Skip to main content

Binding and Extraction of Pertechnetate and Perrhenate by Azacages

  • Chapter
Fundamentals and Applications of Anion Separations

Abstract

The design and synthesis of anion receptors of technical and biochemical significance is receiving more and more attention.18Currently, effective binding and selective phase transfer of the oxoanions pertechnetate and perrhenate is of considerable interest from different point of view. Due to its long half-life and environmental mobility, the radioactive pertechnetate is one of the most hazardous contaminants. In this context, effective and selective separation processes are of utmost importance.912 On the other hand, there are some emerging possibilities for the application of the radiochemically active oxoanions pertechnetate and perrhenate in nuclear medicine.13,14 The most commonly used isotope in diagnostic nuclear medicine 99mTc is readily available from a 99Mo/99mTc generator system.1519 Likewise, the β-emitting 188Re - discussed as one of the most interesting radionuclides for specific therapeutic applications — is conveniently produced by a 188W/188Re generator.2022 In both cases the radionuclides are available as oxoanions in isotonic solut ion, and it appears highly desirable to directly complex 99mTcO 4 and 188ReO 4 as they exist in the generator eluate itself. But, the binding of such large, lowly charged anions is a difficult venture. The enthalpic contribution for complexation is rather small. Hence, host compounds being capable to encapsulate these oxoanions are of great interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. Comprehensive Supramolecular Chemistry, edited by J. L. Atwood, J. E. D. Davies, D. D. MacNicol, F. Vögtle, and J.-M. Lehn (Pergamon, Oxford, 1996).

    Google Scholar 

  2. Supramolecular Chemistry ofAnions, edited by A. Bianchi, K. Bowman-James, and E. Garcia-Espana (WILEY-VCH, Weinheirn, 1997)

    Google Scholar 

  3. B. Dietrich, Design of Anion Receptors: Applications, PureAppl. Chem. 65, 1457–64(1993).

    Article  CAS  Google Scholar 

  4. C Seel, A. Galan, and J. DeMendoza, Molecular Recognition of Organic Acids and Anions — Receptor Models for Carboxylates, Amino Acids, and Nucleotides, Top. CurroChem. 175, 101–132 (1995).

    CAS  Google Scholar 

  5. F. P. Schmidtchen and M. Berger, Artificial Organic Host Molecules for Anions, Chem. Rev. 97, 1609–46 (1997).

    Article  CAS  Google Scholar 

  6. M.M.G. Antonisse and D. N. Reinhoudt, Neutral Anion Receptors: Design and Application, Chem. Commun. 443–448 (1998).

    Google Scholar 

  7. P. D. Beer and P. A. Gale, Anion Recognition and Sensing: The State of the Art and Future Perspectives, Angew. Chem. Int. Ed. Engl. 40, 487–516 (2001).

    Article  Google Scholar 

  8. K. Gloe, H. Stephan, and M. Grotjahn, Quo Vadis Anion Extraction, Chem-Ing-Tech. 74, 767–777 (2002).

    Article  CAS  Google Scholar 

  9. P. V. Bonnesen, B. A. Moyer, D. J. Presley, V. S. Armstrong, T. J. Haverlock, R. M. Counce, and R. A. Sachleben, Alkaline-side Extraction of Technetium from Tank Waste using Crown Ethers and other Extractants, Oak Ridge National Laboratory(ORNL)-Report TM13241 (1996).

    Google Scholar 

  10. R. A. Leonard, C Conner, M.W. Liberatore, P. V. Bonnesen, D. J. Presley, B. A. Moyer, and G. J. Lumetta, Developing and Testing an Alkaline-side Solvent Extraction Process for Technetium Separat ion from Tank Waste, Sep. Sci. Technol. 34, 1043–1068 (1999).

