Skip to main content
Log in

SYNTHESES, STRUCTURAL INSIGHT AND HIRSHFELD SURFACE ANALYSIS OF TWO HETEROLEPTIC COORDINATION POLYMER OF Cu(II)

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 29 December 2023

This article has been updated

Abstract

Using a solvothermal method, we have synthesized two coordination polymers of Cu(II). One is a 1D polymer {[Cu(bpy)(NDC)(H2O)]·2H2O}n (1, 1D) formed with 1,8-naphthalene dicarboxylic acid (H2NDC) and 2,2′-bipyridine (bpy) as an auxiliary ligand, while the other is a 2D polymer {[Cu3(TMA) (Imd)3]·5H2O·2DMF}n (2, 2D) formed with trimellitic acid (H3TMA) and imidazole (Imd) as an auxiliary ligand. Both coordination polymers 1 and 2 were formed through an in situ hydrolytic ring opening reaction of 1,8-naphthalic anhydride and trimelitic anhydride with bipyridine and imidazole ligands, respectively. The asymmetric unit of polymer 1 contains asymmetric η1 binding mode (one of the carboxylate) linking distorted square-pyramidal [Cu(NDC)(bpy)(H2O)]2+ coordination units. The syn-syn-η11 linear polymeric conformation exist in the 1D coordination polymer with adjacent Cu…Cu distance is 6.849 Å. A chain of cyclic tetrameric water clusters is present between the stacked layers of the 3D supramolecular structure. The formation of the 3D supramolecular structure is guided by various weak interactions such as O–H…O, C–H…O, C–H…π and π…π interactions. The coordination polymer 2 forms 3D supramolecular architecture guided by various weak interactions such as O–H…O, C–H…O and N–H…O interactions. The crystal structures of both coordination polymers have been determined using single crystal X-ray diffraction and their structural features are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

REFERENCES

  1. Z.-Z. Shi, L. Qin, and H.-G. Zheng. Two new Zn(II)/Cu(II) complexes based on bi- and tritopic 1,2,4-triazole derivatives with glutaric acid: Syntheses, structures, luminescent and magnetic properties. Inorg. Chem. Commun., 2017, 79, 21-24. https://doi.org/10.1016/j.inoche.2017.03.017

    Article  Google Scholar 

  2. J. E. Mizzi and R. L. LaDuca. A molecular layer “fabric” with orthogonally woven coordination polymer chains. Inorg. Chem. Commun., 2016, 70, 4-6. https://doi.org/10.1016/j.inoche.2016.05.017

    Article  Google Scholar 

  3. Y. Wu, W. Wu, L. Zou, J. Feng, C. Gu, B. Li, S. R. Batten, R. Yadav, and A. Kumar. Luminescent sensing of a new 8-connected topological metal-organic framework. Inorg. Chem. Commun., 2016, 70, 160-163. https://doi.org/10.1016/j.inoche.2016.06.007

    Article  Google Scholar 

  4. Z.-Y. Liu, E.-C. Yang, and X.-J. Zhao. A (3, 12)-connected coordination network based on rare tetragonal prism-like ZnII8 cluster. Inorg. Chem. Commun., 2016, 70, 197-200. https://doi.org/10.1016/j.inoche.2016.06.016

    Article  Google Scholar 

  5. M.-X. Li, Y.-F. Zhang, X. He, X.-M. Shi, Y.-P. Wang, M. Shao, and Z.-X. Wang. Diverse structures and ferro-/ferri-/antiferromagnetic interactions of pyridyltetrazole coordination polymers with polycarboxylate auxiliary ligands. Cryst. Growth Des., 2016, 16(5), 2912-2922. https://doi.org/10.1021/acs.cgd.6b00258

    Article  Google Scholar 

  6. M. Pan, X.-M. Lin, G.-B. Li, and C.-Y. Su. Progress in the study of metal-organic materials applying naphthalene diimide (NDI) ligands. Coord. Chem. Rev., 2011, 255(15/16), 1921-1936. https://doi.org/10.1016/j.ccr.2011.03.013

    Article  Google Scholar 

  7. D. A. Roberts, B. S. Pilgrim, and J. R. Nitschke. Covalent post-assembly modification in metallosupramolecular chemistry. Chem. Soc. Rev., 2018, 47(2), 626-644. https://doi.org/10.1039/c6cs00907g

    Article  PubMed  Google Scholar 

  8. M. Yoshizawa, J. K. Klosterman, and M. Fujita. Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. Angew. Chem., Int. Ed., 2009, 48(19), 3418-3438. https://doi.org/10.1002/anie.200805340

    Article  Google Scholar 

  9. M. D. Ward, C. A. Hunter, and N. H. Williams. Coordination cages based on bis(pyrazolylpyridine) ligands: structures, dynamic behavior, guest binding, and catalysis. Acc. Chem. Res., 2018, 51(9), 2073-2082. https://doi.org/10.1021/acs.accounts.8b00261

    Article  PubMed  Google Scholar 

  10. W. M. Bloch and G. H. Clever. Integrative self-sorting of coordination cages based on ′naked′ metal ions. Chem. Commun., 2017, 53(61), 8506-8516. https://doi.org/10.1039/c7cc03379f

    Article  Google Scholar 

  11. A. Schmidt, A. Casini, and F. E. Kühn. Self-assembled M2L4 coordination cages: Synthesis and potential applications. Coord. Chem. Rev., 2014, 275, 19-36. https://doi.org/10.1016/j.ccr.2014.03.037

    Article  Google Scholar 

  12. A. M. Castilla, W. J. Ramsay, and J. R. Nitschke. Stereochemistry in subcomponent self-assembly. Acc. Chem. Res., 2014, 47(7), 2063-2073. https://doi.org/10.1021/ar5000924

    Article  PubMed  Google Scholar 

  13. M. Devereux, D. O′Shea, M. O′Connor, H. Grehan, G. Connor, M. McCann, G. Rosair, F. Lyng, A. Kellett, M. Walsh, D. Egan, and B. Thati. Synthesis, catalase, superoxide dismutase and antitumour activities of copper(II) carboxylate complexes incorporating benzimidazole, 1,10-phenanthroline and bipyridine ligands: X-ray crystal structures of [Cu(BZA)2(bipy)(H2O)], [Cu(SalH)2(BZDH)2] and [Cu(CH3COO)2(5,6-DMBZDH)2] (SalH2 = salicylic acid; BZAH = benzoic acid; BZDH = benzimidazole and 5,6-DMBZDH = 5,6-dimethylbenzimidazole). Polyhedron, 2007, 26(15), 4073-4084. https://doi.org/10.1016/j.poly.2007.05.006

    Article  Google Scholar 

  14. S. C. Mojumdar, G. Madgurambal, and M. T. Saleh. A study on synthesis and thermal, spectral and biological properties of carboxylato-Mg(II) and carboxylato-Cu(II) complexes with bioactive ligands. J. Therm. Anal. Calorim., 2005, 81(1), 205-210. https://doi.org/10.1007/s10973-005-0768-5

    Article  Google Scholar 

  15. B. Kozlevčar, I. Leban, I. Turel, P. Šegedin, M. Petric, F. Pohleven, A. J. P. White, D. J. Williams, and J. Sieler. Complexes of copper(II) acetate with nicotinamide: preparation, characterization and fungicidal activity; crystal structures of [Cu2(O2CCH3)4(nia)] and [Cu2(O2CCH3)4(nia)2]. Polyhedron, 1999, 18(5), 755-762. https://doi.org/10.1016/s0277-5387(98)00350-7

    Article  Google Scholar 

  16. J. D. Ranford, P. J. Sadler, and D. A. Tocher. Cytotoxicity and antiviral activity of transition-metal salicylato complexes and crystal structure of bis(diisopropylsalicylato)(1,10-phenanthroline)copper(II). J. Chem. Soc., Dalton Trans., 1993, (22), 3393. https://doi.org/10.1039/dt9930003393

    Article  Google Scholar 

  17. S. Mahata, S. Dey, B. B. Mandal, and V. Manivannan. 3-(2-Hydroxyphenyl)imidazo[5,1-a]isoquinoline as Cu(II) sensor, its Cu(II) complex for selective detection of CN- ion and biological compatibility. J. Photochem. Photobiol., A, 2022, 427, 113795. https://doi.org/10.1016/j.jphotochem.2022.113795

    Article  Google Scholar 

  18. L.-L. Shi, T.-R. Zheng, L.-M. Zhu, K. Li, B.-L. Li, and B. Wu. A copper coordination polymer based on bis(imidazole) and thiophenedicarboxylate for photocatalytic degradation of organic dyes under visible light irradiation. Inorg. Chem. Commun., 2017, 85, 16-20. https://doi.org/10.1016/j.inoche.2017.04.028

