

    Article  Google Scholar 

  30. Fu HH, Benson DJ, Meyers MA (2001) Acta Mater 49:2567

    Article  CAS  Google Scholar 

  31. Fu HH, Benson DJ, Meyers MA (2004) Acta Mater 52:4413

    Article  CAS  Google Scholar 

  32. Masumura RA, Hazzledine PM, Pande CS (1998) Acta mater 46:4527

    Article  CAS  Google Scholar 

  33. Conrad H (2003) Mater Sci Eng A 341:216

    Article  Google Scholar 

  34. May J, Höppel HW, Göken M (2005) Scripta Mater 53:189

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Hyoung Seop Kim (Chungnam National University, Daejeon, KOREA) for useful discussions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mercier.

Appendices

Appendix A: Relation between the transition grain size d tr and loading rate D o

The transition from the Hall–Petch to an inverse Hall–Petch behavior with a decrease in the grain size is due to a change in the plastic deformation mechanism in the crystallite phase, see Figs. 8 and 9. For coarse grained materials, dislocation glide is predominant, while for fine grained ones, diffusion-controlled Coble creep is the main deformation mechanism. Based on Figs. 8 and 9, one can postulate that the transition occurs when the two modes of deformation contribute almost equally to the total viscoplastic strain rate of the crystallite. Thus the transition occurs when the following condition is fulfilled:

$$ d_{\rm GI}^{\rm disl-eq}=d_{\rm GI}^{\rm Co-eq} $$
(20)

From relation (18), the dislocation strain rate \({d_{\rm GI}^{\rm disl-eq}}\) can be linked to the Coble creep rate \({d_{\rm GI}^{\rm Co-eq}}\). Then using relation (20), the equivalent total plastic strain rate \({d_{\rm GI}^{\rm vp-eq}}\) , as defined by Eq. 7 is expressed (neglecting the Nabarro-Herring creep contribution) as a function of the Coble creep strain rate \({d_{\rm GI}^{\rm Co-eq}}\) :

$$ d_{\rm GI}^{\rm vp-eq} = 2d_{*}\left(\frac{k T d_{\rm tr}^3}{14 \pi \Omega_b D_{\rm bd}^{\rm sd} w \sigma_{\rm o}}d_{\rm GI}^{\rm Co-eq} \right)^m \left( \frac{\rho}{\rho_{\rm o}}\right)^{-\frac{m}{2}} $$
(21)

Here, d tr is the transition grain size for which relation (20) is satisfied. Due to elasticity, the total plastic strain rate in the crystallite is lower than the total macroscopic strain rate D o. A scalar β is introduced so that:

$$ d_{\rm GI}^{\rm vp-eq}= \beta D_{\rm o}$$
(22)

The last term to be evaluated is ρ/ρo. Considering that the dominant term for small strain in Eq. 7 is related to the constant C and that C is large for a nanocrystalline material, the dislocation density is approximately proportional to the inverse of the grain size d tr:

$$ \frac{\rho}{\rho_{\rm o}} = \frac{K}{d_{\rm tr}} $$
(23)

Therefore, combining Eqs 22 and 23, one obtains the following relation between D o and d tr:

$$ \beta \frac{D_{\rm o}}{2}=d^* \left (\frac{k T d_{\rm tr}^3 }{28 \pi \Omega_b D_{\rm bd}^{\rm sd}w \sigma_{\rm o}}\beta D_{\rm o}\right)^m \left ( \frac{K}{d_{\rm tr}}\right)^{-\frac{m}{2}} $$
(24)

Since m is much larger than unity, this equation leads to:

$$(\beta D_{\rm o})^2 = \left (\frac{28 \pi \Omega_b D_{\rm bd}^{\rm sd} w \sigma_{\rm o}}{k T d_{\rm tr}^3}\right)^2 \frac{K}{d_{\rm tr}} $$
(25)