    Article  CAS  Google Scholar 

  11. K. L. Nash, R. E. Barrans, R. Chiarizia, M. L. Dietz, M. P. Jensen, P. G. Rickert, B. A. Moyer, P. V. Bonnesen, J. C Bryan, and R. A. Sachleben, Fundamental Investigations of Separations Science for Radioactive Materials, SolventExtr. Ion Exch. 18, 605–631 (2000).

    Article  CAS  Google Scholar 

  12. J. A. Gawenis, J. F. Kauffman, and S. S Junsson, Ion Pairing as a Strategy for Extraction by Modified Supercritical Carbon Dioxide: Extraction of Radioactive Metal Ions, Anal. Chem. 73, 2022–2026 (2001).

    Article  CAS  Google Scholar 

  13. H. Stephan, R. Berger, H. Spies, B. Johannsen, and F. P. Schmidtchen, Efficient Phase Transfer of Penechnetate with Bicyclic Guanidinium Compounds, J. Radioanal. Nucl.Chem. 242, 399–403 (1999)

    Article  CAS  Google Scholar 

  14. H. Stephan, H. Spies, B Johannsen, E. Nicoletti, and F. P. Schmidtchen, ITC Analysis of Binding Perrhenate using Monopyridinium-a-Cyclodextrin, Annual Report Forschungszentrum Rossendorf FZR312, 54–56 (2000)

    Google Scholar 

  15. K. Schwochau, Technetium: Chemistry and Radiopharmaceutical Applications (WILEY-VCH, Weinheim, 1997)

    Google Scholar 

  16. B. Johannsen, and H. Spies, Technetium(V) Chemistry as Relevant to Nuclear Medicine, Top. Curro Chem. 176, 77–121 (1996)

    Article  CAS  Google Scholar 

  17. D Parker, Imaging and Targeting, in Comprehensive Supramolecular Chemistry. vol. 10 “Supramolecular Technology.” edited by J. L. Atwood, J. E. D. Davies, D. D. MacNicol, F. Vögtle, and J.-M. Lehn (Pergamon, Oxford, (1996), pp. 487–536.

    Google Scholar 

  18. D. E. Reichert, J. S Lewis. and C. J. Anderson, Metal Complexes as Diagnostic Tools, Coord. Chem. Rev. 184, 3–66 (1999)

    Article  CAS  Google Scholar 

  19. S. S Jurisson and J. D. Lydon, Potential Technetium Small Molecule Radiopharmaceuticals, Chem. Rev. 99, 2205–2218 (1999)

    Article  CAS  Google Scholar 

  20. M. J. Heeg and S. S Jurisson, The Role of Inorganic Chemistry in the Development of Radiometal Agents for Cancer Therapy, Acc. Chem. Res. 32, 1053–1060 (1999).

    Article  CAS  Google Scholar 

  21. P. J Blower and S. Prakash, The Chemistry of Rhenium in Nuclear Medicine, in Perspectives on BioinorganicChemistry. vol. 4 (JAI Press, London, 1999), pp. 91–143.

    Google Scholar 

  22. W. A Volken and T. J Hoffman, Therapeutic Radiopharmaceuticals, Chem. Rev. 99, 2269–2292 (1999)

    Article  CAS  Google Scholar 

  23. Y. Marcus, Ion Properties (Marcel Dekker, New York, 1997)

    Google Scholar 

  24. B. A. Moyer and P. V. Bonnesen, Physical Factors in Anion Separations, in Supramolecular Chemistry of Anions, edited by A. Bianchi, K. Bowman-James, E. Garcia-Espana (WILEY-VCH, Weinheim, 1997), pp. 1–44.

    Google Scholar 

  25. T. Nakashima and K. H. Lieser, Proton Association of Pertechnetate, Perrhenate and Perchlorate Anions, Radiochim. Acta 38, 203–206 (1985).

    CAS  Google Scholar 

  26. Handbook of Chemistry and Physics, edited by D. R. Lide and H. P. R. Frederikse (CRC Press, Boca Raton, 1997)

    Google Scholar 

  27. J. Nelson, V. McKee, and G Morgan, Coordination Chemistry of Azacryptands, in: Progress in Inorganic Chemistry. vol. 47, edited by K. D. Karlin (Wiley, New York, 1998), pp. 167–316.

