Skip to main content
Log in

Currents and Finite Elements as Tools for Shape Space

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The nonlinear spaces of shapes (unparameterized immersed curves or submanifolds) are of interest for many applications in image analysis, such as the identification of shapes that are similar modulo the action of some group. In this paper, we study a general representation of shapes as currents, which are based on linear spaces and are suitable for numerical discretization, being robust to noise. We develop the theory of currents for shape spaces by considering both the analytic and numerical aspects of the problem. In particular, we study the analytical properties of the current map and the \(H^{-s}\) norm that it induces on shapes. We determine the conditions under which the current determines the shape. We then provide a finite element-based discretization of the currents that is a practical computational tool for shapes. Finally, we demonstrate this approach on a variety of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. This also happens to be Euclidean-invariant, but this is not relevant to the sequel.

  2. For example, when \(S^1\) acts on \({\mathbb C}^n\) by \(z_i \mapsto e^{i\theta } z_i\), the set of invariants \({\bar{z}}_i z_j\), \(1\le i,j\le n\)\(n^2\) real invariants in all—is complete, and \(n^2\) is much larger than \(\mathrm {dim}({\mathbb C}^n/S^1)=2n-1\). One can find smaller complete sets, limited by the dimension of the smallest Euclidean space into which \({\mathbb C}^n/S^1\) can be embedded. However, in such sets the individual invariants are more complicated [4], so that the total complexity is \(\mathcal {O}(n^2)\).

References

  1. Adams, R., Fournier, J.: Sobolev Spaces, Pure and Applied Mathematics. Elsevier Science, Amsterdam (2003)

    Google Scholar 

  2. Alnaes, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.: The FEniCS project version 1.5. Arch. Numer. Softw. 3, 9–23 (2015)

    Google Scholar 

  3. Arnold, V.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, Berlin (1989)

    Book  Google Scholar 

  4. Bandeira, A.S., Cahill, J., Mixon, D.G., Nelson, A.A.: Saving phase: injectivity and stability for phase retrieval. Appl. Comput. Harmon. Anal. 37, 106–125 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauer, M., Bruveris, M., Marsland, S., Michor, P.W.: Constructing reparameterization invariant metrics on spaces of plane curves. Differ. Geom. Appl. 34, 139–165 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61, 139–157 (2005)

    Article  Google Scholar 

  7. Benn, J., Marsland, S., McLachlan, R.I., Modin, K., Verdier, O.: femshape: library for computing shape invariants of planar curves using the finite element method (2018). https://github.com/olivierverdier/femshape

  8. Bône, A., Louis, M., Martin, B., Durrleman, S.: Deformetrica 4: an open-source software for statistical shape analysis. In: International Workshop on Shape in Medical Imaging, pp. 3–13. Springer (2018)

  9. Boutin, M.: Numerically invariant signature curves. Int. J. Comput. Vis. 40, 235–248 (2000)

    Article  MATH  Google Scholar 

  10. Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., Haker, S.: Differential and numerically invariant signature curves applied to object recognition. Int. J. Comput. Vis. 26, 107–135 (1998)

    Article  Google Scholar 

  11. Celledoni, E., Eslitzbichler, M., Schmeding, A.: Shape analysis on Lie groups with applications in computer animation. J. Geom. Mech. (JGM) 8, 273–304 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Charon, N., Trouvé, A.: The varifold representation of non-oriented shapes for diffeomorphic registration. SIAM J. Imaging Sci. 6, 2547–2580 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Charon, N., Trouvé, A.: Functional currents: a new mathematical tool to model and analyse functional shapes. J. Math. Imaging Vis. 48, 413–431 (2014)

    Article  MATH  Google Scholar 

  14. De Rham, G.: Variétés différentiables: formes, courants, formes harmoniques, vol. 3, Editions Hermann (1973)

  15. Durrleman, S., Pennec, X., Trouvé, A., Ayache, N.: Statistical models of sets of curves and surfaces based on currents. Med. Image Anal. 13, 793–808 (2009)

    Article  Google Scholar 

  16. Glaunès, J., Joshi, S.: Template estimation form unlabeled point set data and surfaces for computational anatomy. In: Proceedings of the International Workshop on the Mathematical Foundations of Computational Anatomy (MFCA-2006), pp. 29–39 (2006)

  17. Glaunès, J., Qiu, A., Miller, M.I., Younes, L.: Large deformation diffeomorphic metric curve mapping. Int. J. Comput. Vis. 80, 317–336 (2008)

    Article  Google Scholar 

  18. Hebey, E.: Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. American Mathematical Society, Providence (1999)

    MATH  Google Scholar 

  19. Kaltenmark, I., Charlier, B., Charon, N.: A general framework for curve and surface comparison and registration with oriented varifolds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3346–3355 (2017)

  20. Logg, A., Wells, G., Hake, J.: DOLFIN: a C++/python finite element library. In: Logg, A., Mardal, K.A., Wells, G. (eds.) Automated Solution of Differential Equations by the Finite Element Method. Lecture Notes in Computational Science and Engineering, vol. 84. Springer, Berlin, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Michor, P.W., Mumford, D.: An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23, 74–113 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Morgan, F.: Geometric Measure Theory: A Beginner’s Guide, 4th edn. Academic Press, Boston (2009)

    MATH  Google Scholar 

  23. Mumford, D.: Pattern theory: the mathematics of perception. Proc. Int. Congr. Math. III, 1–21 (2002)

    MATH  Google Scholar 

  24. Roussillon, P., Glaunès, J.A.: Surface matching using normal cycles. In: International Conference on Geometric Science of Information, pp. 73–80. Springer (2017)

  25. Schmudgen, K.: Unbounded Self-Adjoint Operators on Hilbert Space. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  26. Taylor, M.: Partial Differential Equations I: Basic Theory. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  27. Vaillant, M., Glaunès, J.: Surface matching via currents. Inf. Process. Med. Imaging 19, 381–92 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Marsland.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benn, J., Marsland, S., McLachlan, R.I. et al. Currents and Finite Elements as Tools for Shape Space. J Math Imaging Vis 61, 1197–1220 (2019). https://doi.org/10.1007/s10851-019-00896-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-019-00896-x

Keywords

Mathematics Subject Classification

Navigation