Skip to main content

Curve Propagation, Level Set Methods and Grouping

  • Chapter
Handbook of Biomedical Imaging

Abstract

Image segmentation and object extraction are among the most well addressed topics in computational vision. In this chapter we present a comprehensive tutorial of level sets towards a flexible frame partition paradigm that could integrate edge-drive, regional-based and prior knowledge to object extraction. The central idea behind such an approach is to perform image partition through the propagation planar curves/surfaces. To this end, an objective function that aims to account for the expected visual properties of the object, impose certain smoothness constraints and encode prior knowledge on the geometric form of the object to be recovered is presented. Promising experimental results demonstrate the potential of such a method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Amadieu, E. Debreuve, M. Barlaud, and G. Aubert. Inward and Outward Curve Evolution Using Level Set Method. In IEEE International Conference on Image Processing, volume III, pages 188–192, 1999.

    Google Scholar 

  2. X. Bresson, P. Vandergheynst, and J. Thiran. A Priori Information in Image Segmentation: Energy Functional based on Shape Statistical Model and Image Information. In IEEE International Conference on Image Processing, volume 3, pages 428–428, Barcelona, Spain, 2003.

    Google Scholar 

  3. V. Caselles, F. Catté, B. Coll, and F. Dibos. A geometric model for active contours in image processing. Numerische Mathematik, 66(1):1–31, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  4. V. Caselles, R. Kimmel, and G. Sapiro. Geodesic Active Contours. In IEEE International Conference in Computer Vision, pages 694–699, 1995.

    Google Scholar 

  5. T. Chan and L. Vese. An Active Contour Model without Edges. In International Conference on Scale-Space Theories in Computer Vision, pages 141–151, 1999.

    Google Scholar 

  6. Y. Chen, H. Thiruvenkadam, H. Tagare, F. Huang, and D. Wilson. On the Incorporation of Shape Priors int Geometric Active Contours. In IEEE Workshop in Variational and Level Set Methods, pages 145–152, 2001.

    Google Scholar 

  7. D. Chopp. Computing Minimal Surfaces via Level Set Curvature Flow. Journal of Computational Physics, 106:77–91, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  8. L. Cohen. On active contour models and balloons. CVGIP: Image Understanding, 53:211–218, 1991.

    Article  MATH  Google Scholar 

  9. D. Cremers, N. Sochen, and C. Schnorr. Multiphase Dynamic Labeling for Variational Recognition-driven Image Segmentation. In European Conference on Computer Vision, pages 74–86, Prague, Chech Republic, 2004.

    Google Scholar 

  10. A. Dervieux and F. Thomasset. A finite element method for the simulation of rayleigh-taylor instability. Lecture Notes in Mathematics,771:145–159, 1979.

    Article  MathSciNet  Google Scholar 

  11. S. Geman and D. Geman. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721–741, 1984.

    Article  MATH  Google Scholar 

  12. R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzsky. Fast Geodesic Active Contours. IEEE Transactions on Image Processing, 10:1467–1475, 2001.

    Article  MathSciNet  Google Scholar 

  13. J. Gomes and O. Faugeras. Reconciling distance functions and level sets. Journal of Visual Communication and Image Representation, 11:209–223, 2000.

    Article  Google Scholar 

  14. R. Haralick. Digital step edges from zero crossing of second directional derivatives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:58–68, 1984.

    Article  Google Scholar 

  15. X. Huang, N. Paragios, and D. Metaxas. Registration of Structures in Arbitrary Dimensions: Implicit Representations, Mutual Information & Free-Form Deformations. Technical Report DCS-TR-0520, Division of Computer & Information Science, Rutgers University, 2003.

    Google Scholar 

  16. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models. In IEEE International Conference in Computer Vision, pages 261–268, 1987.

    Google Scholar 

  17. S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi. Gradient flows and geometric active contour models. In IEEE International Conference in Computer Vision, pages 810–815, 1995.

    Google Scholar 

  18. J. Kim, J. Fisher, A. Yezzi, M. Cetin, and A. Willsky. Non-Parametric Methods for Image Segmentation using Information Theory and Curve Evolution. In IEEE International Conference on Image Processing, 2002.

    Google Scholar 

  19. M. Leventon, E. Grimson, and O. Faugeras. Statistical Shape Influence in Geodesic Active Controus. In IEEE Conference on Computer Vision and Pattern Recognition, pages I:316–322, 2000.

    Google Scholar 

  20. W. Lorensen and H. Cline. Marching cubes: a high resolution 3D surface construction algorithm. In ACM SIGGRAPH, volume 21, pages 163–170, 1987.

    Article  Google Scholar 

  21. R. Malladi, J. Sethian, and B. Vemuri. Evolutionary fronts for topology independent shape modeling and recovery. In European Conference on Computer Vision, pages 1–13, 1994.