    Article  Google Scholar 

  19. J. Yang, J. Ma, Y. Liu, J. Ma, H. Jia, and N. Hu. Two new CuII coordination polymers: studies of topological networks and water clusters. Eur. J. Inorg. Chem., 2006, 2006(6), 1208-1215. https://doi.org/10.1002/ejic.200500731

    Article  Google Scholar 

  20. L.-L. Wen, F. Wang, J. Feng, K.-L. Lv, C.-G. Wang, and D.-F. Li. Structures, photoluminescence, and photocatalytic properties of six new metal-organic frameworks based on aromatic polycarboxylate acids and rigid imidazole-based synthons. Cryst. Growth Des., 2009, 9(8), 3581-3589. https://doi.org/10.1021/cg900317d

    Article  Google Scholar 

  21. L. Liu, Y.-F. Peng, X.-X. Lv, K. Li, B.-L. Li, and B. Wu. Construction of three coordination polymers based on tetranuclear copper(II) clusters: syntheses, structures and photocatalytic properties. CrystEngComm, 2016, 18(14), 2490-2499. https://doi.org/10.1039/c5ce02492g

    Article  Google Scholar 

  22. M. O. Barsukova, D. G. Samsonenko, T. V. Goncharova, A. S. Potapov, S. A. Sapchenko, D. N. Dybtsev, and V. P. Fedin. Coordination polymers with adjustable dimensionality based on CuII and bis-imidazolyl bridging ligand. Russ. Chem. Bull., 2016, 65(12), 2914-2919. https://doi.org/10.1007/s11172-016-1677-4

    Article  Google Scholar 

  23. D. Pavlov, T. Sukhikh, E. Filatov, and A. Potapov. Facile synthesis of 3-(azol-1-yl)-1-adamantanecarboxylic acids - new bifunctional angle-shaped building blocks for coordination polymers. Molecules, 2019, 24(15), 2717. https://doi.org/10.3390/molecules24152717

    Article  PubMed  PubMed Central  Google Scholar 

  24. E. Y. Semitut, V. Y. Komarov, E. Y. Filatov, A. S. Kuznetsova, A. I. Khlebnikov, and A. S. Potapov. Synthesis and structural characterization of copper(II) coordination polymers with 1,1,2,2-tetra(pyrazol-1-yl)ethane. Inorg. Chem. Commun., 2016, 64, 23-26. https://doi.org/10.1016/j.inoche.2015.12.008

    Article  Google Scholar 

  25. A. S. Potapov, E. A. Nudnova, A. I. Khlebnikov, V. D. Ogorodnikov, and T. V. Petrenko. Synthesis, crystal structure and electrocatalytic activity of discrete and polymeric copper(II) complexes with bitopic bis(pyrazol-1-yl)methane ligands. Inorg. Chem. Commun., 2015, 53, 72-75. https://doi.org/10.1016/j.inoche.2015.01.024

    Article  Google Scholar 

  26. J. K. Nath and R. Borah. A lanthanide cluster formed by fixing atmospheric CO2 to carbonate: a molecular magnetic refrigerant and photoluminescent material. J. Chem. Sci., 2023, 135(3), 58. https://doi.org/10.1007/s12039-023-02176-z

    Article  Google Scholar 

  27. J. K. Nath. Syntheses and crystal structures of dinuclear metallacycles of Mn(II), Co(II), Ni(II), Cu(II) and Cd(II) of 1,8-naphthalene dicarboxylate exhibiting dihydrogen contact. J. Struct. Chem., 2023, 64(6), 1021-1039. https://doi.org/10.1134/s0022476623060069

    Article  Google Scholar 

  28. J. K. Nath, A. M. Kirillov, and J. B. Baruah. Unusual solvent-mediated hydrolysis of dicarboxylate monoester ligands in copper(II) complexes toward simultaneous crystallization of new dicarboxylate derivatives. RSC Adv., 2014, 4(88), 47876-47886. https://doi.org/10.1039/c4ra05776g

