Skip to main content
Log in

Structural investigations, DFT, anti-oxidant and α-amylase inhibitory activity of metal complexes of benzothiazole based hydrazone

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The present manuscript describes the synthesis, spectral characterisation, DFT studies and biological activity of a series of 3d transition metal complexes of (E)-2-((2-(benzo[d]thiazole-2-yl)hydrazono)methyl)-5-(diethylamino)phenol (L1) in (1:1) and (1:2) ratio. Various spectral analysis revealed the presence of ONN binding domain in L1. The elemental composition was confirmed using mass spectrometry technique. The stability of the geometry was also confirmed with DFT based method using B3LYP/LanL2Dz level of theory. Absence of any imaginary frequency revealed the presence of geometry on global minima of potential energy surface. Job’s plot confirm the stoichiometric ratio of metal complexes. Electrochemical behaviour (cyclic voltammetry), magnetic moment and Conductance measurements were also investigated for the metal-complexes. Kinetic parameters for different stages of thermal decomposition of metal complexes were calculated by using Coats–Redfern and Broido method. Positive free-energy of decomposition describes the non-spontaneous nature of thermal decomposition. The negative ΔS value observed for metal complexes under consideration reveals the ordered arrangement of metal complexes than their reactants. The octahedral environment of Co2+, Ni2+, Cu2+ and Cd2+ complexes was elucidated with the help of spectroscopic data. The ligand (L1) and its metal complexes (M1–M8) exhibited excellent α-amylase and moderate anti-oxidant activities. Maximum α-amylase inhibition was exhibited by M7 with a percentage inhibition of 96.65% (IC50 = 0.070 µM) and the lowest by M1 (87.00%, IC50 = 0.086 µM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lovic, D., Piperidou, A., Zografou, I., Grassos, H., Pittaras, A., Manolis, A.: The growing epidemic of diabetes mellitus. Curr. Vasc. Pharmacol. 18, 104–109 (2019). https://doi.org/10.2174/1570161117666190405165911

    Article  CAS  Google Scholar 

  2. Pareja-Galeano, H., Garatachea, N., Lucia, A.: Exercise as a polypill for chronic diseases. Prog. Mol. Biol. Transl. Sci. 135, 497–526 (2015). https://doi.org/10.1016/bs.pmbts.2015.07.019

    Article  PubMed  Google Scholar 

  3. Mayfield, J.: Diagnosis and classification of diabetes mellitus: new criteria. Am. Fam. Phys. 58(6), 1355–1362 (1998)

    Google Scholar 

  4. Jean-Marie, E.: Diagnosis and classification of diabetes mellitus. Encycl. Endocr. Dis. 29, 105–109 (2018). https://doi.org/10.1016/B978-0-12-801238-3.65822-1

    Article  Google Scholar 

  5. Proença, C., Ribeiro, D., Freitas, M., Fernandes, E.: Flavonoids as potential agents in the management of type 2 diabetes through the modulation of α-amylase and α-glucosidase activity: a review. Crit. Rev. Food Sci. Nutr. 62, 3137–3207 (2022). https://doi.org/10.1080/10408398.2020.1862755

    Article  CAS  PubMed  Google Scholar 

  6. Gao, H., Zhang, Q., Jean’ne, M.S.: Fused heterocycle-based energetic materials (2012–2019). J. Mater. Chem. A 8, 4193–4216 (2020)

    Article  CAS  Google Scholar 

  7. Kajal, A., Bala, S., Kamboj, S., Sharma, N., Saini, V.: Schiff bases: a versatile pharmacophore. J. Catal. (2013). https://doi.org/10.1155/2013/893512

    Article  Google Scholar 

  8. Ali, R., Siddiqui, N.: Biological aspects of emerging benzothiazoles: a short review. J. Chem. (2013). https://doi.org/10.1155/2013/345198

    Article  Google Scholar 

  9. Rouf, A., Tanyeli, C.: Bioactive thiazole and benzothiazole derivatives. Eur. J. Med. Chem. 97, 911–927 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. Gjorgjieva, M., Tomašič, T., Kikelj, D., Mašič, L.P.: Benzothiazole-based compounds in antibacterial drug discovery. Curr. Med. Chem. 25, 5218–5236 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. Noolvi, M.N., Patel, H.M., Kaur, M.: Benzothiazoles: search for anticancer agents. Eur. J. Med. Chem. 54, 447–462 (2012). https://doi.org/10.1016/j.ejmech.2012.05.028

