Skip to main content
Log in

Mechanical properties for bulk metallic glass with crystallites precipitation and second ductile phase addition

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Monolithic phase bulk metallic glasses (BMGs) produced by a copper mold casting method and BMG composites containing in-situ brittle crystallites and out-situ tungsten fiber produced by a water quenching method were obtained. Mechanical properties including cyclic deformation and fracture toughness were investigated. Under symmetrically cyclic stress control, the life of tungsten fiber reinforced amorphous alloy is much longer than that of the monolithic amorphous alloy. The composite containing tungsten fibers that retard the crack propagation exhibits cyclic softening while the partially crystallized amorphous alloy exhibits stable cycling. The regions of crack initiation, stable propagation and final fracture were observed on the fracture surface. Crystalline brittle phases do not retard the crack propagation but become sites of crack initiation. Tungsten fiber reinforced BMG has the largest fracture toughness while BMG with quenched-in crystallites the smallest. Tungsten fibers stabilize crack growth in the matrix and extend the strain to failure of the composite, while brittle crystallites speed up the crack propagation even though they act as obstacles when shear bands reach them in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Klement W, Willens RH, Duwez P (1960) Nature 187:869

    Article  CAS  Google Scholar 

  2. Chen HS, Turnbull D (1969) Acta Metall 17:1021

    Article  CAS  Google Scholar 

  3. Steinberg J, Lord AE, Lacy LL, Johnson J (1981) Appl Phys Lett 38:135

    Article  CAS  Google Scholar 

  4. Lee MC, Kendall JM, Johnson WL (1982) Appl Phys Lett 40:382

    Article  CAS  Google Scholar 

  5. Drehman AJ, Greer AL, Turnbull D (1982) Appl Phys Lett 41:16

    Article  Google Scholar 

  6. Kui HW, Greer AL, Turnbull D (1984) Appl Phys Lett 45:615

    Article  CAS  Google Scholar 

  7. Inoue A, Ekimoto T, Masumoto T (1988) Int J Rapid Solidifact 3:237

    Google Scholar 

  8. Bruck HA, Christman T, Posakis AJ, Johnson WL (1994) Scripta Metall Mater 30:429

    Article  CAS  Google Scholar 

  9. Bruck HA, Rosakis AJ, Johnson WL (1996) J Mater Res 11:503

    CAS  Google Scholar 

  10. Alpas AT, Embury JD (1988) Scripta Metall Mater 22:256

    Google Scholar 

  11. Hufnagel TC, El-Deiry P, Vince RP (2000) Scripta Mater 43:1071

    Article  CAS  Google Scholar 

  12. Pampillo CA (1975) J Mater Sci 10:1194

    Article  CAS  Google Scholar 

  13. Leonhard A, Xing LQ, Heimaier M, Gebert A, Eckert J, Schultz L (1998) Nanostruct Mater 10:805

    Article  CAS  Google Scholar 

  14. Fan C, Li C, Inoue A, Haas V (2000) Phys Rev B 61:3761

    Article  Google Scholar 

  15. Bertrand C, Xing LQ, Dallas JP, Cornet M (1998) Mater Sci Eng A 241:216

    Article  Google Scholar 

  16. Gilbert CJ, Ritchie RO, Johnson WL (1997) Appl Phys Lett 71:476

    Article  CAS  Google Scholar 

  17. Conner RD, Rosakis AJ, Johnson WL, Owen DM (1997) Scripta Metall Mater 37:1373

    CAS  Google Scholar 

  18. Lowhaphandu P, Lewandoski JJ (1998) Scripta Metall Mater 38:1811

    CAS  Google Scholar 

  19. Leng Y, Courtney TH (1991) J Mater Sci 26:588

    Article  Google Scholar 

  20. Choi-Yim H, Johnson WL (1997) Appl Phys Lett 71:3808

    Article  CAS  Google Scholar 

  21. Conner RD, Dandliker RB, Johnson WL (1998) Acta Mater 46:6089

    Article  CAS  Google Scholar 

  22. Choi-Yim H, Busch R, Köster U, Johnson WL (1999) Acta Mater 41:2455

    Article  Google Scholar 

  23. Eckert J, Kühn U, Mattern N, He G, Gebert A (2002) Intermetallics 10:1183

    Article  CAS  Google Scholar 

  24. Kühn U, Eckert J, Mattern N, Schultz L (2002) Appl Phys Lett 80:2478

    Article  Google Scholar 

  25. Peker A, Johnson WL (1993) Appl Phys Lett 63:2342

    Article  Google Scholar 

  26. Qiu KQ (2002) PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences

  27. Schneider SP, Thiyagarajan P, Johnson WJ (1996) Appl Phys Lett 68:493

    Article  CAS  Google Scholar 

  28. Busch R, Schneider SP, Peter A, Johnson WJ (1995) Appl Phys Lett 67:1544

    Article  CAS  Google Scholar 

  29. Fecht HJ (1997) Phil Mag B 76:495

    CAS  Google Scholar 

  30. Yokoyama Y, Fukaura K, Sunada H (2000) Mater Trans JIM 40:675

    Google Scholar 

  31. Flores KM, Dauskardt RH (1999) Scripta Metall Mater 41:937

    CAS  Google Scholar 

  32. Qiu KQ, Wang AM, Zhang HF, Ding BZ, Hu ZQ (2002) Intermetallics 10:1283

    Article  CAS  Google Scholar 

  33. Qiu KQ, Wu XF, Wang AM, Zhang HF, Ding BZ, Hu ZQ (2003) Metall MaterTrans A 34A:1147

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Qiang Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, KQ., Hao, D.Z., Ren, Y.L. et al. Mechanical properties for bulk metallic glass with crystallites precipitation and second ductile phase addition. J Mater Sci 42, 3223–3229 (2007). https://doi.org/10.1007/s10853-006-0238-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0238-x

Keywords

Navigation