Skip to main content
Log in

Ordering Partial Partitions for Image Segmentation and Filtering: Merging, Creating and Inflating Blocks

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The refinement order on partitions corresponds to the operation of merging blocks in a partition, which is relevant to image segmentation and filtering methods. Its mathematical extension to partial partitions, that we call standard order, involves several operations, not only merging, but also creating new blocks or inflating existing ones, which are equally relevant to image segmentation and filtering techniques. These three operations correspond to three basic partial orders on partial partitions, the merging, inclusion and inflating orders. There are three possible combinations of these three basic orders, one of them is the standard order, the other two are the merging-inflating and inclusion-inflating orders. We study these orders in detail, giving in particular their minimal and maximal elements, covering relations and height functions. We interpret hierarchies of partitions and partial partitions in terms of an adjunction between (partial) partitions (possibly with connected blocks) and scalars. This gives a lattice-theoretical interpretation of edge saliency, hence a typology for the edges in partial partitions. The use of hierarchies in image filtering, in particular with component trees, is also discussed. Finally, we briefly mention further orders on partial partitions that can be useful for image segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994)

    Article  Google Scholar 

  2. Benzécri, J.P.: L’Analyse de Données, I: la Taxinomie. Dunod, Paris (1973)

    Google Scholar 

  3. Birkhoff, G.: Lattice Theory, 8th printing, 3rd edn. American Mathematical Society Colloquium Publications, vol. 25. American Mathematical Society, Providence (1995)

    Google Scholar 

  4. Blyth, T.: Lattices and Ordered Algebraic Structures. Springer, London (2005)

    MATH  Google Scholar 

  5. Cousty, J., Bertrand, G., Couprie, M., Najman, L.: Collapses and watersheds in pseudomanifolds of arbitrary dimension. J. Math. Imaging Vis. (2013, to appear)

  6. Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser, Basel (2003)

    MATH  Google Scholar 

  7. Guigues, L., Cocquerez, J.P., Le Men, H.: Scale-sets image analysis. Int. J. Comput. Vis. 68(3), 289–317 (2006)

    Article  Google Scholar 

  8. Janowitz, M., Schweizer, B.: Ordinal and percentile clustering. Math. Soc. Sci. 18, 135–186 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Johnson, S.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254 (1967)

    Article  Google Scholar 

  10. Kiran, B.R., Serra, J.: Ground truth energies for hierarchies of segmentations. In: Luengo Hendriks, C.L., Borgefors, G., Strand, R. (eds.) Mathematical Morphology and Its Applications to Signal and Image Processing. Lecture Notes in Computer Science, vol. 7883, pp. 123–134. Springer, Berlin (2013). doi:10.1007/978-3-642-38294-9_11

    Chapter  Google Scholar 

  11. Krasner, M.: Nombres semi-réels et espaces ultramétriques. C. R. Hebd. Séances Acad. Sci. 219, 433–435 (1944)

    MATH  MathSciNet  Google Scholar 

  12. Meyer, F., Najman, L.: Segmentation, minimum spanning tree and hierarchies. In: Najman, L., Talbot, H. (eds.) Mathematical Morphology: From Theory to Applications, pp. 229–261. ISTE/Wiley, New York (2010). Chap. 9

    Google Scholar 

  13. Najman, L.: On the equivalence between hierarchical segmentations and ultrametric watersheds. J. Math. Imaging Vis. 40(3), 231–247 (2011). doi:10.1007/s10851-011-0259-1

    Article  MATH  MathSciNet  Google Scholar 

  14. Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Trans. Image Process. 15(11), 3531–3539 (2006)

    Article  Google Scholar 

  15. Najman, L., Schmitt, M.: Watershed of a continuous function. Signal Process. 38(1), 99–112 (1994)

    Article  Google Scholar 

  16. Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(12), 1163–1173 (1996)

    Article  Google Scholar 

  17. Ore, O.: Theory of equivalence relations. Duke Math. J. 9, 573–627 (1942)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ore, O.: Chains in partially ordered sets. Bull. Am. Math. Soc. 49, 558–566 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pavlidis, T.: Structural Pattern Recognition. Springer, Berlin (1980)

