Skip to main content

Abstract

Bulk metallic glasses (BMGs) are amorphous alloys exhibiting high strengths and unique mechanical properties given their liquid-like structure in the solid state. Their properties can be modified (e.g. for increasing toughness and/or strength or for changing the total density) by incorporating secondary phases within the amorphous matrix. In the present work, lightweight Magnesium-based bulk metallic glass composites (BMGCs) were fabricated at low processing temperatures via thermoplastic forming (TPF) within the supercooled liquid region (SCLR) of the amorphous alloy. Here, the unique thermophysical features of the matrix material allow for TPF of composites in non-sacrificial moulds; incorporating various types of reinforcement, via processing in the solid state at low temperatures (less than 200 °C), within a short timeframe (less than 10 minutes) and avoiding the formation of brittle phases at the fibre/matrix interface, leading to efficient bonding between reinforcement and matrix, thus creating low density composite materials with interesting properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.H. Wang, C. Dong, C.H. Shek, Materials Science Engineering, R 44 (2004), 45–89.

    Article  Google Scholar 

  2. M.F. Ashby, A.L. Greer, Scripta Materialia, 54 (2006), 321.

    Article  Google Scholar 

  3. W. L. Johnson, Materials Research Society Bulletin, 24 (1999), 42.

    Article  Google Scholar 

  4. J.R. Scully, A. Gebert, J.H. Payer, Journal of Materials Research, 22;2 (2007), 302–313.

    Article  Google Scholar 

  5. A. Gebert, U. Wolff, M. Savyak, J. Eckert, L. Schultz, Materials Science Forum, 377 (2001), 9–14.

    Article  Google Scholar 

  6. A. Makino, T. Kubota, M. Makabe, C.T. Chang, A. Inoue, Materials Science Engineering, B 148 (2008), 166–170.

    Article  Google Scholar 

  7. H. Choi-Yim, W.L. Johnson, Applied Physics Letters, 71 (1997), 3808.

    Article  Google Scholar 

  8. H. Choi-Yim, J. Schroers, W.L. Johnson Applied Physics Letters, 80 (2002), 1906–1908.

    Article  Google Scholar 

  9. U. Kuhn, J. Eckert, N. Mattern, L. Schultz, Applied Physics Letters, 80 (2002), 2478.

    Article  Google Scholar 

  10. P. Wadhwa, J. Heinrich, and R. Busch, Scripta Materialia, 56 (2007), 73–76.

    Article  Google Scholar 

  11. F. Szuecs, C.P. Kim, W.L. Johnson, Materials Science Forum, 360–362 (2001), 43–48.

    Article  Google Scholar 

  12. J. Liu, H. Zhang, X. Yuan, H. Fu, Z. Hu, Materials Transactions, 52:3 (2011), 412–415.

    Article  Google Scholar 

  13. R.D. Conner, R.B. Dandliker, V. Scruggs, W.L. Johnson, International Journal of Impact Engineering, 24 (2000), 435–444.

    Article  Google Scholar 

  14. H. Choi-Yim, S.-Y. Lee, R.D. Conner, Scripta Materialia, 58 (2008), 763–766.

    Article  Google Scholar 

  15. H.F. Zhang, H. Li, A.M. Wang, H.M. Fu, B.Z. Ding, Z.Q. Hu, Intermetallics, 17 (2009), 1070–1077.

    Article  Google Scholar 

  16. N. Khademian, R. Gholamipour, Materials Science and Engineering, A 527 (2010), 3079–3084.

    Article  Google Scholar 

  17. Angell, C. A., Science, 267 (1995), 1924.

    Article  Google Scholar 

  18. J. Schroers, Acta Materialia, 56 (2008,) 471–478.

    Article  Google Scholar 

  19. J. Schroers, T. Ngyuyen, G.A. Croopnick, Scripta Materialia, 56 (2007), 177–180.

    Article  Google Scholar 

  20. K.K. Chawla, Composite Materials: Science and Engineering (Springer, New York, NY, 1987), 104.

    Book  Google Scholar 

  21. R. Astana and P. K. Rohatgi, Journal of Materials Science Letters, 11 (1993), 442–445.

    Article  Google Scholar 

  22. R. Asthana, S.N. Tewari, and S.L. Draper, Metallurgical and Materials Transactions, 29A (1998), 1527–30.

    Article  Google Scholar 

  23. K.J. Laws, B. Gun, M. Ferry, Materials Science Engineering, A 425 (2006), 114–120.

    Article  Google Scholar 

  24. R. Busch, W. Liu, W.L. Johnson, Journal of Applied Physics, 83 (1998), 4134–4141.

    Article  Google Scholar 

  25. H. Somekawa, A. Inoue, K. Higashi, Scripta Materialia, 50 (2004), 1395–1399.

    Article  Google Scholar 

  26. H. Kato, H.-S. Chen, A. Inoue, Scripta Materialia, 58 (2008), 1106–1109

    Article  Google Scholar 

  27. M. Kinaka, H. Kato, M. Hagesawa, A. Inoue, Materials Science and Engineering, A 494 (2008), 299–303.

    Article  Google Scholar 

  28. K.J. Laws, “The Production and Properties of Lightweight Bulk Metallic Glasses” (Ph.D. thesis, University of New South Wales, 2007), 111

    Google Scholar 

  29. A. Takeuchi, A. Inoue, Materials Science and Engineering, A 375–377 (2004), 449.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Shamlaye, K.F., Laws, K.J., Ferry, M. (2013). Bulk Metallic Glass Composites Fabricated within the Supercooled Liquid Region. In: Marquis, F. (eds) Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-48764-9_397

Download citation

Publish with us

Policies and ethics