    Google Scholar 

  22. D. Mumford and J. Shah. Boundary detection by minimizing functionals. In IEEE Conference on Computer Vision and Pattern Recognition, pages 22–26, 1985.

    Google Scholar 

  23. S. Osher and N. Paragios. Geometric Level Set Methods in Imaging, Vision and Graphics. Springer Verlag, 2003.

    MATH  Google Scholar 

  24. S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed : Algorithms based on the Hamilton-Jacobi formulation. Journal of Computational Physics, 79:12–49, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  25. N. Paragios. Geodesic Active Regions and Level Set Methods: Contributions and Applications in Artificial Vision. PhD thesis, I.N.R.I.A./ University of Nice-Sophia Antipolis, 2000. http://www.inria.fr/RRRT/TU-0636.html.

  26. N. Paragios and R. Deriche. A PDE-based Level Set approach for Detection and Tracking of moving objects. In IEEE International Conference in Computer Vision, pages 1139–1145, 1998.

    Google Scholar 

  27. N. Paragios and R. Deriche. Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22:266–280, 2000.

    Article  Google Scholar 

  28. N. Paragios and R. Deriche. Geodesic Active Regions: A New Framework to Deal with Frame Partition Problems in Computer Vision. Journal of Visual Communication and Image Representation, 13:249–268, 2002.

    Article  Google Scholar 

  29. N. Paragios, O. Mellina-Gottardo, and V. Ramesh. Gradient Vector Flow Fast Geodesic Active Contours. In IEEE International Conference in Computer Vision, pages I:67–73, 2001.

    Google Scholar 

  30. N. Paragios, M. Rousson, and V. Ramesh. Non-Rigid Registration Using Distance Functions. Computer Vision and Image Understanding, 2003. to appear.

    Google Scholar 

  31. M. Rousson and R. Deriche. A Variational Framework for Active and Adaptative Segmentation of Vector Valued Images. Technical Report 4515, INRIA, France, 2002.

    Google Scholar 

  32. M. Rousson and N. Paragios. Shape Priors for Level Set Representations. In European Conference on Computer Vision, pages II:78–93, Copenhangen, Denmark, 2002.

    Google Scholar 

  33. M. Rousson, N. Paragios, and R. Deriche. Implicit Active Shape Models for 3D Segmentation in MR Imaging. In Medical Imaging Copmuting and Computer-Assisted Intervention, 2004.

    Book  Google Scholar 

  34. C. Samson, L. Blanc-Feraud, G. Aubert, and J. Zerubia. A Level Set Model for Image Classification. International Journal of Computer Vision, 40:187–197, 2000.

    Article  MATH  Google Scholar 

  35. J. Sethian. A Review of the Theory, Algorithms, and Applications of Level Set Methods for Propagating Interfaces. Cambridge University Press, pages 487–499, 1995.

    Google Scholar 

  36. J. Sethian. Level Set Methods. Cambridge University Press, 1996.

    MATH  Google Scholar 

  37. L. Staib and S. Duncan. Boundary finding with parametrically deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14:1061–1075, 1992.

    Article  Google Scholar 

  38. M. Sussman, P. Smereka, and S. Osher. A Level Set Method for Computing Solutions to Incomprenissible Two-Phase Flow. Journal of Computational Physics, 114:146–159, 1994.

    Article  MATH  Google Scholar 

  39. A. Tsai, A. Yezzi, W. Wells, C. Tempany, D. Tucker, A. Fan, A. Grimson, and A. Willsky. Model-based Curve Evolution Technique for Image Segmentation. In IEEE Conference on Computer Vision and Pattern Recognition, volume I, pages 463–468, 2001.

    Google Scholar 

  40. J. Tsitsiklis. Efficient Algorithms for Globally Optimal Trajectories. In 33 rd Conference on Decision and Control, pages 1368–1373, 1994.

    Google Scholar 

  41. L. Vese and T. Chan. A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision, 50:271–293, 2002.

    Article  MATH  Google Scholar 

  42. J. Weickert and G. Kuhne. Fast Methods for Implicit Active Contours. In S. Osher and n. Paragios, editors, Geometric Level Set Methods in Imaging, Vision and Graphics, pages 43–58. Springer, 2003.

    Google Scholar 

  43. A. Yezzi, A. Tsai, and A. Willsky. A Statistical Approach to Snakes for Bimodal and Trimodal Imagery. In IEEE International Conference in Computer Vision, pages 898–903, 1999.

    Google Scholar 

  44. H.-K. Zhao, T. Chan, B. Merriman, and S. Osher. A variational Level Set Approach to Multiphase Motion. Journal of Computational Physics, 127:179–195, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  45. S. Zhu and A. Yuille. Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18:884–900, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Paragios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Paragios, N. (2015). Curve Propagation, Level Set Methods and Grouping. In: Paragios, N., Duncan, J., Ayache, N. (eds) Handbook of Biomedical Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09749-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09749-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09748-0

  • Online ISBN: 978-0-387-09749-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics