Skip to main content

Fundamentals of Thermal Conductivity in the Epoxy Polymer Network

  • Chapter
  • First Online:
Multifunctional Epoxy Resins

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

In metals, the heat is carried predominantly by electrons. However, it is observed in polymers that the thermal conductivity is driven by lattice vibrations known as phonons. The thermal conductivity through an epoxy polymer is controlled by the state, structure, and orientation of the polymer chain network. Basic understanding of the thermal conductivity of epoxy resins is explained through Debye’s theory and Fourier’s law. The theories of correlation between thermal conductivity and thermal diffusivity, explanation of phonon transport in a 2D epoxy network, and electronic contribution of thermal conductivity in undoped polymers lay foundation to the topic of thermal conductivity in epoxy resins. The heat transfer through the epoxy resin is controlled by incorporating high thermal conductivity fillers to form composites, or, by the intrinsic modification of the epoxy nanostructure for improved crystallinity. The thermal degradation of epoxy polymer is proportionally dependant on the thermal conductivity. This chapter covers the basic theories of thermal conductivity, methods to improve thermal conductivity, factors influencing thermal conductivity, and effect of thermal conductivity in the thermal degradation of epoxy resins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, J., et al.: New underfill material based on copper nanoparticles coated with silica for high thermally conductive and electrically insulating epoxy composites. J. Mater. Sci. 54(8), 6258–6271 (2019)

    Article  CAS  Google Scholar 

  2. Li, Z., et al., Effect of hexagonal-boron nitride/epoxy and BNNS/epoxy composite materials on the reliability of flip chip. J. Electronic Packaging. 144(3) (2021)

    Google Scholar 

  3. Chen, H., et al.: Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polym. Sci. 59, 41–85 (2016)

    Article  CAS  Google Scholar 

  4. Ammous, A., et al.: Developing an equivalent thermal model for discrete semiconductor packages. Int. J. Therm. Sci. 42(5), 533–539 (2003)

    Article  Google Scholar 

  5. Lu, T.: Thermal management of high power electronics with phase change cooling. Int. J. Heat Mass Transf. 43(13), 2245–2256 (2000)

    Article  CAS  Google Scholar 

  6. Guo, Y., et al.: Factors affecting thermal conductivities of the polymers and polymer composites: a review. Compos. Sci. Technol. 193, 108134 (2020)

    Article  CAS  Google Scholar 

  7. Wang, D., et al.: Achieving ultrahigh thermal conductivity in Ag/MXene/epoxy nanocomposites via filler-filler interface engineering. Compos. Sci. Technol. 213, 108953 (2021)

    Article  CAS  Google Scholar 

  8. Zhang, T., Wu, X., Luo, T.: Polymer nanofibers with outstanding thermal conductivity and thermal stability: fundamental linkage between molecular characteristics and macroscopic thermal properties. J. Phys. Chem. C 118(36), 21148–21159 (2014)

    Article  CAS  Google Scholar 

  9. Zhang, T., Luo, T.: Morphology-influenced thermal conductivity of polyethylene single chains and crystalline fibers. J. Appl. Phys. 112(9), 094304 (2012)

    Article  Google Scholar 

  10. Wen, J.: Heat capacities of polymers. In: Physical Properties of Polymers Handbook, pp. 145–154. Springer (2007)

    Chapter  Google Scholar 

  11. Shen, S., et al.: Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 5(4), 251–255 (2010)

    Article  CAS  Google Scholar 

  12. Xu, X., et al.: Thermal conductivity of polymers and their nanocomposites. Adv. Mater. 30(17), 1705544 (2018)

    Article  Google Scholar 

  13. Wunderlich, B.: Heat capacity of polymers. Handb. Therm. Anal. Calorim. 3, 1–47 (2002)

    Article  CAS  Google Scholar 

  14. Schliesser, J.M., Woodfield, B.F.: Development of a Debye heat capacity model for vibrational modes with a gap in the density of states. J. Phys.: Condens. Matter. 27(28), 285402–285402 (2015)

    Google Scholar 

  15. Akatsuka, M., Takezawa, Y.: Study of high thermal conductive epoxy resins containing controlled high-order structures. J. Appl. Polym. Sci. 89(9), 2464–2467 (2003)

    Article  CAS  Google Scholar 

  16. Zorin, V.A., Baurova, N.I., Kosenko, E.A.: Analysis of the influence of quantum-mechanical processes on the possibilities of determining the low degree of curing a binder when molding products from polymer composite materials. Polym. Sci., Ser. D 11(3), 334–338 (2018)

