Skip to main content

Advertisement

Log in

Preparation, Microstructure, and Mechanical Properties of Bulk Metallic Glass Composite Containing In Situ-Formed Dendrites and Ex Situ Tungsten Particles

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A kind of bulk metallic glass composites (BMGCs) with ex situ tungsten (W) particles and in situ dendrites were designed and successfully prepared through infiltrating Ti40.9Zr30.4Nb4.2Cu7Ni1.7Be15.8 (at.%) melt into the W preforms at different temperatures of 1103-1243 K. X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements show the dendrites change from single bcc phase to the mixture crystals along with the significant increase in the volume fraction due to the more W dissolution when the casting temperature increases over 1183 K. With such the microstructural evolution, the mechanical properties change significantly from high strength and ductility along with work hardening capacity to the reduced strength and ductility along with work softening capacity. The samples prepared at 1123 K exhibit the optimal mechanical properties including the yield strength of ~ 1670 MPa, the maximum fracture strength of ~ 2080 MPa and the plastic strain of ~ 26%, which is attribute to the cooperative deformation mechanism between W particles and in situ BMGC matrix. These findings deepen the understanding of the cooperative deformation of composites containing the multiple phases and shed light on design BMGCs for specific application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A.L. Greer, Y.Q. Cheng, and E. Ma, Shear Bands in Metallic Glasses, Mater. Sci Eng. R., 2013, 74, p p71-132. https://doi.org/10.1016/j.mser.2013.04.001

    Article  Google Scholar 

  2. M.A. Chen, Brief Overview of Bulk Metallic Glasses, NPG Asia. Mater., 2011, 3, p p82-90. https://doi.org/10.1038/asiamat.2011.30

    Article  Google Scholar 

  3. J.J. Lewandowski, and A.L. Greer, Temperature Rise at Shear Bands in Metallic Glasses, Nat. Mater., 2006, 5, p p15-18. https://doi.org/10.1038/nmat1536

    Article  ADS  CAS  Google Scholar 

  4. J. Schroers, Processing of Bulk Metallic Glass, Adv. Mater., 2010, 22, p p1566-1597. https://doi.org/10.1002/adma.200902776

    Article  CAS  Google Scholar 

  5. J. Qiao, A. Sun, E. Huang, Y. Zhang, P.K. Liaw, and C.P. Chuang, Tensile Deformation Micromechanisms for Bulk Metallic Glass Matrix Composites: From Work-Hardening to Softening, Acta. Mater., 2011, 59, p 4126–4137. https://doi.org/10.1016/j.actamat.2011.03.036

    Article  ADS  CAS  Google Scholar 

  6. Z. Zhu, H. Zhang, Z. Hu, W. Zhang, and A. Inoue, Ta-Particulate Reinforced Zr-Based Bulk Metallic Glass Matrix Composite with Tensile plasticity, Scr. Mater., 2010, 62, p 278–281. https://doi.org/10.1016/j.scriptamat.2009.11.018

    Article  CAS  Google Scholar 

  7. F. Qin, Y. Zhou, C. Ji, Z. Dan, G.Q. Xie, and S. Yang, Enhanced Mechanical Properties, Corrosion Behavior and Bioactivity of Ti-based Bulk Metallic Glasses with Minor Addition Elements, Acta. Metall. Sin-Engl., 2016, 29, p 1011–1018. https://doi.org/10.1007/s40195-016-0468-0

    Article  CAS  Google Scholar 

  8. M.L. Lee, Y. Li, and C.A. Schuh, Effect of a Controlled Volume Fraction of Dendritic Phases on Tensile and Compressive Ductility in La-Based Metallic Glass Matrix Composites, Acta. Mater., 2004, 52, p 4121–4131. https://doi.org/10.1016/j.actamat.2004.05.025

    Article  ADS  CAS  Google Scholar 

  9. X. Liu, Y. Chen, M. Jiang, P.K. Liaw, and L. Dai, Tuning Plasticity of In-Situ Dendrite Metallic Glass Composites via the Dendrite-Volume-Fraction-Dependent Shear Banding, Mater. Sci. Eng. A., 2017, 680, p 121–129. https://doi.org/10.1016/j.msea.2016.10.085

    Article  CAS  Google Scholar 

  10. W. Guo, J. Saida, M. Zhao, S. Lü, and S. Wu, Non-Thermal Crystallization Process in Heterogeneous Metallic Glass Upon Deep Cryogenic Cycling Treatment, J. Mater. Sci., 2019, 54, p 8778–8785. https://doi.org/10.1007/s10853-019-03515-7

