Skip to main content
Log in

Transition metal complexes of thiosemicarbazones with quinoxaline hub: an emphasis on antidiabetic property

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

New transition metal complexes of quinoxaline–thiosemicarbazone ligands were prepared and characterised by spectroanalytical techniques. The ligands L1H2 and L2H2 were obtained by the reaction of quinoxaline-2.3(1,4H)-dione with methyl and phenyl thiosemicarbazide, respectively. All the complexes are found to be monomeric in nature and have tetrahedral geometry. The copper complexes have shown redox responses in the applied voltage range, whereas the ligands and other complexes are electrochemically innocent. The ligands, copper and zinc complexes are explored for antidiabetic activity in the diabetes-induced Wister rats. Evaluation of antidiabetic activity was done by blood-glucose test and oral glucose tolerance test; few compounds have exhibited significant antidiabetic activity and posses low toxicity with a high safety profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Badran MM, Abouzid KAM, Hussein MHM (2003) Synthesis of certain substituted quinoxalines as antimicrobial agents (part II). Arch Pharm Res 26:107–113

    Article  PubMed  CAS  Google Scholar 

  • Bailar JC, Emeleus HJ, Nyholm SR, Dickenson AFT (1975) Comprehensive inorganic chemistry. Pergamon Press, New York, p 3

    Google Scholar 

  • Breslin HJ, Miskowski TA, Kukla MJ, De Winter HL, Somers MVF, Roevens PWM, Kavash RW (2003) Tripeptidyl-peptidase II (TPP II) inhibitory activity of (S)-2,3-dihydro-2-(1H-imidazol-2-yl)-1H-indoles, a systematic SAR evaluation. Part 2. Bioorg Med Chem Lett 13(24):4467–4471

    Article  PubMed  CAS  Google Scholar 

  • Das U, Pati HN, Panda AK, De Clerc E, Balzarini J, Molnár J, Baráth Z, Ocsovszki I, Kawase M, Zhou L, Sakagami H, Dimmock JR (2009) 2-(3-Aryl-2-propenoyl)-3-methylquinoxaline-1,4-dioxides: a novel cluster of tumor-specific cytotoxins which reverse multidrug resistance. Bioorg Med Chem 17:3909–3915

    Article  PubMed  CAS  Google Scholar 

  • Deleuze-Masquefa C, Moarbess G, Khier S, David N, Gayraud-Paniagua S, Bressolle F, Pinguet F, Bonnet PA (2009) New imidazo [1, 2-a]quinoxaline derivatives: synthesis and in vitro activity against human melanoma. Eur J Med Chem 44:3406–3411

    Article  PubMed  CAS  Google Scholar 

  • Dudash J Jr, Zhang Y, Moore JB, Look R, Liang Y, Beavers MP, Conway BR, Rybczynski PJ, Demarest KT (2005) Synthesis and evaluation of 3-anilino-quinoxalinones as glycogen phosphorylase inhibitors. Bioorg Med Chem Lett 15:4790–4793

    Article  PubMed  CAS  Google Scholar 

  • Dutta RL, Syamal A (1993) Elements of magneto chemistry, 2nd edn. E. W. Press, New Delhi

    Google Scholar 

  • Fosset M, De Weille JR, Green RD, Schmid-Antomarchi H, Lazdunski M (1988) Antidiabetic sulfonylureas control action potential properties in heart cells via high affinity receptors that are linked to ATP-dependent K+ channel. J Biol Chem 263:7933–7936

    PubMed  CAS  Google Scholar 

  • Geary WJ (1971) The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev 7:81–122

    Article  CAS  Google Scholar 

  • Kulkarni NV, Hegde GS, Kurdekar GS, Budagumpi S, Sathisha MP, Revankar VK (2010) Spectroscopy, electrochemistry, and structure of 3D-transition metal complexes of thiosemicarbazones with quinoline core: evaluation of antimicrobial property. Spectrosc Lett 43:235–246

    Article  CAS  Google Scholar 

  • Lever ABP (1968) Inorganic electronic spectroscopy. Elsevier Publishing Company, New York

    Google Scholar 

  • Mayer G, Taberner PV (2002) Effects of the imidazoline ligands (±)-efaroxan and KU14R on blood glucose homeostasis in the mouse. Eur J Pharmacol 454:95–102

