Skip to main content
Log in

Perrhenate anion encapsulation in a uranyl ion–zwitterionic dicarboxylate coordination polymer

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The zwitterionic dicarboxylate 1,1′-[(2,3,5,6-tetramethylbenzene-1,4-diyl)bis(methylene)]bis(pyridin-1-ium-4-carboxylate) (L) has been reacted with uranyl nitrate under solvo-hydrothermal conditions and in the presence of KReO4 to give the complex [UO2(L)(OH)(H2O)](ReO4) (1). This compound crystallizes as a cationic, monoperiodic coordination polymer with ReO4 as a simple counterion. The daisy-chain polymer is based on dinuclear rings built by the convergent zwitterionic ligands, these rings being linked to one another by double hydroxide bridges. In addition to a Coulombic interaction with a pyridinium ring, ReO4 is involved in one OH(water)⋅⋅⋅O and four CH⋅⋅⋅O interactions, and it is thus nestled in a cavity formed by three chains, seemingly with some selectivity over nitrate and chloride anions also present in the reaction mixture. This result illustrates the interest of zwitterionic dicarboxylates in building cationic assemblies able to trap ReO4, a surrogate for the radioactive TcO4, an anion of environmental relevance.

Graphical abstract

A zwitterionic dicarboxylate ligand was reacted with the uranyl ion to generate a cationic, daisychain coordination polymer including perrhenate as counterion. Examination of the Hirshfeld surface of the anion allows for an analysis of the weak interactions involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Crystallographic data have been deposited with the CCDC under number 2311986.

References

  1. Andrews, M.B., Cahill, C.L.: Uranyl bearing hybrid materials: synthesis, speciation, and solid-state structures. Chem. Rev. 113, 1121–1136 (2013). https://doi.org/10.1021/cr300202a

    Article  CAS  PubMed  Google Scholar 

  2. Loiseau, T., Mihalcea, I., Henry, N., Volkringer, C.: The crystal chemistry of uranium carboxylates. Coord. Chem. Rev. 266–267, 69–109 (2014). https://doi.org/10.1016/j.ccr.2013.08.038

    Article  CAS  Google Scholar 

  3. Su, J., Chen, J.S.: MOFs of uranium and the actinides. Struct. Bonding 163, 265–296 (2015)

    Article  CAS  Google Scholar 

  4. Thuéry, P., Harrowfield, J.: Recent advances in structural studies of heterometallic uranyl-containing coordination polymers and polynuclear closed species. Dalton Trans. 46, 13660–13667 (2017). https://doi.org/10.1039/C7DT03105J

    Article  PubMed  Google Scholar 

  5. Lv, K., Fichter, S., Gu, M., März, J., Schmidt, M.: An updated status and trends in actinide metal-organic frameworks (An-MOFs): from synthesis to application. Coord. Chem. Rev. 446, 214011 (2021). https://doi.org/10.1016/j.ccr.2021.214011

    Article  CAS  Google Scholar 

  6. Wang, Y., Liu, Z., Li, Y., Bai, Z., Liu, W., Wang, Y., Xu, X., Xiao, C., Sheng, D., Diwu, J., Su, J., Chai, Z., Albrecht-Schmitt, T.E., Wang, S.: Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions. J. Am. Chem. Soc. 137, 6144–6147 (2015). https://doi.org/10.1021/jacs.5b02480

    Article  CAS  PubMed  Google Scholar 

  7. Hu, K.Q., Jiang, X., Wang, C.Z., Mei, L., Xie, Z.N., Tao, W.Q., Zhang, X.L., Chai, Z.F., Shi, W.Q.: Solvent-dependent synthesis of porous anionic uranyl–organic frameworks featuring a highly symmetrical (3,4)-connected ctn or bor topology for selective dye adsorption. Chem. Eur. J. 23, 529–532 (2017). https://doi.org/10.1002/chem.201604225

    Article  CAS  PubMed  Google Scholar 

  8. Ai, J., Chen, F.Y., Gao, C.Y., Tian, H.R., Pan, O.J., Sun, Z.M.: Porous anionic uranyl–organic networks for highly efficient Cs+ adsorption and investigation of the mechanism. Inorg. Chem. 57, 4419–4426 (2018). https://doi.org/10.1021/acs.inorgchem.8b00099

    Article  CAS  PubMed  Google Scholar 

  9. Liu, W., Xie, J., Zhang, L., Silver, M.A., Wang, S.: A hydrolytically stable uranyl organic framework for highly sensitive and selective detection of Fe3+ in aqueous media. Dalton Trans. 47, 649–653 (2018). https://doi.org/10.1039/C7DT04365A

    Article  CAS  PubMed  Google Scholar 

  10. Hu, F., Di, Z., Lin, P., Huang, P., Wu, M., Jiang, F., Hong, M.: An anionic uranium-based metal–organic framework with ultralarge nanocages for selective dye adsorption. Cryst. Growth Des. 18, 576–580 (2018). https://doi.org/10.1021/acs.cgd.7b01525

    Article  CAS  Google Scholar 

  11. Zeng, L.W., Hu, K.Q., Mei, L., Li, F.Z., Huang, Z.W., An, S.W., Chai, Z.F., Shi, W.Q.: Structural diversity of bipyridinium-based uranyl coordination polymers: synthesis, characterization, and ion-exchange application. Inorg. Chem. 58, 14075–14084 (2019). https://doi.org/10.1021/acs.inorgchem.9b02106

    Article  CAS  PubMed  Google Scholar 

  12. Kong, X.H., Hu, K.Q., Mei, L., Li, A., Liu, K., Zeng, L.W., Wu, Q.Y., Chai, Z.F., Nie, C.M., Shi, W.Q.: Double-Layer Nitrogen-Rich Two-Dimensional Anionic Uranyl–Organic Framework forCation Dye Capture and Catalytic Fixation of Carbon Dioxide. Inorg. Chem. 60, 11485–11495 (2021). https://doi.org/10.1021/acs.inorgchem.1c01492 

    Article  CAS  PubMed  Google Scholar 

  13. Baruah, J.B.: Coordination polymers in adsorptive remediation of environmental contaminants. Coord. Chem. Rev. 470, 214694 (2022). https://doi.org/10.1016/j.ccr.2022.214694

    Article  CAS  Google Scholar 

  14. Banerjee, D., Kim, D., Schweiger, M.J., Kruger, A.A., Thallapally, P.K.: Removal of TcO4 ions from solution: materials and future outlook. Chem. Soc. Rev. 45, 2724–2739 (2016). https://doi.org/10.1039/C5CS00330J

    Article  CAS  PubMed  Google Scholar 

  15. Bai, Z., Wang, Y., Li, Y., Liu, W., Chen, L., Sheng, D., Diwu, J., Chai, Z., Albrecht- Schmitt, T.E., Wang, S.: First cationic uranyl–organic framework with anion-exchange capabilities. Inorg. Chem. 55, 6358–6360 (2016). https://doi.org/10.1021/acs.inorgchem.6b00930

    Article  CAS  PubMed  Google Scholar 

  16. Banerjee, D., Xu, W., Nie, Z., Johnson, L.E.V., Coghlan, C., Sushko, M.L., Kim, D., Schweiger, M.J., Kruger, A.A., Doonan, C.J., Thallapally, P.K.: Zirconium-based metal–organic framework for removal of perrhenate from water. Inorg. Chem. 55, 8241–8243 (2016). https://doi.org/10.1021/acs.inorgchem.6b01004

    Article  CAS  PubMed  Google Scholar 

  17. Zhu, L., Xiao, C., Dai, X., Li, J., Gui, D., Sheng, D., Chen, L., Zhou, R., Chai, Z., Albrecht-Schmitt, T.E., Wang, S.: Exceptional perrhenate/pertechnetate uptake and subsequent immobilization by a low-dimensional cationic coordination polymer: overcoming the Hofmeister bias selectivity. Environ. Sci. Technol. Lett. 4, 316–322 (2017). https://doi.org/10.1021/acs.estlett.7b00165

