Skip to main content
Log in

Cucurbiturils for environmental and analytical chemistry

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Inclusion compounds may help solving many chemical problems, especially concerning phase transfer processes, selective binding, molecular capture or pre-concentration—limited analytical methods. Cucurbiturils emerged as a unique class of molecular containers: They offer a wide range of cavity sizes, multi-mode binding mechanisms with a vast series of guest molecules, allied to chemical, thermal and biofouling inertness. Thanks to simple preparation routes, cucurbiturils may deliver cost-effective alternatives to address environmental chemistry issues, as well as specific routine analysis procedures. The present review aims to present the research advances regarding cucurbiturils (CB[n]) in analytical chemistry and their applications in environmental remediation science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Behrend’s work was not considered here, since CB[n] were not characterized until Mock’s seminal paper.

References

  1. Mock, W.L.: Supramolecular Chemistry II–Host Design and Molecular Recognition, pp. 1–24. Springer, Berlin (1995). https://doi.org/10.1007/3-540-58800-016

    Book  Google Scholar 

  2. Kim, K.: Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem. Soc. Rev. 31(2), 96–107 (2002). https://doi.org/10.1039/a900939f

    Article  CAS  PubMed  Google Scholar 

  3. Day, A., Arnold, A.P., Blanch, R.J., Snushall, B.: Controlling factors in the synthesis of Cucurbituril and its homologues. J. Org. Chem. 66(24), 8094–8100 (2001). https://doi.org/10.1021/jo015897c

    Article  CAS  PubMed  Google Scholar 

  4. Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44(31), 4844–4870 (2005). https://doi.org/10.1002/anie.200460675

    Article  CAS  Google Scholar 

  5. Germain, P., Létoffé, J., Merlin, M., Buschmann, H.: Thermal behaviour of hydrated and anhydrous Cucurbituril. Thermochim. Acta 315(2), 87–92 (1998). https://doi.org/10.1016/s0040-6031(98)00252-4

    Article  CAS  Google Scholar 

  6. Fenyvesi, E., Gruiz, K., Verstichel, S., Wilde, B.D., Leitgib, L., Csabai, K., Szaniszlo, N.: Biodegradation of cyclodextrins in soil. Chemosphere 60(8), 1001–1008 (2005). https://doi.org/10.1016/j.chemosphere.2005.01.026

    Article  CAS  PubMed  Google Scholar 

  7. Wagner, B., Boland, P., Lagona, J., Isaacs, L.: A cucurbit[6]uril analogue: Host properties monitored by fluorescence spectroscopy. J. Phys. Chem. B 109(16), 7686–7691 (2005). https://doi.org/10.1021/jp044369c

    Article  CAS  PubMed  Google Scholar 

  8. Lagona, J., Fettinger, J., Isaacs, L.: Cucurbit[n]uril analogues. Org. Lett. 5(20), 3745–3747 (2003). https://doi.org/10.1021/ol035468w

    Article  CAS  PubMed  Google Scholar 

  9. Lagona, J., Fettinger, J.C., Isaacs, L.: Cucurbit[n]uril analogues: synthetic and mechanistic studies. J. Org. Chem. 70(25), 10381–10392 (2005). https://doi.org/10.1021/jo0516655r

    Article  CAS  PubMed  Google Scholar 

  10. Lee, J.W., Samal, S., Selvapalam, N., Kim, H.J., Kim, K.: Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc. Chem. Res. 36(8), 621–630 (2003). https://doi.org/10.1021/ar020254k

    Article  CAS  PubMed  Google Scholar 

  11. Jansen, K., Buschmann, H.J., Wego, A., Döpp, D., Mayer, C., Drexler, H.J., Holdt, H.J., Schollmeyer, E.: Cucurbit[5]uril, decamethylcucurbit[5]uril and Cucurbit[6]uril. Synthesis, solubility and amine complex formation. J. Inclus. Phenom. Macrocyc. Chem. 39(3/4), 357–363 (2001). https://doi.org/10.1023/a:1011184725796