    Article  Google Scholar 

  29. W. Liu, J. Yu, J. Jiang, L. Yuan, B. Xu, Q. Liu, B. Qu, G. Zhang, and C. Yan. Hydrothermal syntheses, structures and luminescent properties of Zn(II) coordination polymers assembled with benzene-1,2,3-tricarboxylic acid involving in situ ligand reactions. CrystEngComm, 2011, 13(7), 2764. https://doi.org/10.1039/c0ce00950d

    Article  Google Scholar 

  30. L.-F. Ma, C.-P. Li, L.-Y. Wang, and M. Du. Zn(II) and Cd(II) coordination polymers assembled from a versatile tecton 5-nitro-1,2,3-benzenetricarboxylic acid and N,N′-donor ancillary coligands. Cryst. Growth Des., 2010, 10(6), 2641-2649. https://doi.org/10.1021/cg100139p

    Article  Google Scholar 

  31. J. K. Nath, Y. Lan, A. K. Powell, and J. B. Baruah. Effect of ancillary ligands in hydrolysis of 1,8-naphthalic anhydride for synthesis of metallacycles of Co2+, Ni2+, and Zn2+. Z. Anorg. Allg. Chem., 2013, 639(12/13), 2250-2257. https://doi.org/10.1002/zaac.201300255

    Article  Google Scholar 

  32. Bruker. SMART. Madison, Wisconsin, USA: Bruker AXS Inc., 2012.

  33. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  34. A. L. Spek. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr., 2003, 36(1), 7-13. https://doi.org/10.1107/s0021889802022112

    Article  Google Scholar 

  35. C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, and P. A. Wood. Mercury 4.0: from visualization to analysis, design and prediction. JAppl. Crystallogr., 2020, 53(1), 226-235. https://doi.org/10.1107/s1600576719014092

    Article  Google Scholar 

  36. L. J. Farrugia. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr., 2012, 45(4), 849-854. https://doi.org/10.1107/s0021889812029111

    Article  Google Scholar 

  37. K. Brandenburg and M. Berndt. DIAMOND. Bonn, Germany: Crystal Impact, 1999.

  38. A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, and G. C. Verschoor. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc., Dalton Trans., 1984, (7), 1349-1356. https://doi.org/10.1039/dt9840001349

    Article  Google Scholar 

  39. M. Chaplin. Water: its importance to life. Biochem. Mol. Biol. Educ., 2001, 29(2), 54-59. https://doi.org/10.1016/s1470-8175(01)00017-0

    Article  Google Scholar 

  40. R. Ludwig. Water: from clusters to the bulk. Angew. Chem., Int. Ed., 2001, 40(10), 1808-1827. https://doi.org/10.1002/1521-3773(20010518)40:10<1808::aid-anie1808>3.0.co;2-1

    Article  Google Scholar 

  41. N. Agmon. Liquid water: from symmetry distortions to diffusive motion. Acc. Chem. Res., 2012, 45(1), 63-73. https://doi.org/10.1021/ar200076s

    Article  PubMed  Google Scholar 

  42. E. Brini, C. J. Fennell, M. Fernandez-Serra, B. Hribar-Lee, M. Lukšič, and K. A. Dill. How water′s properties are encoded in its molecular structure and energies. Chem. Rev., 2017, 117(19), 12385-12414. https://doi.org/10.1021/acs.chemrev.7b00259

    Article  PubMed  PubMed Central  Google Scholar 

  43. K. Liu, J. D. Cruzan, and R. J. Saykally. Water Clusters. Science, 1996, 271(5251), 929-933. https://doi.org/10.1126/science.271.5251.929

    Article  Google Scholar 

  44. L. Liu, Y.-F. Peng, X.-X. Lv, K. Li, B.-L. Li, and B. Wu. Construction of three coordination polymers based on tetranuclear copper(II) clusters: syntheses, structures and photocatalytic properties. CrystEngComm, 2016, 18(14), 2490-2499. https://doi.org/10.1039/c5ce02492g

    Article  Google Scholar 

  45. M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman. Crystal Explorer 17. Perth, Australia: University of Western Australia, 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Nath.

Ethics declarations

The author declares that he has no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 9, 116489.https://doi.org/10.26902/JSC_id116489

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, J.K. SYNTHESES, STRUCTURAL INSIGHT AND HIRSHFELD SURFACE ANALYSIS OF TWO HETEROLEPTIC COORDINATION POLYMER OF Cu(II). J Struct Chem 64, 1664–1676 (2023). https://doi.org/10.1134/S002247662309010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247662309010X

Keywords

Navigation