    Article  PubMed  CAS  Google Scholar 

  • Mishra AK, Dandiya PC, Kulkarni SK (1973) Anticonvulsant activity of some trimethoxybenzylidene-2-thiohydantoin derivatives. Indian J Pharmacol 5:449–450

    Google Scholar 

  • Moller DE (2001) New drug targets for type 2 diabetes and the metabolic syndrome. Nature 414:821–827

    Article  PubMed  CAS  Google Scholar 

  • Naik AD, Annigeri SM, Gnagadharmath UB, Revankar VK, Mahale VB, Reddy VK (2002a) Anchoring mercapto-triazoles on dicarbonyl backbone to assemble novel binucleating, acyclic SNONS compartmental ligands. Indian J Chem 41A:2046–2053

    CAS  Google Scholar 

  • Naik AD, Annigeri SM, Gangadharmath UB, Revankar VK, Mahale VB (2002b) Bimetallic complexes of a potentially pentadentate, acyclic, symmetrical compartmental Schiff base ligand that provides suitable topology for an exogenous bridge. Trans Met Chem 27:333–336

    Article  CAS  Google Scholar 

  • Nawrocka W (1996) Syntheses and pharmacological properties of new 2-aminobenzimidazole derivatives. Boll Chi Farm 135:18–23

    CAS  Google Scholar 

  • O Neil MJ, Smith M, Heckelman PE (eds) (2001) The Merck Index, 13th ed, Merck & Co. Inc., New Jersey. Monograph Number, 10074, p 1785

  • Philips MA (1928) The formation of 2-substituted benziminazoles. J Chem Soc 2393–2399

  • Reddy Shastry CV, Marwah P, Shankar Rao G (1989) Synthesis and biological activity of some new N-aryl carbamoyl and aryl thiocarbamoyl hydrazinoquinoxalin-2-ones. Indian J Chem 28B:885–891

    Google Scholar 

  • Sakurai H, Katoh A, Yoshikawa Y (2006) Chemistry and biochemistry of insulin mimeticvanadium and zinc complexes, trial for treatment of diabetes mellitus. Bull Chem Soc Jpn 79:1645–1664

    Article  CAS  Google Scholar 

  • Seleem HS, Shetary BAEL, Khalil SME, Mostafa M, Shebl M (2005) Structural diversity in copper(II) complexes of bis(thiosemicarbazone) and bis(semicarbazone) ligands. J Coord Chem 58:479–493

    Article  CAS  Google Scholar 

  • Sen AB, Gupta SK (1962) Possible antiamoebic agents part XIX. Synthesis of 1,3,4-thiadiazolines and di-1, 3,4-thiadiazolines. J Ind Chem Soc 39:628–634

    CAS  Google Scholar 

  • Vogel AI (1961) A text book of quantitative inorganic analysis, 3rd edn. Longmans Green and Co., Ltd, London, p 266

    Google Scholar 

  • Wright JB (1951) The chemistry of the benzimidazoles. Chem Rev 48:397–537

    Article  CAS  Google Scholar 

  • Yasumatsu N, Yoshikawa Y, Adachi Y, Sakurai H (2007) Antidiabetic copper(II)-picolinate: impact of the first transition metal in the metallopicolinate complexes. Bioorg Med Chem 15:4917–4922

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa Y, Kondo M, Sakurai H, Kojima Y (2005) A family of insulinomimetic zinc(II) complexes of amino ligands with Zn(Nn) (n = 3 and 4) coordination modes. J Inorg Biochem 99:1497–1503

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa Y, Hirata R, Yasui H, Sakurai H (2009) Alpha-glucosidase inhibitory effect of anti-diabetic metal ions and their complexes. Biochimie 91:1339–1341

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Department of Chemistry and USIC, Karnatak University, Dharwad for the spectral facility. Recording of FAB-mass spectra (CDRI Lucknow) are gratefully acknowledged. Further, the author (Naveen V. Kulkarni) thank Karnatak University, Dharwad for providing Nilekani fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidyanand K. Revankar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkarni, N.V., Revankar, V.K., Kirasur, B.N. et al. Transition metal complexes of thiosemicarbazones with quinoxaline hub: an emphasis on antidiabetic property. Med Chem Res 21, 663–671 (2012). https://doi.org/10.1007/s00044-011-9576-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-011-9576-6

Keywords

Navigation