    Article  CAS  Google Scholar 

  18. Rapti, S., Diamantis, S.A., Dafnomili, A., Pournara, A., Skliri, E., Armatas, G.S., Tsipis, A.C., Spanopoulos, I., Malliakas, C.D., Kanatzidis, M.G., Plakatouras, J.C., Noli, F., Lazarides, T., Manos, M.J.: Exceptional TcO4 sorption capacity and highly efficient ReO4 luminescence sensing by Zr4+ MOFs. J. Mater. Chem. A. 6, 20813–20821 (2018). https://doi.org/10.1039/C8TA07901C

    Article  CAS  Google Scholar 

  19. Li, C.P., Ai, J.Y., Zhou, H., Chen, Q., Yang, Y., He, H., Du, M.: Ultra-highly selective trapping of perrhenate/pertechnetate by a flexible cationic coordination framework. Chem. Commun. 55, 1841–1844 (2019). https://doi.org/10.1039/C8CC09364D

    Article  CAS  Google Scholar 

  20. Brunet, G., Robeyns, K., Huynh, R.P.S., Lin, J.B., Collins, S.P., Facey, G.A., Shimuzu, G.K.H., Woo, T.K., Murugesu, M.: Design strategy for the controlled generation of cationic frameworks and ensuing anion-exchange capabilities. ACS Appl. Mater. Interfaces 11, 3181–3188 (2019). https://doi.org/10.1021/acsami.8b15946

    Article  CAS  PubMed  Google Scholar 

  21. Li, C.P., Zhou, H., Chen, J., Wang, J.J., Du, M., Zhou, W.: A highly efficient coordination polymer for selective trapping and sensing of perrhenate/pertechnetate. ACS Appl. Mater. Interfaces 12, 15246–15254 (2020). https://doi.org/10.1021/acsami.0c00775

    Article  CAS  PubMed  Google Scholar 

  22. John, G.H., May, I., Sarsfield, M.J., Steele, H.M., Collison, D., Helliwell, M., McKinney, J.D.: The structural and spectroscopic characterisation of three actinyl complexes with coordinated and uncoordinated perrhenate: [UO2(ReO4)2(TPPO)3], [{(UO2)(TPPO)3}22-O2)][ReO4]2 and [NpO2(TPPO)4][ReO4]. Dalton Trans. (2004). https://doi.org/10.1039/B313045B

    Article  PubMed  Google Scholar 

  23. Bühl, M., Golubnychiy, V.: Binding of pertechnetate to uranyl(VI) in aqueous solution. A density functional theory molecular dynamics study. Inorg. Chem. 46, 8129–8131 (2007). https://doi.org/10.1021/ic701431u

    Article  CAS  PubMed  Google Scholar 

  24. Chaumont, A., Klimchuk, O., Gaillard, C., Billard, I., Ouadi, A., Hennig, C., Wipff, G.: Perrhenate Complexation by Uranyl in Traditional solvents and in ionic liquids: A joint Molecular Dynamics/Spectroscopic Study. J. Phys. Chem. B. 116, 3205–3219 (2012). https://doi.org/10.1021/jp209476h

    Article  CAS  PubMed  Google Scholar 

  25. Sutton, A.D., John, G.H., Sarsfield, M.J., Renshaw, J.C., May, I., Martin, L.R., Selvage, A.J., Collison, D., Helliwell, M.: Spectroscopic evidence for the direct coordination of the Pertechnetate Anion to the Uranyl Cation in [UO2(TcO4)(DPPMO2)2]+. Inorg. Chem. 43, 5480–5482 (2004). https://doi.org/10.1021/ic049588r

    Article  CAS  PubMed  Google Scholar 

  26. Sarsfield, M.J., Sutton, A.D., May, I., John, G.H., Sharrad, C., Helliwell, M.: Coordination of pertechnetate [TcO4] to actinides. Chem. Commun. (2004). https://doi.org/10.1039/B404424J