    Article  CAS  PubMed  Google Scholar 

  12. Zhao, S., Zhao, L., Zhang, X., Liu, C., Hao, C., Xie, H., Sun, B., Zhao, D., Cheng, M.: Design, synthesis, and structure-activity relationship studies of benzothiazole derivatives as antifungal agents. Eur. J. Med. Chem. 123, 514–522 (2016). https://doi.org/10.1016/j.ejmech.2016.07.067

    Article  CAS  PubMed  Google Scholar 

  13. Netalkar, P.P., Netalkar, S.P., Revankar, V.K.: Synthesis, crystal structures and characterization of late first row transition metal complexes derived from thiosemicarbazone hub: DNA binding/cleavage studies. Appl. Organomet. Chem. 29, 280–289 (2015). https://doi.org/10.1002/aoc.3286

    Article  CAS  Google Scholar 

  14. Hornung, M.W., Kosian, P.A., Haselman, J.T., Korte, J.J., Challis, K., Macherla, C., Nevalainen, E., Degitz, S.J.: In vitro, ex vivo, and in vivo determination of thyroid hormone modulating activity of benzothiazoles. Toxicol. Sci. 146, 254–264 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. Hutchinson, I., Jennings, S.A., Vishnuvajjala, B.R., Westwell, A.D., Stevens, M.F.G.: Antitumor benzothiazoles. 16. Synthesis and pharmaceutical properties of antitumor 2-(4-aminophenyl) benzothiazole amino acid prodrugs. J. Med. Chem. 45, 744–747 (2002)

    Article  CAS  PubMed  Google Scholar 

  16. Soni, B., Ranawat, M.S., Sharma, R., Bhandari, A., Sharma, S.: Synthesis and evaluation of some new benzothiazole derivatives as potential antimicrobial agents. Eur. J. Med. Chem. 45, 2938–2942 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. Mariappan, G., Prabhat, P., Sutharson, L., Banerjee, J., Patangia, U., Nath, S.: Synthesis and antidiabetic evaluation of benzothiazole derivatives. J. Korean Chem. Soc. 56, 251–256 (2012)

    Article  CAS  Google Scholar 

  18. Paramashivappa, R., Kumar, P.P., Rao, P.V.S., Rao, A.S.: Design, synthesis and biological evaluation of benzimidazole/benzothiazole and benzoxazole derivatives as cyclooxygenase inhibitors. Bioorg. Med. Chem. Lett. 13, 657–660 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Choudhary, S., Kini, S.G., Mubeen, M.: Antioxidant activity of novel coumarin substituted benzothiazole derivatives. Der Pharma Chem. 5, 213–222 (2013)

    CAS  Google Scholar 

  20. Taha, M., Ismail, N.H., Imran, S., Wadood, A., Rahim, F., Khan, K.M., Riaz, M.: Hybrid benzothiazole analogs as antiurease agent: synthesis and molecular docking studies. Bioorg. Chem. 66, 80–87 (2016). https://doi.org/10.1016/j.bioorg.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  21. Fricker, S.P.: Metal based drugs: from serendipity to design. Dalton Trans. (2007). https://doi.org/10.1039/b705551j

    Article  PubMed  Google Scholar 

  22. Yao, Z.-J., Jin, G.-X.: Transition metal complexes based on carboranyl ligands containing N, P, and S donors: synthesis, reactivity and applications. Coord. Chem. Rev. 257, 2522–2535 (2013)

    Article  CAS  Google Scholar 

  23. Garnovskii, A.D., Vasil’chenko, I.S.: Rational design of metal coordination compounds with azomethine ligands. Russ. Chem. Rev. 71, 943–968 (2002). https://doi.org/10.1070/rc2002v071n11abeh000759

    Article  CAS  Google Scholar 

  24. Malik, M.A., Dar, O.A., Gull, P., Wani, M.Y., Hashmi, A.A.: Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. Med. Chem. Commun. 9, 409–436 (2018). https://doi.org/10.1039/c7md00526a