    Google Scholar 

  28. S Mason, T. Clifford, L. Seib, K. Kuczera, and K. Bowman-James, Unusual Encapsulation of Two Nitrates in a Single Bicyclic Cage, J. Am. Chem. Soc. 120, 8899–8900 (1998).

    Article  CAS  Google Scholar 

  29. G. Morgan, V. Mckee. and J. Nelson, Caged Anions: Perchlorate and Perfluoroanion Cryptates, Chem. Commun. 1649–52 (1995).

    Google Scholar 

  30. M. J. Hynes, B. Maubert, V. McKee, R. M. Town, and J. Nelson, Protonated Azacryptate Hosts for Nitrate and Perchlorate, J. Chem. Soc., Dalton Trans. 2853–2859 (2000).

    Google Scholar 

  31. B. M. Maubert, J. Nelson, V. McKee, R. M. Town, and I. Pal, Selectivity for Dinegative versus Mononegative Oxoan ionic Guests within a Cryptand Host, J. Chem. Soc.. Dalton Trans. 1395–97 (2001)

    Google Scholar 

  32. M. Arthurs, V. McKee, J. Nelson, and R. M. Town, Chemistry in Cages: Dinucleating Azacryptand Hosts and their Cation and Anion Cryptates, J. Chem. Ed. 78, 1269–1272 (2001)

    Article  CAS  Google Scholar 

  33. H. Stephan, H. Spies, and F. P. Schmidtchen, unpublished results.

    Google Scholar 

  34. K. M. Rohal, D. M. Van Seggen, J. F. Clark, M. K. McClure, C. K. Chambliss, S. H. Strauss, and N. C Schroeder, Solvent Extraction of Pertechnetate and Perrhenate Ions from Nitrate-rich Acidic and Alkaline Aqueous Solution, Solvent Extr. Ion Exch. 14, 401–416 (1996)

    Article  CAS  Google Scholar 

  35. H. Stephan, H Spies. B. Johannsen, L. Klein, and F. Vögtle, Lipophilic Urea-functionalized Dendrimers as Efficient Carriers for Oxoanions, Chem. Commun. 1875–1876, (1999).

    Google Scholar 

  36. H. Stephan, H. Spies, B. Johannsen, K. Gloe, M. Gorka, F. Vögtle, Synthesis and Host-Guest Properties of Multi-Crown Dendrimers towards Sodium Pertechnetate and Mecury(II) Chloride, Eur. J. Inorg. Chem 2957–2963 (2001)

    Google Scholar 

  37. J. L. Atwood. K. T. Holman, and J. W Steed, Laying Traps for Elusive Prey: Recent Advances in the Non-covalent Binding of Anions, Chem. Commun. 1401–07 (1996).

    Google Scholar 

  38. C Bazzicalupi, P Bandyopadhyay, A. Bencini, C. Giorgi, B. Valtancoli, D. Bharadwaj, P. K. Bharadwaj, and R. J. Butcher, Complexation Properties of Heteroditopic Cryptands towards Cu2+, Zn2+, Cd2+, and Pb2+ in Aqueous Solution: Crystal Structures of [(H5L1)(ClO4)5]·4H2O and [(NiL2Cl)Cl]·5.5H2O·CH3OH, Eur. J. lnorg. Chem. 2111–16 (2000).

    Google Scholar 

  39. P. Ghosh, S. S. Gupta, and P. K. Bharadwaj, Complexation Properties of a Heteroditopic Cryptand towards CuII and NiII, Crystal Structures of the Cryptand and its Nickel(II) Cascade Complex, J. Chem. Soc.. Dalton Trans. 935–938 (1997).