    Article  Google Scholar 

  27. Budantseva, N., Andreev, G., Fedoseev, A.: Structural role of isonicotinic acid in U(VI), Np(VI), and Pu(VI) complexes with TcO4, ReO4, and ClO4 ions. Inorg. Chem. 56, 12199–12205 (2017). https://doi.org/10.1021/acs.inorgchem.7b01611

    Article  CAS  PubMed  Google Scholar 

  28. John, G.H., May, I., Sarsfield, M.J., Collison, D., Helliwell, M.: Dimeric uranyl complexes with bridging perrhenates. Dalton Trans. (2007). https://doi.org/10.1039/B614481K

    Article  PubMed  Google Scholar 

  29. Karimova, O.V., Burns, P.C.: Structural units in three uranyl perrhenates. Inorg. Chem. 46, 10108–10113 (2007). https://doi.org/10.1021/ic701128b

    Article  CAS  PubMed  Google Scholar 

  30. Thuéry, P.: Uranyl-lanthanide heterometallic complexes with cucurbit[6]uril and perrhenate ligands. Inorg. Chem. 48, 825–827 (2009). https://doi.org/10.1021/ic802270n

    Article  CAS  PubMed  Google Scholar 

  31. Thuéry, P., Masci, B.: Uranyl ion complexation by cucurbiturils in the presence of perrhenic, phosphoric, or polycarboxylic acids. novel mixed-ligand uranyl–organic frameworks. Cryst. Growth Des. 10, 716–725 (2010). https://doi.org/10.1021/cg901121c

    Article  CAS  Google Scholar 

  32. Andreev, G., Budantseva, N., Fedoseev, A.: The novel U(VI) and Np(VI) mixed-ligand complexes based on quinaldic acid zwitterion. Polyhedron. 224, 116003 (2022). https://doi.org/10.1016/j.poly.2022.116003

    Article  CAS  Google Scholar 

  33. Thuéry, P.: Uranyl ion complexes of cucurbit[7]uril with zero-, one- and two-dimensionality. CrystEngComm. 11, 1150–1156 (2009). https://doi.org/10.1039/B822872H

    Article  Google Scholar 

  34. Thuéry, P.: Lanthanide complexes with cucurbit[n]urils (n = 5, 6, 7) and perrhenate ligands: new examples of encapsulation of perrhenate anions. Inorg. Chem. 48, 4497–4513 (2009). https://doi.org/10.1021/ic900328z

    Article  CAS  PubMed  Google Scholar 

  35. Thuéry, P.: Second-sphere complexation of thorium(IV) by cucurbit[6]uril with included perrhenate counterions–crystal structure and Hirshfeld surface analysis. Eur. J. Inorg. Chem. (2015). https://doi.org/10.1002/ejic.201500171

    Article  Google Scholar 

  36. Farrell, D., Gloe, K., Gloe, K., Goretzki, G., McKee, V., Nelson, J., Nieuwenhuyzen, M., Pál, I., Stephan, H., Town, R.M., Wichmann, K.: Towards promising oxoanion extractants: azacages and open-chain counterparts. Dalton Trans. (2003). https://doi.org/10.1039/B210289G

    Article  Google Scholar 

  37. Stephan, H., Gloe, K., Kraus, W., Spies, H., Johannsen, B., Wichmann, K., Reck, G., Chand, D.K., Bharadwaj, P.K., Müller, U., Müller, W.M., Vögtle, F.: In: Moyer, B.A., Singh, R.P. (eds.) Fundamentals and applications of anion separation, pp. 151–168. Kluwer Academic/Plenum, New York (2004)

    Chapter  Google Scholar 

  38. Katayev, E.A., Kolesnikov, G.V., Sessler, J.L.: Molecular recognition of pertechnetate and perrhenate. Chem. Soc. Rev. 38, 1572–1586 (2009). https://doi.org/10.1039/B806468G