    Article  CAS  Google Scholar 

  25. Bonaccorso, C., Marzo, T., La Mendola, D.: Biological applications of thiocarbohydrazones and their metal complexes: a perspective review. Pharmaceuticals 13, 4 (2020)

    Article  CAS  Google Scholar 

  26. Kulkarni, N.V., Revankar, V.K., Kirasur, B.N., Hugar, M.H.: Transition metal complexes of thiosemicarbazones with quinoxaline hub: an emphasis on antidiabetic property. Med. Chem. Res. 21, 663–671 (2012)

    Article  CAS  Google Scholar 

  27. Vinusha, H.M., Kollur, S.P., Revanasiddappa, H.D., Ramu, R., Shirahatti, P.S., Prasad, M.N.N., Chandrashekar, S., Begum, M.: Preparation, spectral characterization and biological applications of Schiff base ligand and its transition metal complexes. Results Chem. 1, 100012 (2019)

    Article  CAS  Google Scholar 

  28. Kurdekar, G.S., Sathisha, M.P., Budagumpi, S., Kulkarni, N.V., Revankar, V.K., Suresh, D.K.: 4-Aminoantipyrine-based Schiff-base transition metal complexes as potent anticonvulsant agents. Med. Chem. Res. 21, 2273–2279 (2012)

    Article  CAS  Google Scholar 

  29. Pahonțu, E., Ilieș, D.-C., Shova, S., Oprean, C., Păunescu, V., Olaru, O.T., Rădulescu, F.Ș, Gulea, A., Roșu, T., Drăgănescu, D.: Synthesis, characterization, antimicrobial and antiproliferative activity evaluation of Cu(II), Co(II), Zn(II), Ni(II) and Pt(II) complexes with isoniazid-derived compound. Molecules 22, 650 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sharfalddin, A.A., Hussien, M.A.: Bivalence metal complexes of antithyroid drug carbimazole; synthesis, characterization, computational simulation, and biological studies. J. Mol. Struct. 1228, 129725 (2021)

    Article  CAS  Google Scholar 

  31. Saha, N., Mukherjee, N.: Synthesis, characterisation and coordinating properties of a new pyrazole-derived thiosemicarbazone, a potential antiviral agent: Co(III), Ni(II) and Cu(II) complexes of neutral and deprotonated 5(3)-methylpyrazole-3(5)-aldehydothiosemicarbazone. Polyhedron 3, 1135–1140 (1984)

    Article  CAS  Google Scholar 

  32. Wu, A., Duan, L.: Transition metal complexes of N-(4,6-dimethoxypyrimidin-2-Ylcarbamothioyl)benzamide: design, synthesis and herbicidal activity. J. Chin. Chem. Soc. 56, 539–542 (2009)

    Article  CAS  Google Scholar 

  33. Gayakwad, D.R., Sarda, S.R., Nawale, R.B., Munde, S.B., Bharad, J.V., Kendrekar, P.S.: Synthesis and biological activity of novel Schiff base ligand and its transition metal complexes. J. Curr. Pharma Res. 9, 3378–3385 (2019)

    CAS  Google Scholar 

  34. Abu-Dief, A.M., Mohamed, I.M.A.: A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef Univ. J. Basic Appl. Sci. 4, 119–133 (2015)

    PubMed  PubMed Central  Google Scholar 

  35. Mandal, S., Modak, R., Goswami, S.: Synthesis and characterization of a copper(II) complex of a ONN donor Schiff base ligand derived from pyridoxal and 2-(pyrid-2-yl)ethylamine—a novel pyridoxal based fluorescent probe. J. Mol. Struct. 1037, 352–360 (2013)

    Article  CAS  Google Scholar 

  36. Beigi, Z., Kianfar, A.H., Farrokhpour, H., Roushani, M., Azarian, M.H., Mahmood, W.A.K.: Synthesis, characterization and spectroscopic studies of nickel(II) complexes with some tridentate ONN donor Schiff bases and their electrocatalytic application for oxidation of methanol. J. Mol. Liq. 249, 117–125 (2018)

    Article  CAS  Google Scholar 

  37. Al Zoubi, W.: Biological activities of Schiff bases and their complexes: a review of recent works. Int. J. Org. Chem. (2013). https://doi.org/10.4236/ijoc.2013.33A008