    Article  ADS  CAS  Google Scholar 

  11. Y. Zhu, Z. Zhu, S. Chen, H. Fu, H. Zhang, H. Li, A. Wang, and H. Zhang, Simultaneously Enhancing Strength and Toughness of Zr-Based Bulk Metallic Glasses via Minor Hf Addition, Intermetallics, 2020, 118, p 106685–106685. https://doi.org/10.1016/j.intermet.2019.106685

    Article  CAS  Google Scholar 

  12. S. Lin, S. Ge, Z. Zhu, W. Li, Z. Li, H. Li, H. Fu, A. Wang, Y. Zhuang, and H. Zhang, Double Toughening Ti-Based Bulk Metallic Glass Composite with High Toughness, Strength and Tensile Ductility via Phase Engineering, Appl. Mater. Today, 2021, 22, p 100944. https://doi.org/10.1016/j.apmt.2021.100944

    Article  Google Scholar 

  13. S. Lin, S. Ge, W. Li, H. Li, H. Fu, A. Wang, Y. Zhuang, H. Zhang, and Z. Zhu, Work-Hardenable TiZr-Based Multilayered Bulk Metallic Glass composites Through the Solid Solution Strengthening in Ex-Situ Ti Layers, J. Non-Cryst. Solids., 2021 https://doi.org/10.1016/j.jnoncrysol.2020.120508

    Article  Google Scholar 

  14. B. Zhang, H. Fu, Z. Zhu, A. Wang, H. Li, C. Dong, Z. Hu, and H. Zhang, Synthesis and Properties of Tungsten Balls/Zr-Base Metallic Glass Composite, Mater. Sci. Eng. A., 2012, 540, p 207–211. https://doi.org/10.1016/j.msea.2012.01.127

    Article  CAS  Google Scholar 

  15. H. Zhang, H. Li, A. Wang, H. Fu, B. Ding, and Z. Hu, Synthesis and Characteristics of 80vol.% Tungsten (W) Fibre/Zr Based Metallic Glass Composite, Intermetallics, 2009, 17, p 1070–1077. https://doi.org/10.1016/j.intermet.2009.05.011

    Article  CAS  Google Scholar 

  16. H. Zhang, A. Wang, H. Li, W. Sun, B. Ding, Z. Hu, H. Cai, L. Wang, and W. Li, Quasi-Static Compressive Property of Metallic Glass/Porous Tungsten bi-Continuous Phase Composite, J. Mater. Res., 2006, 21, p 1351–1354. https://doi.org/10.1557/jmr.2006.0166

    Article  ADS  CAS  Google Scholar 

  17. R.D. Conner, R.B. Dandliker, and W.L. Johnson, Mechanical Properties of Tungsten and Steel Fiber Reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 Metallic Glass Matrix Composites, Acta. Mater., 1998, 46, p 6089–6102.

    Article  ADS  CAS  Google Scholar 

  18. R.B. Dandliker, R.D. Conner and W.L. Johnson, Melt Infiltration Casting of Bulk Metallic-Glass Matrix Composites, J. Mater. Res., 1998, 13, p 2896–2901. https://doi.org/10.1557/JMR.1998.0396

    Article  ADS  CAS  Google Scholar 

  19. W. Zhang, Q. Xiang, Y. Qu, Q. Li, Y. Ren, and K. Qiu, Effect of Melt Cooling Rate on Glass Transition Kinetics and Structural Relaxation of Vit1 Metallic Glass, China Foundry, 2021, 18, p 118–123. https://doi.org/10.1007/s41230-021-0129-4

    Article  Google Scholar 

  20. J.L. Soubeyroux and J.N. Mei, Neutron In Situ Crystallization Studies of Ti-Based BMGs, J. Alloys. Compd., 2010, 504, p 239-S242. https://doi.org/10.1016/j.jallcom.2010.04.039

    Article  Google Scholar 

  21. H.J. Leamy, H. Chen, and T. Wang, Plastic-Flow and Fracture of Metallic Glass, Metall. Trans., 1972, 3, p 699. https://doi.org/10.1007/BF02642754

    Article  CAS  Google Scholar 

  22. R. Qu and Z. Zhang, A Universal Fracture Criterion for High-Strength Materials, Sci. Rep., 2013, 3, p 313–496. https://doi.org/10.1038/srep01117

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (52074257), Chinese Academy of Sciences (ZDBS-LY-JSC023) and Science and Technology on Transient Impact Laboratory (6142606192208).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Li or Z. W. Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, S.C., Geng, T.Q., Li, S.T. et al. Preparation, Microstructure, and Mechanical Properties of Bulk Metallic Glass Composite Containing In Situ-Formed Dendrites and Ex Situ Tungsten Particles. J. of Materi Eng and Perform 33, 1496–1505 (2024). https://doi.org/10.1007/s11665-023-08069-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08069-z

Keywords

Navigation