    Google Scholar 

  20. Ronse, C.: A topological characterization of thinning. Theor. Comput. Sci. 43, 31–41 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ronse, C.: Set-theoretical algebraic approaches to connectivity in continuous or digital spaces. J. Math. Imaging Vis. 8(1), 41–58 (1998)

    Article  MathSciNet  Google Scholar 

  22. Ronse, C.: Partial partitions, partial connections and connective segmentation. J. Math. Imaging Vis. 32(2), 97–125 (2008). doi:10.1007/s10851-008-0090-5

    Article  MathSciNet  Google Scholar 

  23. Ronse, C.: Adjunctions on the lattices of partitions and of partial partitions. Appl. Algebra Eng. Commun. Comput. 21(5), 343–396 (2010). doi:10.1007/s00200-010-0129-x

    Article  MATH  MathSciNet  Google Scholar 

  24. Ronse, C.: Idempotent block splitting on partial partitions, I: isotone operators. Order 28(2), 273–306 (2011). doi:10.1007/s11083-010-9171-3

    Article  MATH  MathSciNet  Google Scholar 

  25. Ronse, C.: Idempotent block splitting on partial partitions, II: non-isotone operators. Order 28(2), 307–339 (2011). doi:10.1007/s11083-010-9190-0

    Article  MATH  MathSciNet  Google Scholar 

  26. Ronse, C.: Orders on partial partitions and maximal partitioning of sets. In: Soille, P., Ouzounis, G., Pesaresi, M. (eds.) Proceedings of ISMM 2011, the 10th International Symposium on Mathematical Morphology. Lecture Notes in Computer Science, vol. 6671, pp. 49–60. Springer, Berlin (2011)

    Google Scholar 

  27. Ronse, C., Serra, J.: Algebraic foundations of morphology. In: Najman, L., Talbot, H. (eds.) Mathematical Morphology: From Theory to Applications, pp. 35–80. ISTE/Wiley, New York (2010). Chap. 2

    Google Scholar 

  28. Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Trans. Image Process. 7(4), 555–570 (1998)

    Article  Google Scholar 

  29. Salembier, P., Wilkinson, M.H.F.: Connected operators: a review of region-based morphological image processing techniques. IEEE Signal Process. Mag. 26(6), 136–157 (2009)

    Article  Google Scholar 

  30. Serra, J.: Mathematical morphology for Boolean lattices. In: Serra, J. (ed.) Image Analysis and Mathematical Morphology, II: Theoretical Advances, pp. 37–58. Academic Press, London (1988). Chap. 2

    Google Scholar 

  31. Serra, J.: Morphological segmentations of colour images. In: Ronse, C., Najman, L., Decencière, E. (eds.) Mathematical Morphology: 40 Years on. Computational Imaging and Vision, vol. 30, pp. 151–176. Springer, Dordrecht (2005)

    Chapter  Google Scholar 

  32. Serra, J.: A lattice approach to image segmentation. J. Math. Imaging Vis. 24(1), 83–130 (2006)

    Article  MathSciNet  Google Scholar 

  33. Serra, J.: Ordre de la construction et segmentations hiérarchiques. Tech. rep., ESIEE/A2SI/IGM (2010)

  34. Serra, J.: Grain buiding ordering. In: Soille, P., Ouzounis, G., Pesaresi, M. (eds.) Proceedings of ISMM 2011, the 10th International Symposium on Mathematical Morphology. Lecture Notes in Computer Science, vol. 6671, pp. 37–48. Springer, Berlin (2011)

    Google Scholar 

  35. Serra, J.: Hierarchies and optima. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011, 16th International Conference on Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science, vol. 6607, pp. 35–46. Springer, Berlin (2011)

    Google Scholar 

  36. Serra, J., Kiran, B.R.: Optima on hierarchies of partitions. In: Luengo Hendriks, C.L., Borgefors, G., Strand, R. (eds.) Mathematical Morphology and Its Applications to Signal and Image Processing. Lecture Notes in Computer Science, vol. 7883, pp. 147–158. Springer, Berlin (2013). doi:10.1007/978-3-642-38294-9_13

    Chapter  Google Scholar 

  37. Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1132–1145 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Ronse.

Additional information

This work received funding from the Agence Nationale de la Recherche, contract ANR-2010-BLAN-0205-01.