    Article  CAS  PubMed  Google Scholar 

  39. Amendola, V., Alberti, G., Bergamaschi, G., Biesuz, R., Boiocchi, M., Ferrito, S., Schmidtchen, F.P.: Cavity effect on perrhenate recognition by polyammonium cages. Eur. J. Inorg. Chem. (2012). https://doi.org/10.1002/ejic.201200334

    Article  Google Scholar 

  40. Alberto, R., Bergamaschi, G., Braband, H., Fox, T., Amendola, V.: 99TcO4: selective recognition and trapping in aqueous solution. Angew Chem. Int. Ed. 51, 9772–9776 (2012). https://doi.org/10.1002/anie.201205313

    Article  CAS  Google Scholar 

  41. Amendola, V., Bergamaschi, G., Boiocchi, M., Alberto, R., Braband, H.: Fluorescent sensing of 99Tc pertechnetate in water. Chem. Sci. 5, 1820–1826 (2014). https://doi.org/10.1039/C3SC53504E

    Article  CAS  Google Scholar 

  42. Burke, B.P., Grantham, W., Burke, M.J., Nichol, G.S., Roberts, D., Renard, I., Hargreaves, R., Cawthorne, C., Archibald, S.J., Lusby, P.J.: Visualizing kinetically robust CoIII4L6 assemblies in vivo: SPECT Imaging of the encapsulated [99mTc]TcO4 anion. J. Am. Chem. Soc. 140, 16877–16881 (2018). https://doi.org/10.1021/jacs.8b09582

    Article  CAS  PubMed  Google Scholar 

  43. Thevenet, A., Marie, C., Tamain, C., Amendola, V., Miljkovic, A., Guillaumont, D., Boubals, N., Guilbaud, P.: Perrhenate and pertechnetate complexation by an azacryptand in nitric acid medium. Dalton Trans. 49, 1446–1455 (2020). https://doi.org/10.1039/C9DT04314D

    Article  CAS  PubMed  Google Scholar 

  44. Xu, L., Zhang, D., Ronson, T.K., Nitschke, J.R.: Improved acid resistance of a metal–organic cage enables cargo release and exchange between hosts. Angew Chem. Int. Ed. 59, 7435–7438 (2020). https://doi.org/10.1002/ange.202001059

    Article  CAS  Google Scholar 

  45. Thevenet, A., Miljkovic, A., La Cognata, S., Marie, C., Tamain, C., Boubals, N., Mangano, C., Amendola, V., Guilbaud, P.: Syntheses and evaluation of new hydrophilic azacryptands used as masking agents of technetium in solvent extraction processes. Dalton Trans. 50, 1620–1630 (2021). https://doi.org/10.1039/D0DT04210B

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, D., Gan, Q., Plajer, A.J., Lavendomme, R., Ronson, T.K., Lu, Z., Jensen, J.D., Laursen, B.W., Nitschke, J.R.: Templation and concentration drive conversion between a FeII12L12 pseudoicosahedron, a FeII4L4 tetrahedron, and a FeII2L3 helicate. J. Am. Chem. Soc. 144, 1106–1112 (2022). https://doi.org/10.1021/jacs.1c11536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baklouti, L., Harrowfield, J.: Oligozwitterions in coordination polymers and frameworks – a structural view. Dalton Trans. 52, 7772–7786 (2023). https://doi.org/10.1039/D3DT00849E

    Article  CAS  PubMed  Google Scholar 

  48. Li, F.Z., Geng, J.S., Hu, K.Q., Yu, J.P., Liu, N., Chai, Z.F., Mei, L., Shi, W.Q.: Proximity effect in uranyl coordination of the cucurbit[6]uril-bipyridinium pseudorotaxane ligand for promoting host–guest synergistic chelating. Inorg. Chem. 60, 10522–10534 (2021). https://doi.org/10.1021/acs.inorgchem.1c01177