    Article  CAS  Google Scholar 

  17. Uher, C., Thermal conductivity of metals. In: Tritt, T.M. (ed.) Thermal Conductivity: Theory, Properties, and Applications, pp. 21–91. Springer US, Boston, MA (2004)

    Google Scholar 

  18. Ho, C.Y., Powell, R.W., Liley, P.E.: Thermal conductivity of the elements: a comprehensive review (1974)

    Google Scholar 

  19. Heeger, A.J.: Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angew. Chem. Int. Ed. 40(14), 2591–2611 (2001)

    Article  CAS  Google Scholar 

  20. Goel, M., Thelakkat, M.: Polymer thermoelectrics: opportunities and challenges. Macromolecules 53(10), 3632–3642 (2020)

    Article  CAS  Google Scholar 

  21. Kumar, G.S., Prasad, G., Pohl, R.O.: Experimental determinations of the Lorenz number. J. Mater. Sci. 28(16), 4261–4272 (1993)

    Article  CAS  Google Scholar 

  22. Wiedemann, G., Franz, R.: Relative conductivity of solids. Ann. Phys. Chemie. 89, 497–531 (1853)

    Google Scholar 

  23. Weathers, A., et al.: Significant electronic thermal transport in the conducting polymer poly(3,4-ethylenedioxythiophene). Adv. Mater. 27(12), 2101–2106 (2015)

    Article  CAS  Google Scholar 

  24. Lokanathan, M., et al.: Review of nanocomposite dielectric materials with high thermal conductivity. Proc. IEEE 109(8), 1364–1397 (2021)

    Article  CAS  Google Scholar 

  25. Weidenfeller, B., Höfer, M., Schilling, F.R.: Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Compos. A Appl. Sci. Manuf. 35(4), 423–429 (2004)

    Article  Google Scholar 

  26. Parker, W., et al.: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679–1684 (1961)

    Article  CAS  Google Scholar 

  27. Wu, Y., Yu, Z.: Thermal conductivity of in situ epoxy composites filled with ZrB2 particles. Compos. Sci. Technol. 107, 61–66 (2015)

    Article  CAS  Google Scholar 

  28. Nunes dos Santos, W., Mummery, P., Wallwork, A.: Thermal diffusivity of polymers by the laser flash technique. Polym. Test. 24(5), 628–634 (2005)

    Google Scholar 

  29. Zeng, L., et al.: Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures. Sci. Rep. 5(1), 17131 (2015)

    Article  CAS  Google Scholar 

  30. Chen, J., Li, L.: Thermal conductivity of graphene oxide: a molecular dynamics study. JETP Lett. 112(2), 117–121 (2020)

    Article  CAS  Google Scholar 

  31. Li, M., et al.: Nonperturbative quantum nature of the dislocation–phonon interaction. Nano Lett. 17(3), 1587–1594 (2017)

    Article  CAS  Google Scholar 

  32. Lin, S., Buehler, M.J.: Thermal transport in monolayer graphene oxide: atomistic insights into phonon engineering through surface chemistry. Carbon 77, 351–359 (2014)

    Article  CAS  Google Scholar 

  33. Liu, J., et al.: High thermal conductive epoxy based composites fabricated by multi-material direct ink writing. Compos. A Appl. Sci. Manuf. 129, 105684 (2020)

    Article  CAS  Google Scholar 

  34. Ruan, K., et al.: Interfacial thermal resistance in thermally conductive polymer composites: a review. Compos. Commun. 22, 100518 (2020)

    Article  Google Scholar 

  35. Tanaka, S., et al.: Formation of liquid crystalline order and its effect on thermal conductivity of AlN/liquid crystalline epoxy composite. Polym.-Plast. Technol. Eng. 57(4), 269–275 (2018)

    Article  CAS  Google Scholar 

  36. Ruan, K., et al.: Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: a mini-review. Mater. Today Phys. 20, 100456 (2021)

    Article  CAS  Google Scholar 

  37. Zhong, X., et al.: Discotic liquid crystal epoxy resins integrating intrinsic high thermal conductivity and intrinsic flame retardancy. Macromol. Rapid Commun. 43(1), 2100580 (2022)

    Article  CAS  Google Scholar 

  38. Xu, Y., Chung, D.D.L., Mroz, C.: Thermally conducting aluminum nitride polymer-matrix composites. Compos.—Part A: Appl. Sci. Manufact. 32(12), 1749–1757 (2001)

    Article  Google Scholar 

  39. Wong, C.P., Bollampally, R.S.: Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J. Appl. Polym. Sci. 74(14), 3396–3403 (1999)