Appendix:  Local Knowledge: Truncation and Restriction

Appendix:  Local Knowledge: Truncation and Restriction

We introduced numerous binary relations on Π (E), most of them being partial order relations, cf. Table 1. We will now consider how such relations are preserved by the following two operations on partial partitions, for any \(A \in\mathcal{P}(E)\): truncation by A:

$$ \pi\mapsto\pi\wedge\mathbf{1}_A = \{ B \cap A \mid B \in\pi, \ B \cap A \ne\emptyset\} , $$
(42)

and restriction to A:

$$ \pi\mapsto\pi\cap\mathcal{P}(A) = \{ B \in\pi\mid B \subseteq A \} . $$
(43)

These operations are relevant to the problem of local knowledge, what Serra [32] calls class permanency: given a partial partition π and a restricted window A, viewing π through A means either truncating all blocks of π, that is, taking π1 A , or restricting π to blocks inside A, that is, taking \(\pi\cap\mathcal{P}(A)\); then it becomes interesting to know if these two operations of truncation and restriction preserve a given order on partial partitions.

We first consider compatibility with truncation. The following relations are preserved by truncation by A:

  • The support inclusion, support containment and support equality relations, since supp(π i 1 A )=supp(π i )∩A.

  • The standard order: standard lattice theory gives π 1π 2π 11 A π 21 A .

  • The merging order, since it is the intersection of the standard order and the support equality relation.

  • The inclusion order: for π 1π 2, the blocks of π 11 A are all non-void BA for Bπ 1, so they belong to π 21 A .

  • The inclusion-inflating order, that is, the intersection of the standard order and of the singularity relation. Indeed, let π 1π 2 and π 1π 2. Then π 11 A π 21 A . The blocks of π 11 A (resp., π 21 A ) are the non-void BA for Bπ 1 (resp., for Bπ 2). If CA (Cπ 2) contains B 1A and B 2A (B 1,B 2π 1), then B 1 and B 2 intersect C, and as π 1π 2, B 1,B 2C, but as π 1π 2, we deduce that B 1=B 2, so B 1A=B 2A. Thus π 11 A π 21 A .

The following relations are not preserved by truncation by A:

  • The singularity relation: take π 1={B,C} and π 2={A}, where BAC but B,CA, then π 1π 2 but \(\pi_{1} \wedge\mathbf{1}_{A} = \{ A \cap B, A \cap C \} \not\Lleftarrow\pi_{2} = \pi_{2} \wedge\mathbf{1}_{A}\).

  • The building order: take BA⊃∅, π 1=1 BA and π 2=1 B , then π 1π 2 but .

  • The inflating order: take the counterexample given for the building order.

  • The merging-inflating order: take the same counterexample.

We now consider compatibility with restriction. The following relations are preserved by restriction to A:

  • The singularity relation: this is a special case of (12).

  • The building order, see (7).

  • The inclusion order: standard set theory gives \(\pi_{1} \subseteq \pi_{2} \ \Rightarrow\ \pi_{1} \cap\mathcal{P}(A) \subseteq\pi_{2} \cap\mathcal{P}(A)\).

The following relations are not preserved by restriction to A:

  • The support inclusion, support containment and support equality relations; indeed, the support does not tell anything about the existence of blocks included in A.

  • The standard order.

  • The merging order.

  • The inflating order.

  • The merging-inflating order.

  • The inclusion-inflating order.

In fact, any order included in the standard order, that is compatible with restriction, must be included in the inclusion order. Indeed, if π 1π 2 but π 1π 2, then there is Bπ 1 and Cπ 2 such that BC, so \(B \in\pi_{1} \cap\mathcal{P}(B)\) but \(\pi_{2} \cap \mathcal{P}(B) \subseteq\pi_{2} \setminus\{C\}\), and B is not included in a block of π 2∖{C}, thus \(\pi_{1} \cap\mathcal{P}(B) \not\le \pi_{2} \cap\mathcal{P}(B)\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronse, C. Ordering Partial Partitions for Image Segmentation and Filtering: Merging, Creating and Inflating Blocks. J Math Imaging Vis 49, 202–233 (2014). https://doi.org/10.1007/s10851-013-0455-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-013-0455-2

Keywords

Navigation