    Article  CAS  PubMed  Google Scholar 

  49. Berger, M., Schmidtchen, F.P.: Zwitterionic guanidinium compounds serve as electroneutral anion hosts. J. Am. Chem. Soc. 121, 9986–9993 (1999). https://doi.org/10.1021/ja992028k

    Article  CAS  Google Scholar 

  50. Cresswell, A.L., Piepenbrock, M.O.M., Steed, J.W.: A water soluble, anion-binding zwitterionic capsule based on electrostatic interactions between self-complementary hemispheres. Chem. Commun. 46, 2787–2789 (2010). https://doi.org/10.1039/B926149D

    Article  CAS  Google Scholar 

  51. Wenzel, M., Bruere, S.R., Knapp, Q.W., Tasker, P.A., Plieger, P.G.: Zwitterionic dicopper helicates: anion encapsulation and binding studies. Dalton Trans. 39, 2936–2941 (2010). https://doi.org/10.1039/B922998A

    Article  CAS  PubMed  Google Scholar 

  52. Kusumoto, S., Atoini, Y., Masuda, S., Kim, J.Y., Hayami, S., Kim, Y., Harrowfield, J., Thuéry, P.: Zwitterionic and anionic polycarboxylates as coligands in uranyl ion complexes, and their influence on periodicity and topology. Inorg. Chem. 61, 15182–15203 (2022). https://doi.org/10.1021/acs.inorgchem.2c02426

    Article  CAS  PubMed  Google Scholar 

  53. Kusumoto, S., Atoini, Y., Masuda, S., Koide, Y., Kim, J.Y., Hayami, S., Kim, Y., Harrowfield, J., Thuéry, P.: Varied role of organic carboxylate dizwitterions and anionic donors in mixed-ligand uranyl ion coordination polymers. CrystEngComm. 24, 7833–7844 (2022). https://doi.org/10.1039/D2CE01187E

    Article  CAS  Google Scholar 

  54. APEX3, ver: 2019.1-0, Bruker AXS, Madison, WI, (2019)

  55. SAINT: ver. 8.40A, Bruker Nano, Madison, WI, (2019)

  56. SADABS: 2016/2, Bruker AXS, Madison, WI, (2016)

  57. Krause, L., Herbst-Irmer, R., Sheldrick, G.M., Stalke, D.: Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 48, 3–10 (2015). https://doi.org/10.1107/S1600576714022985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sheldrick, G.M.: SHELXT - integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A. 71, 3–8 (2015). https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  59. Sheldrick, G.M.: Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C. 71, 3–8 (2015). https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  60. Hübschle, C.B., Sheldrick, G.M., Dittrich, B.: ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 44, 1281–1284 (2011). https://doi.org/10.1107/S0021889811043202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Burnett, M.N., Johnson, C.K.: ORTEPIII, Report ORNL-6895; Oak Ridge National Laboratory. TN (1996)

  62. Farrugia, L.J.: WinGX and ORTEP for windows: an update. J. Appl. Crystallogr. 45, 849–854 (2012). https://doi.org/10.1107/S0021889812029111

    Article  CAS  Google Scholar 

  63. Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  64. Thuéry, P., Harrowfield, J.: Uranyl ion complexes with 2,2′:6′,2′′-terpyridine-4′-carboxylate. Interpenetration of networks involving expanded ligands. CrystEngComm. 23, 7305–7313 (2021). https://doi.org/10.1039/D1CE01215K

    Article  Google Scholar 

  65. Thuéry, P., Harrowfield, J.: Varying structure-directing anions in uranyl ion complexes with Ni(2,2′: 6′,2′′-terpyridine-4′-carboxylate)2. Eur. J. Inorg. Chem. (2022). https://doi.org/10.1002/ejic.202200011

    Article  Google Scholar 

  66. Kusumoto, S., Atoini, Y., Masuda, S., Koide, Y., Kim, J.Y., Hayami, S., Kim, Y., Harrowfield, J., Thuéry, P.: Flexible aliphatic diammonioacetates as Zwitterionic ligands in UO22+ complexes: diverse topologies and interpenetrated structures. Inorg. Chem. 62, 3929–3946 (2023). https://doi.org/10.1021/acs.inorgchem.2c04321