    Article  Google Scholar 

  38. Abd El-Razek, S.E., El-Gamasy, S.M., Hassan, M., Abdel-Aziz, M.S., Nasr, S.M.: Transition metal complexes of a multidentate Schiff base ligand containing guanidine moiety: synthesis, characterization, anti-cancer effect, and anti-microbial activity. J. Mol. Struct. 1203, 127381 (2020)

    Article  Google Scholar 

  39. Singh, K., Bala, I., Kataria, R.: Crystal structure, Hirshfeld surface and DFT based NBO, NLO, ECT and MEP of benzothiazole based hydrazone. Chem. Phys. 538, 110873 (2020). https://doi.org/10.1016/j.chemphys.2020.110873

    Article  CAS  Google Scholar 

  40. Sakthi, M., Ramu, A.: Synthesis, structure, DNA/BSA binding and antibacterial studies of NNO tridentate Schiff base metal complexes. J. Mol. Struct. 1149, 727–735 (2017)

    Article  CAS  Google Scholar 

  41. Aboafia, S.A., Elsayed, S.A., El-Sayed, A.K.A., El-Hendawy, A.M.: New transition metal complexes of 2,4-dihydroxybenzaldehyde benzoylhydrazone Schiff base (H2dhbh): synthesis, spectroscopic characterization, DNA binding/cleavage and antioxidant activity. J. Mol. Struct. 1158, 39–50 (2018)

    Article  CAS  Google Scholar 

  42. Singh, K., Siwach, P.: Synthesis, spectroscopic, theoretical and biological evaluation of novel Schiff base complexes of divalent transition metals. Appl. Organomet. Chem. (2021). https://doi.org/10.1002/aoc.6553

    Article  Google Scholar 

  43. Gülcan, M., Sönmez, M.: Synthesis and characterization of Cu(II), Ni(II), Co(II), Mn(II), and Cd(II) transition metal complexes of tridentate Schiff base derived from O-vanillin and N-aminopyrimidine-2-thione. Phosphorus Sulfur Silicon Relat. Elem. 186, 1962–1971 (2011)

    Article  Google Scholar 

  44. Kumari, B., Singh, K., Sharma, A.: Synthesis, crystal structure and molecular docking studies of novel Schiff base ligand 9-(((3-ethyl-5-mercapto/thio-4H-1,2,4-triazole-4-yl)imino)methyl)-anthracene and its complexes with Ni(II), Cu(II), Zn(II) and Cd(II): comparative spectral, thermo-kinetics, radical scavenging and antimicrobial studies. Chem. Data Collect. 38, 100833 (2022)

    Article  CAS  Google Scholar 

  45. Alaghaz, A.-N.M.A., Ammar, Y.A., Bayoumi, H.A., Aldhlmani, S.A.: Synthesis, spectral characterization, thermal analysis, molecular modeling and antimicrobial activity of new potentially N2O2 azo-dye Schiff base complexes. J. Mol. Struct. 1074, 359–375 (2014)

    Article  CAS  Google Scholar 

  46. Anacona, J.R., Mago, K., Camus, J.: Antibacterial activity of transition metal complexes with a tridentate NNO amoxicillin derived Schiff base. Synthesis and characterization. Appl. Organomet. Chem. 32, e4374 (2018)

    Article  Google Scholar 

  47. Durmus, S., Atahan, A., Zengin, M.: Synthesis, characterization and electrochemical behavior of some Ni(II), Cu(II), Co(II) and Cd(II) complexes of ONS type tridentate Schiff base ligand. Spectrochim. Acta A 84, 1–5 (2011)

    Article  CAS  Google Scholar 

  48. Abou-Melha, K.S.: Transition metal complexes of isonicotinic acid (2-hydroxybenzylidene)hydrazide. Spectrochim. Acta A 70, 162–170 (2008). https://doi.org/10.1016/j.saa.2007.07.023

    Article  CAS  Google Scholar 

  49. Jayendran, M., Sithambaresan, M., Begum, P.M.S., Kurup, M.R.P.: Cd(II) and Ni(II) complexes from a tridentate NNO Schiff base: crystal structures, spectral aspects and Hirshfeld surface analysis. Polyhedron 158, 386–397 (2019). https://doi.org/10.1016/j.poly.2018.11.020