    Article  CAS  Google Scholar 

  40. Yang, X., et al.: Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A: Appl. Sci. Manuf. 128 (2020)

    Google Scholar 

  41. Thostenson, E.T., Chou, T.W.: Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44(14), 3022–3029 (2006)

    Article  CAS  Google Scholar 

  42. Hu, J., et al.: Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl. Mater. Interfaces. 9(15), 13544–13553 (2017)

    Article  CAS  Google Scholar 

  43. Zeng, X., et al.: Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement. Small 11(46), 6205–6213 (2015)

    Article  CAS  Google Scholar 

  44. Mamunya, Y.P., et al.: Electrical and thermal conductivity of polymers filled with metal powders. Eur. Polymer J. 38(9), 1887–1897 (2002)

    Article  CAS  Google Scholar 

  45. Chen, J., et al., Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv. Funct Mater. 27(5) (2017)

    Google Scholar 

  46. Biercuk, M.J., et al.: Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80(15), 2767–2769 (2002)

    Article  CAS  Google Scholar 

  47. Im, H., Kim, J.: Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite. Carbon 50(15), 5429–5440 (2012)

    Article  CAS  Google Scholar 

  48. Yu, A., et al.: Enhanced thermal conductivity in a hybrid graphite nanoplatelet— arbon nanotube filler for epoxy composites. Adv. Mater. 20(24), 4740–4744 (2008)

    Article  CAS  Google Scholar 

  49. Meng, L., Fu, C., Lu, Q.: Advanced technology for functionalization of carbon nanotubes. Prog. Nat. Sci. 19(7), 801–810 (2009)

    Article  CAS  Google Scholar 

  50. Wang, Z., et al., Thermal conductivity improvement of epoxy composite filled with expanded graphite. Ceram. Int. 41(10, Part A), 13541–13546 (2015)

    Google Scholar 

  51. Feng, C.-P., et al.: Recent advances in polymer-based thermal interface materials for thermal management: a mini-review. Compos. Commun. 22, 100528 (2020)

    Article  Google Scholar 

  52. Gu, J., Ruan, K.: Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13(1), 1–9 (2021)

    Article  Google Scholar 

  53. Song, P., et al.: Lightweight, flexible cellulose-derived carbon aerogel@ reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-micro Lett. 13(1), 1–17 (2021)

    Article  CAS  Google Scholar 

  54. Burger, N., et al.: Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog. Polym. Sci. 61, 1–28 (2016)

    Article  CAS  Google Scholar 

  55. Barclay, G., et al.: Liquid crystalline epoxy thermosets based on dihydroxymethylstilbene: synthesis and characterization. J. Polym. Sci., Part A: Polym. Chem. 30(9), 1831–1843 (1992)

    Article  CAS  Google Scholar 

  56. Giang, T., Kim, J.: Effect of backbone moiety in diglycidylether-terminated liquid crystalline epoxy on thermal conductivity of epoxy/alumina composite. J. Ind. Eng. Chem. 30, 77–84 (2015)

    Article  CAS  Google Scholar 

  57. Lu, Y., et al.: Thermal and phase transformation behavior of epoxy-functional graphene oxide/liquid crystalline epoxy composite. Polym. Compos. 39(S3), E1391–E1397 (2018)

    Article  CAS  Google Scholar 

  58. Giang, T., Kim, J.: Effect of liquid-crystalline epoxy backbone structure on thermal conductivity of epoxy–alumina composites. J. Electron. Mater. 46(1), 627–636 (2017)

    Article  CAS  Google Scholar 

  59. Yang, X., et al.: High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers. Compos. B Eng. 185, 107784 (2020)

    Article  CAS  Google Scholar 

  60. Ma, H., Tian, Z.: Effects of polymer chain confinement on thermal conductivity of ultrathin amorphous polystyrene films. Appl. Phys. Lett. 107(7), 073111 (2015)

    Article  Google Scholar 

  61. Zhang, T., Luo, T.: Role of chain morphology and stiffness in thermal conductivity of amorphous polymers. J. Phys. Chem. B 120(4), 803–812 (2016)

    Article  CAS  Google Scholar 

  62. Hammerschmidt, A., Geibel, K., Strohmer, F.: In situ photopolymerized, oriented liquid-crystalline diacrylates with high thermal conductivities. Adv. Mater. 5(2), 107–109 (1993)

    Article  Google Scholar 

  63. Tang, N., et al.: Highly anisotropic thermal conductivity of mesogenic epoxy resin film through orientation control. J. Appl. Polym. Sci. 138(47), 51396 (2021)

    Article  CAS  Google Scholar 

  64. Luo, F., et al.: Highly thermally conductive phase change composites for thermal energy storage featuring shape memory. Compos. A Appl. Sci. Manuf. 129, 105706 (2020)

    Article  CAS  Google Scholar 

  65. Song, S.-H., Katagi, H., Takezawa, Y.: Study on high thermal conductivity of mesogenic epoxy resin with spherulite structure. Polymer 53(20), 4489–4492 (2012)

    Article  CAS  Google Scholar 

  66. Jeong, I., et al.: Liquid crystalline epoxy resin with improved thermal conductivity by intermolecular dipole–dipole interactions. J. Polym. Sci., Part A: Polym. Chem. 57(6), 708–715 (2019)

    Article  CAS  Google Scholar 

  67. Kim, Y., et al.: Highly thermal conductive resins formed from wide-temperature-range eutectic mixtures of liquid crystalline epoxies bearing diglycidyl moieties at the side positions. Polym. Chem. 8(18), 2806–2814 (2017)

    Article  CAS  Google Scholar 

  68. Anderson, D.: Thermal conductivity of polymers. Chem. Rev. 66(6), 677–690 (1966)

    Article  CAS  Google Scholar 

  69. Koerner, H., Ober, C.K., Xu, H.: Probing electric field response of LC thermosets via time-resolved X-ray and dielectric spectroscopy. Polymer 52(10), 2206–2213 (2011)

    Article  CAS  Google Scholar 

  70. Kang, D.-G., et al.: Heat transfer organic materials: robust polymer films with the outstanding thermal conductivity fabricated by the photopolymerization of uniaxially oriented reactive discogens. ACS Appl. Mater. Interfaces. 8(44), 30492–30501 (2016)

    Article  CAS  Google Scholar 

  71. Guo, H., et al.: Highly thermally conductive 3d printed graphene filled polymer composites for scalable thermal management applications. ACS Nano 15(4), 6917–6928 (2021)

    Article  CAS  Google Scholar 

  72. Swartz, E.T., Pohl, R.O.: Thermal boundary resistance. Rev. Mod. Phys. 61(3), 605 (1989)

    Article  Google Scholar 

  73. Karol, P., Tomasz, S.W.: A review of models for effective thermal conductivity of composite materials. J. Power Technol. 95(1), 14 (2015)

    Google Scholar 

  74. Pan, D., et al.: Ice template method assists in obtaining carbonized cellulose/boron nitride aerogel with 3D spatial network structure to enhance the thermal conductivity and flame retardancy of epoxy-based composites. Adv. Compos. Hybrid Mater. 5(1), 58–70 (2022)

    Article  CAS  Google Scholar 

  75. Lee, S., Kim, J.: Diglycidyl ether of bisphenol—a functionalized graphene/copper foam composite with enhanced thermal conductivity and effective electromagnetic interference shielding. Synth. Met. 284, 116989 (2022)

    Article  CAS  Google Scholar 

  76. Wan, Y.-J., et al.: Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69, 467–480 (2014)

    Article  CAS  Google Scholar 

  77. Yang, X., et al.: Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. A Appl. Sci. Manuf. 128, 105670 (2020)

    Article  CAS  Google Scholar 

  78. Han, Z., Fina, A.: Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. 36: 914 Prog. Polym. Sci. (2011)

    Google Scholar 

  79. Xiao, H., et al.: Highly thermally conductive, superior flexible and surface metallisable boron nitride paper fabricated by a facile and scalable approach. Compos. Commun. 23, 100584 (2021)

    Article  Google Scholar 

  80. Huang, X., et al.: Thermal conductivity of graphene-based polymer nanocomposites. Mater. Sci. Eng. R. Rep. 142, 100577 (2020)

    Article  Google Scholar 

  81. Wu, S., et al.: A new route to nanostructured thermosets with block ionomer complexes. Soft Matter 8(3), 688–698 (2011)

    Article  Google Scholar 

  82. An, D., et al.: Flexible thermal interfacial materials with covalent bond connections for improving high thermal conductivity. Chem. Eng. J. 383, 123151 (2020)

    Article  CAS  Google Scholar 

  83. Hameed, N., et al.: Ductile thermoset polymers via controlling network flexibility. Chem. Commun. 51(48), 9903–9906 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Faculty of Science, Engineering and Technology (FSET) of Swinburne University of Technology Melbourne for the financial support provided to the first author, having been awarded a masters by research studentship; and research grants from the Australian Research Council for the ARC DECRA (DE170101249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishar Hameed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mathews, L.D., Hameed, N. (2023). Fundamentals of Thermal Conductivity in the Epoxy Polymer Network. In: Hameed, N., Capricho, J.C., Salim, N., Thomas, S. (eds) Multifunctional Epoxy Resins. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-19-6038-3_10

Download citation

Publish with us

Policies and ethics