Skip to main content
Log in

Thermal stress hysteresis and stress relaxation in an epoxy film

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermal cycling of an epoxy coating on silicon through the glass transition temperature (T g) revealed a large stress hysteresis on the first thermal cycle through T g and a change in the stress–temperature slope at T g resulting from the change in the epoxy elastic properties due to the glass transition. This stress hysteresis was not observed on subsequent thermal cycles through T g. However, after the coating was annealed (aged) below T g (for hours or longer)—during which the stress relaxed exponentially with time—the stress hysteresis returned. The magnitude of stress hysteresis, on cycling through T g, was found to correlate to the magnitude of long-time relaxation that occurred during annealing at temperatures below T g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cherepanov GP (1995) J Appl Phys 78:6826

    Article  CAS  Google Scholar 

  2. Kuczynski J, Sinha AK (2001) IBM J Res Dev 45:783

    Article  CAS  Google Scholar 

  3. Teh LK, Anto E, Wong CC, Mhaisalkar SG, Wong EH, Teo PS, Chen Z (2004) Thin Solid Films 462–463:446

    Article  Google Scholar 

  4. Ernst LJ, Zhang GQ, Jansen KMB, Bressers HJL (2003) J Electron Packaging 125:539

    Article  CAS  Google Scholar 

  5. Koguchi H, Sasaki C, Nishida K (2003) J Electron Packaging 125:414

    Article  Google Scholar 

  6. Meuwissen MHH, De Boer HA, Steijvers HLAH, Schreurs PJG, Geers MGD (2004) Microelectron Reliab 44:1985

    Article  CAS  Google Scholar 

  7. Stevens JR, Ivey DG (1958) J Appl Phys 29:1390

    Article  CAS  Google Scholar 

  8. Kim JS, Paik KW, Seo SH (1999) J Appl Phys 86:5474

    Article  CAS  Google Scholar 

  9. Zhao J-H, Kiene M, Hu C, Ho P (2000) Appl Phys Lett 77:2843

    Article  CAS  Google Scholar 

  10. Que L, Gianchandani YB (2000) J Vac Sci Technol B 18:3450

    Article  CAS  Google Scholar 

  11. Perera DY, Schutyser P (1994) Progr Org Coat 24:299

    Article  CAS  Google Scholar 

  12. Perera DY (2002) Progr Org Coat 44:55

    Article  CAS  Google Scholar 

  13. Perera DY (2003) Progr Org Coat 47:61

    Article  CAS  Google Scholar 

  14. Chang W-J, Fang T-H, Lin C-M (2005) J Appl Phys 97:103521

    Article  Google Scholar 

  15. Montserrat S, Gomez Ribelles JL, Meseguer JM (1998) Polymer 39:3801

    Article  CAS  Google Scholar 

  16. Cook WD, Mehrabi M, Edward GH (1999) Polymer 40:1209

    Article  CAS  Google Scholar 

  17. Montserrat S (1994) J Polym Phys B 32:509

    Article  CAS  Google Scholar 

  18. Montserrat S (2000) J Polym Phys B 38:2272

    Article  CAS  Google Scholar 

  19. Timoshenko S (1925) J Opt Soc Am 11:233

    Article  CAS  Google Scholar 

  20. Corcoran EM (1969) J Paint Technol 41:635

    CAS  Google Scholar 

  21. Brantley WA (1973) J Appl Phys 44:534

    Article  CAS  Google Scholar 

  22. Yan G, White JR (1999) Polym Eng Sci 39:1856

    Article  CAS  Google Scholar 

  23. Gaynor JF, Desu SB (1994) J Mat Sci Lett 13:236

    Article  CAS  Google Scholar 

  24. Shen JJ, Shao Z, Li S (1995) Polymer 36:3479

    Article  CAS  Google Scholar 

  25. Voloshin S, Tsao P-H, Pearson RA (1998) J Electron Packaging 120:314

    Article  Google Scholar 

  26. Fesko DG (2000) Polymer Eng Sci 40:1495

    Article  CAS  Google Scholar 

  27. Freund LB, Floro JA, Chason E (1999) Appl Phys Lett 74:1987

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author (JT) acknowledges Awirut Maglai for assistance with sample preparation and Bob Matz for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Thurn.

Appendix A: Non-linear deformation analysis

Appendix A: Non-linear deformation analysis

The use of Eq. 1 requires that the strains and rotations in the system be infinitesimally small. This requirement was examined using the analysis of Freund et al. [27], who showed that non-linear deformation effects can be avoided if the dimensionless parameters S or K are less than 0.3–0.4 or 0.2, respectively:

$$ S = 1.5\varepsilon _{\hbox{m}} R^2 t\frac{{(1 - \nu _{\hbox{s}} )E_{\hbox{f}} }} {{(1 - \nu )E_{\hbox{s}} t_{\hbox{s}}^3 }} $$
(A1)

and

$$ K = 0.25R^2 \frac{{\Delta \kappa }} {{t_{\hbox{s}} }}, $$
(A2)

where ε m is the imposed thermal mismatch strain, R is the sample radius (50 mm), E f is the film Young’s Modulus, and ν is the film Poisson’s Ratio. Since the film mechanical properties are not known, the parameter K was evaluated using the largest change in curvature observed over the course of the experiment, Δκ = 0.02 m−1, to be K = 0.016. As K < 0.2, non-linear deformations were not considered.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thurn, J., Hermel-Davidock, T. Thermal stress hysteresis and stress relaxation in an epoxy film. J Mater Sci 42, 5686–5691 (2007). https://doi.org/10.1007/s10853-006-0654-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0654-y

Keywords

Navigation