    Article  CAS  Google Scholar 

  50. Chang, J., Zhang, S.-Z., Wu, Y., Zhang, H.-J., Sun, Y.-X.: Three supramolecular trinuclear nickel(II) complexes based on Salamo-type chelating ligand: syntheses, crystal structures, solvent effect, Hirshfeld surface analysis and DFT calculation. Transit. Met. Chem. 45, 279–293 (2020)

    Article  CAS  Google Scholar 

  51. Singh, K., Kumar, Y., Puri, P., Kumar, M., Sharma, C.: Cobalt, nickel, copper and zinc complexes with 1,3-diphenyl-1H-pyrazole-4-carboxaldehyde Schiff bases: antimicrobial, spectroscopic, thermal and fluorescence studies. Eur. J. Med. Chem. 52, 313–321 (2012)

    Article  CAS  PubMed  Google Scholar 

  52. Reddy, A.S., Mao, J., Krishna, L.S., Badavath, V.N., Maji, S.: Synthesis, spectral investigation, molecular docking and biological evaluation of Cu(II), Ni(II) and Mn(II) complexes of (E)-2-((2-butyl-4-chloro-1H-imidazol-5-yl) methylene)-N-methylhydrazinecarbothioamide (C10H16N5ClS) and its DFT studies. J. Mol. Struct. 1196, 338–347 (2019)

    Article  CAS  Google Scholar 

  53. Abd El-halim, H.F., Omar, M.M., Mohamed, G.G.: Synthesis, structural, thermal studies and biological activity of a tridentate Schiff base ligand and their transition metal complexes. Spectrochim. Acta A 78, 36–44 (2011)

    Article  Google Scholar 

  54. Venugopal, N., Krishnamurthy, G., Bhojyanaik, H.S., Giridhar, M.: Novel bioactive azo-azomethine based Cu(II), Co(II) and Ni(II) complexes, structural determination and biological activity. J. Mol. Struct. 1191, 85–94 (2019)

    Article  CAS  Google Scholar 

  55. Deswal, Y., Asija, S., Dubey, A., Deswal, L., Kumar, D., Jindal, D.K., Devi, J.: Cobalt(II), nickel(II), copper(II) and zinc(II) complexes of thiadiazole based Schiff base ligands: synthesis, structural characterization, DFT, antidiabetic and molecular docking studies. J. Mol. Struct. 1253, 132266 (2021)

    Article  Google Scholar 

  56. Ragole, V.D., Gayakwad, S.V., Wankhede, D.S.: Novel Schiff base (E)-2-((4-chloro-3-nitrophenylimino)(phenyl) methyl)-5-methoxyphenol and mixed ligand complexes of Mn(II), Fe(III), Co(II), Ni(II) and Cu(II): synthesis, structure elucidation and potency study as antibacterial, antimalarial, antiox. J. Iran. Chem. Soc. (2021). https://doi.org/10.1007/s13738-021-02431-5

    Article  Google Scholar 

  57. Singh, H., Sindhu, J., Khurana, J.M., Sharma, C., Aneja, K.R.: Syntheses, biological evaluation and photophysical studies of novel 1,2,3-triazole linked azo dyes. RSC Adv. 4, 5915–5926 (2014). https://doi.org/10.1039/c3ra44314k

    Article  CAS  Google Scholar 

  58. Yousef, T.A., El-Reash, G.M.A., Al-Zahab, M.A., Safaan, M.A.A.: Physicochemical investigations, biological studies of the Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and UO2(VI) complexes of picolinic acid hydrazide derivative: a combined experimental and computational approach. J. Mol. Struct. 1197, 564–575 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Indu Bala thanks Department of Chemistry, Kurukshetra University, Kurukshetra for providing research facilities and for the grant of University Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

IB: Experimental, data curation, analysis, writing original draft. KS: Review and editing.

Corresponding author

Correspondence to Kiran Singh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3110 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K., Bala, I. Structural investigations, DFT, anti-oxidant and α-amylase inhibitory activity of metal complexes of benzothiazole based hydrazone. J Incl Phenom Macrocycl Chem 103, 301–316 (2023). https://doi.org/10.1007/s10847-023-01196-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-023-01196-z

Keywords

Navigation