Finally, assuming that β and K will not vary strongly with loading conditions, one obtains:

$$ D_{\rm o}^2 d_{\rm tr}^7 = \hbox{const} $$
(26)

Appendix B: Relationship between equivalent stresses

During uniaxial tensile loading, the material is subjected to the following macroscopic stress:

$$ \underline{\Sigma}= \left\lbrack \begin{array}{rrr} \Sigma_{11} & 0 & 0 \\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array} \right\rbrack $$
(27)

In the present work, the material is assumed isotropic. Since the loading is axisymetric and due to the Taylor–Lin assumption for which the local strain rate in each phase is equal to the macroscopic strain rate, the stress state in the grain interior can be written as:

$$ \begin{aligned} \underline{\sigma}_{\rm GI}= \left\lbrack \begin{array}{rrr} \sigma_{11}^{\rm GI} & 0 & 0 \\ 0 & \sigma_{22}^{\rm GI} & 0\\ 0 & 0 & \sigma_{22}^{\rm GI} \end{array} \right\rbrack \end{aligned} $$
(28)

The stress state in the grain boundary is given by Eq. 28 replacing the superscript GI by GB. With volume averaging, the macroscopic stress \({ \underline{\Sigma}}\) is linked to stresses \({\underline{\sigma}_{\rm GI}}\) and \({\underline{\sigma}_{\rm GB}}\) in the two phases by:

$$ \underline{\Sigma} = f \underline{\sigma}_{\rm GI} + (1-f) \underline{\sigma}_{\rm GB} $$
(29)

Here, f represents the volume fraction of the grain interior. By combination of Eqs. 28 and 29, one obtains:

$$ \Sigma_{11} = f \sigma_{11}^{\rm GI}+(1-f) \sigma_{11}^{\rm GB},\quad f \sigma_{22}^{\rm GI}+(1-f)\sigma_{22}^{\rm GB}= 0 $$
(30)

The grain interior and grain boundary phases are not subjected to uniaxial tensile loading. Nevertheless, the volume average of the microscopic stresses restitutes a stress tensor of uniaxial tension.

The deviatoric Cauchy stress tensor in the grain interior \({\underline{s}_{\rm GI}}\) , obtained from relation (28) is given by:

$$ \underline{s}_{\rm GI}= \left\lbrack \begin{array}{rrr} \frac{2}{3} \sigma^{\rm eq}_{\rm GI} & 0 & 0 \\ 0 &- \frac{1}{3} \sigma^{\rm eq}_{\rm GI} & 0\\ 0 & 0 & - \frac{1}{3} \sigma^{\rm eq}_{\rm GI} \end{array} \right\rbrack $$
(31)

with \({\sigma^{\rm eq}_{\rm GI} = \sigma_{11}^{\rm GI} - \sigma_{22}^{\rm GI}}\) being the equivalent stress in the grain interior phase. The same expression is valid for \({\underline{s}_{\rm GB}}\) with replacing GI by GB in expression (31). Using Eq. 14, the macroscopic deviatoric Cauchy stress components are:

$$ S_{11}= \frac{2}{3} (f \sigma^{\rm eq}_{\rm GI} + (1-f) \sigma^{\rm eq}_{\rm GB}) \quad S_{22}=-\frac{S_{11}}{2} \quad S_{33}= -\frac{S_{11}}{2} $$
(32)

The equivalent macroscopic stress Σeq has the form:

$$ \Sigma^{\rm eq} = f \sigma^{\rm eq}_{\rm GI} + (1-f) \sigma^{\rm eq}_{\rm GB} $$
(33)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mercier, S., Molinari, A. & Estrin, Y. Grain size dependence of strength of nanocrystalline materials as exemplified by copper: an elastic-viscoplastic modelling approach. J Mater Sci 42, 1455–1465 (2007). https://doi.org/10.1007/s10853-006-0670-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0670-y

Keywords

Navigation