    Article  CAS  Google Scholar 

  12. Demets, G.J.F.: Cucurbiturilas. Química Nova 30(5), 1313–1322 (2007). https://doi.org/10.1590/s0100-40422007000500045

    Article  CAS  Google Scholar 

  13. Hoffmann, R., Knoche, W., Fenn, C., Buschmann, H.J.: Host-guest complexes of cucurbituril with the 4-methylbenzylammonium lon, alkali-metal cations and NH4+. J. Chem. Soc. Faraday Trans. 90(11), 1507–1511 (1994). https://doi.org/10.1039/ft9949001507

    Article  CAS  Google Scholar 

  14. Buschmann, H.J., Cleve, E., Jansen, K., Schollmeyer, E.: Determination of complex stabilities with nearly insoluble host molecules: cucurbit[5]uril, decamethylcucurbit[5]uril and cucurbit[6]uril as ligands for the complexation of some multicharged cations in aqueous solution. Anal. Chim. Acta 437(1), 157–163 (2001). https://doi.org/10.1016/s0003-2670(01)00976-x

    Article  CAS  Google Scholar 

  15. de Lima, S.M., Gomez, J.A., Barros, V.P., de Vertuan, G.S., das Assis, M.D., Graeff, C.F.O., Demets, G.J.F.: A new oxovanadium(IV)-cucurbit[6]uril complex: properties and potential for confined heterogeneous catalytic oxidation reactions. Polyhedron 29(15), 3008–3013 (2010). https://doi.org/10.1016/j.poly.2010.08.001

    Article  CAS  Google Scholar 

  16. Buschmann, H., Jansen, K., Schollmeyer, E.: Cucurbit[6]uril as ligand for the complexation of lanthanide cations in aqueous solution. Inorg. Chem. Commun. 6(5), 531–534 (2003). https://doi.org/10.1016/S1387-7003(03)00033-9

    Article  CAS  Google Scholar 

  17. Barrow, S.J., Kasera, S., Rowland, M.J., del Barrio, J., Scherman, O.A.: Cucurbituril-based molecular recognition. Chem. Rev. 115(22), 12320–12406 (2015). https://doi.org/10.1021/acs.chemrev.5b00341

    Article  CAS  PubMed  Google Scholar 

  18. Assaf, K.I., Nau, W.M.: Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44(2), 394–418 (2015). https://doi.org/10.1039/c4cs00273c

    Article  CAS  PubMed  Google Scholar 

  19. Flinn, A., Hough, G.C., Stoddart, J.F., Williams, D.J.: Decamethylcucurbit[5]uril. Angew. Chem. Int. Ed. 31(11), 1475–1477 (1992). https://doi.org/10.1002/anie.199214751

    Article  Google Scholar 

  20. Zhao, J., Kim, H.J., Oh, J., Kim, S.Y., Lee, J.W., Sakamoto, S., Yamaguchi, K., Kim, K.: Cucurbit[n]uril derivatives soluble in water and organic solvents. Angew. Chem. Int. Ed. 40(22), 4233–4235 (2001)

    Article  CAS  Google Scholar 

  21. Jon, S.Y., Selvapalam, N., Oh, D.H., Kang, J.K., Kim, S.Y., Jeon, Y.J., Lee, J.W., Kim, K.: Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril. J. Am. Chem. Soc. 125(34), 10186–10187 (2003). https://doi.org/10.1021/ja036536c

    Article  CAS  PubMed  Google Scholar 

  22. Dong, N., He, J., Li, T., Peralta, A., Avei, M.R., Ma, M., Kaifer, A.E.: Synthesis and binding properties of monohydroxycucurbit[7]uril: a key derivative for the functionalization of cucurbituril hosts. J. Org. Chem. 83(10), 5467–5473 (2018). https://doi.org/10.1021/acs.joc.8b00382

    Article  CAS  PubMed  Google Scholar 

  23. Isobe, H., Sato, S., Nakamura, E.: Synthesis of disubstituted cucurbit[6]uril and its rotaxane derivative. Org. Lett. 4(8), 1287–1289 (2002). https://doi.org/10.1021/ol025749o

    Article  CAS  PubMed  Google Scholar 

  24. Miyahara, Y., Goto, K., Oka, M., Inazu, T.: Remarkably facile ring-size control in macrocyclization: synthesis of hemicucurbit[6]uril and hemicucurbit[12]uril. Angew. Chem. Int. Ed. 43(38), 5019–5022 (2004). https://doi.org/10.1002/anie.200460764

    Article  CAS  Google Scholar 

  25. Cicolani, R., Demets, G.: A Família das Bambus[n]urilas. Química Nova 41(8), 912–919 (2018). https://doi.org/10.21577/0100-4042.20170250

    Article  CAS  Google Scholar 

  26. Cicolani, R.S., Job, A.E., Tonin, F.G., Correia, H.D., Demets, G.J.F.: Thermal behaviour of bambus[6]uril and its chloride caviplex. J. Therm. Anal. Calorim. 136(3), 1195–1199 (2018). https://doi.org/10.1007/s10973-018-7755-0

    Article  CAS  Google Scholar 

  27. Cicolani, R.S., de Oliveira-Filho, A.G.S., Batista, A.P.L., Demets, G.J.F.: Formation of the non-classical interhalide anion [I2Cl]- in methyl-bambus[6]uril cavity. New J. Chem. 44(7), 2697 (2020). https://doi.org/10.1039/c9nj05352b

    Article  CAS  Google Scholar 

  28. Correia, H.D., Chowdhury, S., Ramos, A.P., Guy, L., Demets, G.J.F., Bucher, C.: Dynamic supramolecular polymers built from cucurbit[n]urils and viologens. Polym. Intern. 68(4), 572–588 (2019). https://doi.org/10.1002/pi.5709

    Article  CAS  Google Scholar 

  29. Wheate, N.J., Limantoro, C.: Cucurbit[n]urils as excipients in pharmaceutical dosage forms. Supramol. Chem. 28(9–10), 849–856 (2016). https://doi.org/10.1080/10610278.2016.1178746

    Article  CAS  Google Scholar 

  30. Hettiarachchi, G., Nguyen, D., Wu, J., Lucas, D., Ma, D., Isaacs, L., Briken, V.: Toxicology and drug delivery by cucurbit[n]uril type molecular containers. PLoS ONE 5(5), e10514 (2010). https://doi.org/10.1371/journal.pone.0010514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Uzunova, V.D., Cullinane, C., Brix, K., Nau, W.M., Day, A.I.: Toxicity of cucurbit[7]uril and cucurbit[8]uril: an exploratory in vitro and in vivo study. Org. Biomol. Chem. 8(9), 2037–2042 (2010). https://doi.org/10.1039/b925555a

    Article  CAS  PubMed  Google Scholar 

  32. Oun, R., Floriano, R.S., Isaacs, L., Rowan, E.G., Wheate, N.J.: The ex vivo neurotoxic, myotoxic and cardiotoxic activity of cucurbituril-based macrocyclic drug delivery vehicles. Toxicol. Res. 3(6), 447–455 (2014). https://doi.org/10.1039/c4tx00082j

    Article  CAS  Google Scholar 

  33. Wang, W., Chen, Z., Wu, K., Liu, Z., Yang, S., Yang, Q., Dzakpasu, M.: Coagulation performance of cucurbit[8]uril for the removal of azo dyes: effect of solution chemistry and coagulant dose. Water Sci. Technol. 78(2), 415–423 (2018). https://doi.org/10.2166/wst.2018.314

