Skip to main content
Log in

Theoretical study on ferrocenyl hydrazones inclusion complexes with β-cyclodextrin and its three methylated derivatives

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Molecular interactions of ferrocenyl hydrazones (FcHZ) inclusion complexes with β-cyclodextrin (BCD), methyl-β-cyclodextrin (MEB), 2,6-di-O-methyl-β-cyclodextrin (DIMEB) and 2,3,6-tri-O-methyl-β-cyclodextrin (TRIMEB) in order to enhance their aqueous solubility and anti-mycobacterial efficiency were investigated by semi-empirical PM7 method and B3LYP/m6-31G* calculations. Simulation results suggest the complex formations of FcHZ with BCD, MEB, DIMEB and TRIMEB are possible with 1:1 host–guest molecular ratio. Two different binding modes of the FcHZ inside the BCD and MEB cavities were found. The ferrocene fragment of FcHZ molecule was entrapped in the cavity, located near the wider rim of BCD and MEB in both orientations (A and B). The hydrazone aromatic fragment of FcHZ cannot be completely embedded inside the hydrophobic cavity of BCD. It points downward from the narrower rim of BCD in orientation A and point upward from the wider rim of BCD in orientation B. Only orientation B was found in 1:1 inclusion complex of FcHZ agents with DIMEB and TRIMEB due to the effect of methyl group substitutions at the primary hydroxyl groups, which located at the narrower rim of cyclodextrins. The entering pathways of the FcHZ molecule into the molecular cavity of the BCD, MEB, DIMEB and TRIMEB were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Maguene, G.M., Jakhlal, J., Ladyman, M., Vallin, A., Ralambomanana, D.A., Bousquet, T., Maugein, J., Lebibi, J., Pélinski, L.: Synthesis and antimycobacterial activity of a series of ferrocenyl derivatives. Eur. J. Med. Chem. 46, 31–38 (2011)

    Article  CAS  Google Scholar 

  2. Mahajan, A., Kremer, L., Louw, S., Guéradel, Y., Chibale, K., Biot, C.: Synthesis and in vitro antitubercular activity of ferrocene-based hydrazones. Bioorg. Med. Chem. Lett. 21, 2866–2868 (2011)

    Article  CAS  Google Scholar 

  3. Davis, M.E., Brewster, M.E.: Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug. Discov. 3, 1023–1035 (2004)

    Article  CAS  Google Scholar 

  4. Szente, L., Szeman, J.: Cyclodextrins in analytical chemistry: host–guest type molecular recognition. Anal. Chem. 85, 8024–8030 (2013)

    Article  CAS  Google Scholar 

  5. Lebrilla, C.B.: The gas-phase chemistry of cyclodextrin inclusion complexes. Acc. Chem. Res. 34, 653–661 (2001)

    Article  CAS  Google Scholar 

  6. Crini, G.: Review: a history of cyclodextrins. Chem. Rev. 114, 10940–10975 (2014)

    Article  CAS  Google Scholar 

  7. Song, L.X., Bai, L., Xu, X.M., He, J., Pan, S.Z.: Inclusion complexation, encapsulation interaction and inclusion number in cyclodextrin chemistry. Coord. Chem. Rev. 253, 1276–1284 (2009)

    Article  CAS  Google Scholar 

  8. Caira, M.R.: Structural aspects of crystalline derivatized cyclodextrins and their inclusion complexes. Curr. Org. Chem. 15, 815–830 (2011)

    Article  CAS  Google Scholar 

  9. Miranda, J.C., Martins, T.E.A., Veiga, F., Ferraz, H.G.: Cyclodextrins and ternary complexes: technology to improve solubility of poorly soluble drugs. Braz. J. Pharm. 47, 665–681 (2011)

    Article  Google Scholar 

  10. Saokham, P., Muankaew, C., Jansook, P., Loftsson, T.: Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules 23, 1161 (2018)

    Article  Google Scholar 

  11. Dandawate, P., Vemuri, K., Khan, E.M., Sritharan, M., Padhye, S.: Synthesis, characterization and anti-tubercular activity of ferrocenyl hydrazones and their β-cyclodextrin conjugates. Carbohyd. Polym. 108, 135–144 (2014)

    Article  CAS  Google Scholar 

  12. Leelananda, S.P., Lindert, S.: Computational methods in drug discovery. Beilstein J. Org. Chem. 12, 2694–2718 (2016)

    Article  CAS  Google Scholar 

  13. Fukunishi, Y., Mashimo, T., Misoo, K., Wakabayashi, Y., Miyaki, T., Ohta, S., Nakamura, M., Ikeda, K.: Miscellaneous topics in computer-aided drug design: synthetic accessibility and GPU computing, and other topics. Curr. Pharm. Des. 22, 3555–3568 (2016)

    Article  CAS  Google Scholar 

  14. Jitapunkul, K., Poachanukoon, O., Hannongbua, S., Toochinda, P., Lawtrakul, L.: Simulation study of interactions between two bioactive components from zingiber cassumunar and 5-lipoxygenase. Cell. Mol. Bioen. 11, 77–89 (2018)