    Google Scholar 

  40. D. K. Chand, K. G. Ragunathan, T. C. W. Mak, and P. K. Bharadwaj, Tetrahedral Recognition of a Water Molecule by Heteroditopic Cryptands: X-ray Structural Studies, J. Org. Chem. 61, 1169–71 (1996).

    Article  CAS  Google Scholar 

  41. D. K. Chand, and P. K. Bharadwaj, Heteroditopic Cryptands of Tunable Cavity Size: Imposition of Distorted Geometry onto Copper(II) and Nickel (II) and Molecular Recognition of Water Molecules, Inorg. Chem. 37, 5050–55 (1998).

    Article  CAS  Google Scholar 

  42. F. Arnaud-Neu, S. Fuangswasdi, B. Maubert, J. Nelson, and V. McKee, Binding Properties of Octaaminocryptands, lnorg. Chem. 39, 573–579 (2000).

    Article  CAS  Google Scholar 

  43. A. Bencini, A. Bianchi, E. Garcia-Espana, M. Micheloni, J. A. Ramirez, Proton Coordination by Polyamine Compounds in Aqueous Solution, Coord Chem. Rev. 188, 97–156 (1999).

    Article  CAS  Google Scholar 

  44. M. Möder, K. Wichmann, K. Gloe, and F. Vögtle, Study on Formation and Stability of Azacage Metal Complexes using Electrospray Mass Spectrometry, Int. J. MassSpectr. 210/211, 327–339 (2001).

    Article  Google Scholar 

  45. The hexamethylated bis-tren cage with m-xylyl spacers has a significant higher lipophilicity as the structure related m-pyridine bridged compound 4 (72% towards 0% in octanol); the resulting extractabilities for both cages using the experimental conditions of Fig.3 are 48% and 14%, respectively: D. Farrell, K. Gloe, K. Gloe, G. Goretzki, V. McKee, J. Nelson, I. Pal, H. Stephan, R. M. Town, and K. Wichmann, Towards Promising Oxoanions extractants: Azacages and Open-chain Counterparts, J. Chern. Soc.. Dalton Trans. to be published in 2003.

    Google Scholar 

  46. J. C. Bryan, cis-syn-cis-Dicyclohexano-18-crown-6 Sodium Perrhenate, Acta Cryst. C54, 1569–1571 (1998).

    CAS  Google Scholar 

  47. J.C. Bryan, and R. Sachleben, Synthesis of a New Dibenzo-14-Crown-4 Lariat Ether and Structure of its Sodium Perrhenate Complex, J. Chem. Cryst. 29, 1255–1259 (1999).

    Article  CAS  Google Scholar 

  48. J. Nelson, M. Nieuwenhuyzen, I. Pal, and R. M. Town, Dual-Mode Recognition of Oxalate by Protonated Azacryptate Hosts; Confonnational Response of the Guest Maximizes p-Stacking Interactions, Chem. Cornrnun. in press.

    Google Scholar 

  49. M. A. Hossain, J. M. Llinares, S. Mason, P. Morehouse, D. Powell, and K. Bowman-James, Parallels in Cation and Anion Coordination: A New Class of Cascade Complexes, Angew. Chem. 114, 2441–2444 (2002).

    Article  Google Scholar 

  50. D. K. Chand and P. K. Bharadwaj, Synthesis of a Heteroditopic Cryptand Capable of Imposing a Distorted Coordination Geometry onto Cu(II): Crystal Structures of the Cryptand (L), [Cu(L)(CN)](picrate), and (Cu(L)(NCS)](picrate) and Spectroscopic Studies of the Cu(II) Complexes, Inorg. Chern. 35, 3380–3387 (1996).

    Article  CAS  Google Scholar 

  51. G.M. Sheldrick, SHELXL-97, Universität Göttingen (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stephan, H. et al. (2004). Binding and Extraction of Pertechnetate and Perrhenate by Azacages. In: Moyer, B.A., Singh, R.P. (eds) Fundamentals and Applications of Anion Separations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8973-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8973-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4742-2

  • Online ISBN: 978-1-4419-8973-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics