Skip to main content
Log in

Preparation of UV-curable intercalated/exfoliated epoxide/acrylateclays nanocomposite resins

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Preparation of UV-curable intercalated/exfoliated epoxide/acrylateclays nanocomposite resins with the addition of specific monomers and solvent via the consideration of solubility parameter and chemical reactivity was carried out in this work. Due to the good compatibility with surfactant in acrylateclays and the cationic oligomer in resin matrix, the two additive monomers dispersed uniformly in resin matrix with the swollen acrylateclays before UV curing. As revealed by conversion ratio and DTG analyses, chemical bonds between the two additive monomers, the cationic oligomers and surfactant in acrylateclays were formed during UV irradiation. This, in turn, generated a hybrid acrylate-based/epoxy network and effectively enlarged the lamellae spacing of inorganic clays in nanocomposite resins prepared in this work. The XRD and TEM characterizations revealed that the intercalated clay domains containing exfoliated lamellae about 1 nm in thickness uniformly disperse in polymeric matrix. The nanocomposite resin containing 5 wt.% inorganic filler possessed the physical properties as follows: T d-5% = 213 °C, CTE = 80.5 ppm/°C, moisture absorption = 6.12%, average optical transmittance = 83.17%, and adhesion strength on glass substrate = 43.8 kgf/cm2. The analyses above indicated that the formation of polymeric interpenetrating networks and nanometer-scale exfoliation of clay lamellae not only improve the thermal properties and resistance to moisture permeation, but also retain highly optical transmittance and satisfactory adhesion strength of nanocomposite resins prepared in this work. A better device lifetime property was hence achieved when the nanocomposite resins were applied to the packaging of OLEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nagata H, Shiroishi M, Miyama Y, Mitsugi N, Miyamoto N (1995) Opt Fib Tech 1:283

    Article  Google Scholar 

  2. Baikerikar KK, Scranton AB (2001) Polym 42:431

    Article  CAS  Google Scholar 

  3. Chou YC, Wang YY, Hsieh TE, J Appl Polym Sci (accepted)

  4. Wang YY, Hsieh TE, IEEE Trans Adv Package (accepted)

  5. Decker C, Zahouily K, Keller L, Benfarhi S, Bendaikha T (2002) J Mater Sci 37:4831

    Article  CAS  Google Scholar 

  6. Keller L, Decker C, Zahouily K, Benfarhi S, Le Meins JM, Miehe-Brendle J (2004) Polym 45:7437

    Article  CAS  Google Scholar 

  7. Shemper BS, Morizur JF, Alirol M, Domenech A, Hulin V, Mathias LJ (2004) J Appl Polym Sci 93:1252

    Article  CAS  Google Scholar 

  8. Benfarhi S, Decker C, Keller L, Zahouily K (2004) Eur Polym J 40:493

    Article  CAS  Google Scholar 

  9. Uhl FM, Davuluri SP, Wong SC, Webster DC (2004) Polym 45:6175

    Article  CAS  Google Scholar 

  10. Wang YY, Hsieh TE (2005) Chem Mater 17:3331

    Article  CAS  Google Scholar 

  11. Chiang TH, Hsieh TE (2005) J Adhes Sci Tech 1:1

    Article  Google Scholar 

  12. Decker C, Nguyen Thi Viet T, Decker D, Weber-Koehl E (2001) Polym 42:5531

    Article  CAS  Google Scholar 

  13. Sui G, Zhang ZG, Chen CQ, Zhong WH (2002) Mater Chem Phys 78:349

    Article  Google Scholar 

  14. Jana RN, Mukunda PG, Nando GB (2003) Polym Degrad Stab 80:75

    Article  CAS  Google Scholar 

  15. Remiro PM, Cortazar M, Calahorra E, Calafel MM (2002) Polym Degrad Stab 78:83

    Article  CAS  Google Scholar 

  16. Basfer AA (2002) Polym Degrad Stab 77:221

    Article  Google Scholar 

  17. Crivello JV, Varlemann U (1995) J Polym Sci 33:2473

    Article  CAS  Google Scholar 

  18. Wen J, Wikes GL (1996) Chem Mater 8:1667

    Article  CAS  Google Scholar 

  19. Fischer HR, Gielgens LH, Koster TPM (1999) Acta Polym 50:122

    Article  CAS  Google Scholar 

  20. Petrović ZS, Javni I, Waddon A, Bánhegyi G (2000) J Appl Polym Sci 76:133

    Article  Google Scholar 

  21. Zhu ZK, Yang Y, Yin J, Wang XY, Ke YC, Qi ZN (1999) J Appl Polym Sci 73:2063

    Article  CAS  Google Scholar 

  22. Burnside SD, Giannelis EP (1995) Chem Mater 7:1597

    Article  CAS  Google Scholar 

  23. Fu X, Qutubuddin S (2001) Polym 42:807

    Article  CAS  Google Scholar 

  24. Lee DK, Char KK (2002) Polym Degrad Stab 75:555

    Article  CAS  Google Scholar 

  25. Laubender J, Chkoda L, Sokolowski M, Umbach E (2000) Synth Met 111–112:373

    Article  Google Scholar 

  26. Yano K, Usuki A, Okada A, Kurauchi T, Kamigatio O (1993) J Polym Sci A Polym Chem 31:2493

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Taiwan, Republic of China within the Project of Excellence “Semiconducting Polymers and Organic Molecules for Electroluminescence: B. Development of Advanced Materials and Devices for Organic Light Emitting Diodes (OLED) Technology” under contract No. 91-E-FA04-2-4. The authors are also grateful to Dr. Chia-Hung Hsu at NSRRC, Taiwan, for the assistance and discussion on GIXRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsung-Eong Hsieh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YY., Hsieh, TE. Preparation of UV-curable intercalated/exfoliated epoxide/acrylateclays nanocomposite resins. J Mater Sci 42, 4451–4460 (2007). https://doi.org/10.1007/s10853-006-0623-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0623-5

Keywords

Navigation