    Article  CAS  Google Scholar 

  15. Srihakulung, O., Maezono, R., Toochinda, P., Kongprawechnon, W., Intarapanich, A., Lawtrakul, L.: Host-guest interactions of plumbagin with β-cyclodextrin, dimethyl-β-cyclodextrin and hydroxypropyl-β-cyclodextrin: Semi-empirical quantum mechanical PM6 and PM7 methods. Sci. Pharm. 86, 20 (2018)

    Article  Google Scholar 

  16. Mohammadi, N., Ganesan, A., Chantler, C.T., Wang, F.: Differentiation of ferrocene D5d and D5h conformers using IR spectroscopy. J. Organomet. Chem. 713, 51–59 (2012)

    Article  CAS  Google Scholar 

  17. Islam, S., Wang, F.: The d-electrons of Fe in ferrocene: exceed orbital energy spectrum (EOES). RSC Adv. 5, 11933–11941 (2015)

    Article  CAS  Google Scholar 

  18. Mitin, A.V., Baker, J., Pulay, P.: An improved 6–31G* basis set for first-row transition metals. J. Chem. Phys. 118, 7775–7782 (2003)

    Article  CAS  Google Scholar 

  19. Martin, J., Baker, J., Pulay, P.: Comments on the molecular geometry of ferrocene: the dangers of using quantum chemistry programs as black boxes. J. Comput. Chem. 30, 881–883 (2009)

    Article  CAS  Google Scholar 

  20. Meng, X.Y., Zhang, H.X., Mezei, M., Cui, M.: Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 7, 146–157 (2011)

    Article  CAS  Google Scholar 

  21. Stewart, J.J.P.: Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 19, 1–32 (2013)

    Article  CAS  Google Scholar 

  22. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  23. Tirkey, V., Mishra, S., Dash, H.R., Das, S., Nayak, B.P., Mobin, S.M., Chatterjee, S.: Synthesis, characterization and antibacterial studies of ferrocenyl and cymantrenyl hydrazone compound. J. Organomet. Chem. 732, 122–129 (2013)

    Article  CAS  Google Scholar 

  24. Steiner, T., Koellner, G.: Crystalline β-cyclodextrin hydrate at various humidities: fast, continuous, and reversible dehydration studied by x-ray diffraction. J. Am. Chem. Soc. 116, 5122–5128 (1994)

    Article  CAS  Google Scholar 

  25. Pitha, J., Harata, K.: CCDC 144261: experimental crystal structure determination. CCDC (2004). https://doi.org/10.5517/cc4v3ln

    Article  Google Scholar 

  26. Aree, T., Hoier, H., Schulz, B., Reck, G., Saenger, W.: Novel type of thermostable channel clathrate hydrate formed by heptakis(2,6-di-O-methyl)-β-cyclodextrin⋅15 H2O—a paradigm of the hydrophobic effect. Angew. Chem. Int. Ed. 39, 897–899 (2000)

    Article  CAS  Google Scholar 

  27. Caira, M.R., Bourne, S.A., Mhlongo, W.T., Dean, P.M.: New crystalline forms of permethylated β-cyclodextrin. Chem. Commun. 19, 2216–2217 (2004)

    Article  Google Scholar 

  28. Dassault Systèmes BIOVIA: Discovery Studio 4.0 Visualizer. Dassault Systèmes, San Diego (2013)

  29. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J.: Gaussian 16, Revision C.01. Gaussian, Inc., Wallingford CT, 2016.

  30. Pritchard, B.P., Pritchard, P., Altarawy, D., Didier, B., Gibson, T.D., Windus, T.L.: New basis set exchange: an open, up-to-date resource for the molecular sciences community. J. Chem. Inf. Model. 59, 4814–4820 (2019)

    Article  CAS  Google Scholar 

  31. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J.: Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009)

    Article  CAS  Google Scholar 

  32. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Thammasat University Research Fund, Contract No. TUFT 13/2562. Srihakulung, O. was supported by SIIT-JAIST dual degree scholarship from the National Electronics and Computer Technology Center (NECTEC), Sirindhorn International Institute of Technology (SIIT), and Japan Advanced Institute of Science and Technology (JAIST).

Funding

Lawtrakul, L. was supported by Thammasat University Research Fund, Contract No. TUFT 13/2562. Srihakulung, O. was supported by SIIT-JAIST dual degree scholarship from the National Electronics and Computer Technology Center (NECTEC), Sirindhorn International Institute of Technology (SIIT), and Japan Advanced Institute of Science and Technology (JAIST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luckhana Lawtrakul.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srihakulung, O., Triamchaisri, N., Toochinda, P. et al. Theoretical study on ferrocenyl hydrazones inclusion complexes with β-cyclodextrin and its three methylated derivatives. J Incl Phenom Macrocycl Chem 98, 79–91 (2020). https://doi.org/10.1007/s10847-020-01011-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-020-01011-z

Keywords

Navigation