    Article  CAS  PubMed  Google Scholar 

  67. Kusumoto, S., Atoini, Y., Koide, Y., Chainok, K., Hayami, S., Kim, Y., Harrowfield, J., Thuéry, P.: Nanotubule inclusion in the channels formed by a six-fold interpenetrated, triperiodic framework. Chem. Commun. 59, 10004–10007 (2023). https://doi.org/10.1039/D3CC02636A

    Article  CAS  Google Scholar 

  68. Kavallieratos, K., Moyer, B.A.: Attenuation of Hofmeister bias in ion-pair extraction by a disulfonamide anion host used in strikingly effective synergistic combination with a calix-crown Cs+ host. Chem. Commun. (2001). https://doi.org/10.1039/B102152B

    Article  Google Scholar 

  69. Moyer, B.A., Bonnesen, P.V., Custelcean, R., Delmau, L.H., Hay, B.P.: Strategies for using host-guest chemistry in the extractive separations of ionic guests. Kem Ind. 54, 65–87 (2005). https://doi.org/10.1002/chin.200531276

    Article  CAS  Google Scholar 

  70. Custelcean, R., Moyer, B.A.: Anion separation with metal–organic frameworks. Eur. J. Inorg. Chem. (2007). https://doi.org/10.1002/ejic.200700018

    Article  Google Scholar 

  71. Etter, M.C., MacDonald, J.C., Bernstein, J.: Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Crystallogr. Sect. B. 46, 256–262 (1990). https://doi.org/10.1107/S0108768189012929

    Article  Google Scholar 

  72. Bernstein, J., Davis, R.E., Shimoni, L., Chang, N.L.: Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew Chem. Int. Ed. 34, 1555–1573 (1995). https://doi.org/10.1002/anie.199515551

    Article  CAS  Google Scholar 

  73. Spek, A.L.: Structure validation in chemical crystallography. Acta Crystallogr. Sect. D. 65, 148–155 (2009). https://doi.org/10.1107/S090744490804362X

    Article  CAS  Google Scholar 

  74. Wolff, S.K., Grimwood, D.J., McKinnon, J.J., Turner, M.J., Jayatilaka, D., Spackman, M.A. CrystalExplorer, University of Western Australia (2012)

  75. Spackman, P.R., Turner, M.J., McKinnon, J.J., Wolff, S.K., Grimwood, D.J., Jayatilaka, D., Spackman, M.A.: CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Cryst. 54, 1006–1011 (2021). https://doi.org/10.1107/S1600576721002910

    Article  CAS  Google Scholar 

  76. Ahuja, R., Samuelson, A.G.: Non-bonding interactions of anions with nitrogen heterocycles and phenyl rings: a critical Cambridge Structural database analysis. CrystEngComm 5, 395–399 (2003). https://doi.org/10.1039/B311000A

    Article  CAS  Google Scholar 

  77. Schottel, B.L., Chifotides, H.T., Dunbar, K.R.: Anion-π interactions. Chem. Soc. Rev. 37, 68–83 (2008). https://doi.org/10.1039/B614208G

    Article  CAS  PubMed  Google Scholar 

  78. Hay, B.P., Custelcean, R.: Anion – π interactions in crystal structures: commonplace or extraordinary? Cryst. Growth Des. 9, 2539–2545 (2009). https://doi.org/10.1021/cg900308b

    Article  CAS  Google Scholar 

  79. Berryman, O.B., Johnson, D.W.: Experimental evidence for interactions between anions and electron-deficient aromatic rings. Chem. Commun. (2009). https://doi.org/10.1039/B823236A

    Article  Google Scholar 

  80. Gamez, P.: The anion–π interaction: naissance and establishment of a peculiar supramolecular bond. Inorg. Chem. Front. 1, 35–43 (2014). https://doi.org/10.1039/C3QI00055A