    Article  CAS  PubMed  Google Scholar 

  34. Luo, H., Huang, X., Luo, Y., Li, Z., Li, L., Gao, C., Xiong, J., Li, W.: Adsorption behavior and mechanism of acidic blue 25 dye onto cucurbit[8]uril: a spectral and DFT study. Spectrochim. Acta A 193, 125–132 (2018). https://doi.org/10.1016/j.saa.2017.12.006

    Article  CAS  Google Scholar 

  35. Li, Z., Li, L., Hu, D., Gao, C., Xiong, J., Jiang, H., Li, W.: Efficient removal of heavy metal ions and organic dyes with cucurbit [8] uril-functionalized chitosan. J. Coll. Interf. Sci. 539, 400–413 (2019). https://doi.org/10.1016/j.jcis.2018.12.078

    Article  CAS  Google Scholar 

  36. Robinson, T., McMullan, G., Marchant, R., Nigam, P.: Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77(3), 247–255 (2001). https://doi.org/10.1016/s0960-8524(00)00080-8

    Article  CAS  PubMed  Google Scholar 

  37. Xie, X., Li, X., Luo, H., Lu, H., Chen, F., Li, W.: The adsorption of reactive blue 19 dye onto cucurbit[8]uril and cucurbit[6]uril: an experimental and theoretical study. J. Phys. Chem. B 120(17), 4131–4142 (2016). https://doi.org/10.1021/acs.jpcb.6b03565

    Article  CAS  PubMed  Google Scholar 

  38. He, S., Sun, X., Zhang, H.: Influence of the protonation state on the binding mode of methyl orange with cucurbiturils. J. Mol. Struct. 1107, 182–188 (2016). https://doi.org/10.1016/j.molstruc.2015.11.039

    Article  CAS  Google Scholar 

  39. de Santos, G.C., Barros, A.L., de Oliveira, C.A.F., da Luz, L.L., da Silva, F.F., Demets, G.J.F., Alves Junior, S.: New composites LnBDC@ AC and CB [6]@ AC: from design toward selective adsorption of methylene blue or methyl orange. PLoS ONE 12(1), e0170026 (2017). https://doi.org/10.1371/journal.pone.0170026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, X., Xie, X., Luo, H., Li, L., Li, Z., Xue, Z., Li, W.: Adsorption of reactive yellow X-RG and reactive brilliant red X-3B onto cucurbit[8]uril and cucurbit[6]uril: effect factors, adsorption behavior and mechanism study. J. Coll. Interf. Sci. 498, 31–46 (2017). https://doi.org/10.1016/j.jcis.2017.03.043

    Article  CAS  Google Scholar 

  41. Patil, Y.A., Sadhu, B., Boraste, D.R., Borkar, A.L., Shankarling, G.S.: Utilization of cucurbit[6]uril as an effective adsorbent for the remediation of phthalocyanine and procion golden yellow dyes. J. Mol. Struct. 1202, 127278 (2019). https://doi.org/10.1016/j.molstruc.2019.127278

    Article  CAS  Google Scholar 

  42. Huan Chen, R., Tao Qiao, H., Liu, Y., Hua Dong, Y., Wang, P., Zhang, Z., Jin, T.: Adsorption of methylene blue from an aqueous solution using a cucurbituril polymer. Environ. Prog. Sustain. Energy 34(2), 512–519 (2014). https://doi.org/10.1002/ep.12029

    Article  CAS  Google Scholar 

  43. Karami, H.: Heavy metal removal from water by magnetite nanorods. Chem. Eng. J. 219, 209–216 (2013). https://doi.org/10.1016/j.cej.2013.01.022

    Article  CAS  Google Scholar 

  44. Rajput, S., Pittman, C.U., Mohan, D.: Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2\(^{+}\)) and chromium (Cr6\(^{+}\)) removal from water. J. Coll. Interf. Sci. 468, 334–346 (2016). https://doi.org/10.1016/j.jcis.2015.12.008