    Article  CAS  Google Scholar 

  81. Frontera, A.: Encapsulation of anions: macrocyclic receptors based on metal coordination and anion–π interactions. Coord. Chem. Rev. 257, 1716–1727 (2013). https://doi.org/10.1016/j.ccr.2013.01.032

    Article  CAS  Google Scholar 

  82. Bauzá, A., Mooibroek, T.J., Frontera, A.: Towards design strategies for anion–π interactions in crystal engineering. CrystEngComm. 18, 10–23 (2016). https://doi.org/10.1039/C5CE01813G

    Article  CAS  Google Scholar 

  83. Giese, M., Albrecht, M., Rissanen, K.: Experimental investigation of anion–π interactions – applications and biochemical relevance. Chem. Commun. 52, 1778–1795 (2016). https://doi.org/10.1039/C5CC09072E

    Article  CAS  Google Scholar 

  84. Das, A., Choudhury, S.R., Estarellas, C., Dey, B., Frontera, A., Hemming, J., Helliwell, M., Gamez, P., Mukhopadhyay, S.: Supramolecular assemblies involving anion–π and lone pair–π interactions: experimental observation and theoretical analysis. CrystEngComm 13, 4519–4527 (2011). https://doi.org/10.1039/C0CE00593B

    Article  CAS  Google Scholar 

  85. Fiol, J.J., Barceló-Oliver, M., Tasada, A., Frontera, A., Terrón, A., García-Raso, A.: Structural characterization, recognition patterns and theoretical calculations of long-chain N-alkyl substituted purine and pyrimidine bases as ligands: on the importance of anion–π interactions. Coord. Chem. Rev. 257, 2705–2715 (2013). https://doi.org/10.1016/j.ccr.2012.12.013

    Article  CAS  Google Scholar 

  86. Thuéry, P., Atoini, Y., Harrowfield, J.: Tubelike uranyl–phenylenediacetate assemblies from screening of ligand isomers and structure-directing counterions. Inorg. Chem. 58, 6550–6564 (2019). https://doi.org/10.1021/acs.inorgchem.9b00804

    Article  CAS  PubMed  Google Scholar 

  87. Thuéry, P., Atoini, Y., Harrowfield, J.: 1,2-, 1,3-, and 1,4-Phenylenediacetate complexes of the uranyl ion with additional metal cations and/or ancillary N-donor ligands: confronting ligand geometrical proclivities. Cryst. Growth Des. 19, 6611–6626 (2019). https://doi.org/10.1021/acs.cgd.9b01032

    Article  CAS  Google Scholar 

  88. Thuéry, P., Atoini, Y., Harrowfield, J.: Structure-directing effects of coordinating solvents, ammonium and phosphonium counterions in uranyl ion complexes with 1,2-, 1,3-, and 1,4-phenylenediacetates. Inorg. Chem. 59, 2503–2518 (2020). https://doi.org/10.1021/acs.inorgchem.9b03404

    Article  CAS  PubMed  Google Scholar 

  89. Thuéry, P., Harrowfield, J.: Stepwise introduction of flexibility into aromatic dicarboxylates forming uranyl ion coordination polymers: a comparison of 2-carboxyphenylacetate and 1,2-phenylenediacetate. Eur. J. Inorg. Chem. (2021). https://doi.org/10.1002/ejic.202100203

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by KAKENHI Grant-in-Aid for Early-Career Scientists JP22K14698 for S. Kusumoto, and JSPS KAKENHI Grant Number 20K21213 for S. Hayami.

Author information

Authors and Affiliations

Authors

Contributions

SK, YA, YK, SH, YK and PT contributed to the investigation. JH and PT wrote the main manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Yang Kim, Jack Harrowfield or Pierre Thuéry.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusumoto, S., Atoini, Y., Koide, Y. et al. Perrhenate anion encapsulation in a uranyl ion–zwitterionic dicarboxylate coordination polymer. J Incl Phenom Macrocycl Chem (2024). https://doi.org/10.1007/s10847-024-01238-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10847-024-01238-0

Keywords

Navigation