    Article  CAS  Google Scholar 

  45. Mohmood, I., Lopes, C.B., Lopes, I., Tavares, D.S., Soares, A.M., Duarte, A.C., Trindade, T., Ahmad, I., Pereira, E.: Remediation of mercury contaminated saltwater with functionalized silica coated magnetite nanoparticles. Sci. Total Environ. 557–558, 712–721 (2016). https://doi.org/10.1016/j.scitotenv.2016.03.075

    Article  CAS  PubMed  Google Scholar 

  46. Mohan, D., Pittman, C.U.: Arsenic removal from water/wastewater using adsorbents—a critical review. J. Hazard. Mater. 142(1–2), 1–53 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.006

    Article  CAS  PubMed  Google Scholar 

  47. Malik, A.H., Khan, Z.M., Mahmood, Q., Nasreen, S., Bhatti, Z.A.: Perspectives of low cost arsenic remediation of drinking water in Pakistan and other countries. J. Hazard. Mater. 168(1), 1–12 (2009). https://doi.org/10.1016/j.jhazmat.2009.02.031

    Article  CAS  PubMed  Google Scholar 

  48. Buschmann, H., Cleve, E., Jansen, K., Wego, A., Schollmeyer, E.: Complex formation between cucurbit[n]urils and alkali, alkaline earth and ammonium ions in aqueous solution. J. Incl. Phenom. Macrocyclic Chem. 40(1–2), 117–120 (2001). https://doi.org/10.1023/A:1011159119554

    Article  CAS  Google Scholar 

  49. Buschmann, H.J., Jansen, K., Meschke, C., Schollmeyer, E.: Thermodynamic data for complex formation between cucurbituril and alkali and alkaline earth cations in aqueous formic acid solution. J. Sol. Chem. 27(2), 135–140 (1998). https://doi.org/10.1023/A:1022605306651

    Article  CAS  Google Scholar 

  50. Buschmann, H., Cleve, E., Schollmeyer, E.: Cucurbituril as a ligand for the complexation of cations in aqueous-solutions. Inorg. Chim. Acta 193(1), 93–97 (1992). https://doi.org/10.1016/S0020-1693(00)83800-1

    Article  CAS  Google Scholar 

  51. Zhang, X., Krakowiak, K., Xue, G., Bradshaw, J., Izatt, R.: A highly selective compound for lead: complexation studies of decamethylcucurbit[5]uril with metal ions. Ind. Eng. Chem. Res. 39(10), 3516–3520 (2000)

    Article  CAS  Google Scholar 

  52. Sun, X., Li, B., Wan, D., Wang, N.: Using a novel adsorbent macrocyclic compound cucurbit[8]uril for Pb 2\(^{+}\) removal from aqueous solution. J. Environ. Sci. 50, 3–12 (2016). https://doi.org/10.1016/j.jes.2016.04.029

    Article  CAS  Google Scholar 

  53. Miyahara, Y., Abe, K., Inazu, T.: Molecular molecular sieves: lid-free decamethylcucurbit[5]uril absorbs and desorbs gases selectively. Angew. Chem. Int. Ed. 41(16), 3020 (2002). https://doi.org/10.1002/1521-3773(20020816)41:16<3020::aid-anie3020>3.0.co;2-4

    Article  CAS  Google Scholar 

  54. Kellersberger, K., Anderson, J., Ward, S., Krakowiak, K., Dearden, D.: Encapsulation of N-2, O-2, methanol, or acetonitrile by decamethylcucurbit[5]uril(NH4+)(2) complexes in the gas phase: influence of the guest on “lid” tightness. J. Am. Chem. Soc. 123(45), 11316–11317 (2001)

    Article  CAS  Google Scholar 

  55. Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., Erasmi, S.: Greenhouse gas emissions from soils—a review. Geochem. 76(3), 327–352 (2016). https://doi.org/10.1016/j.chemer.2016.04.002

    Article  CAS  Google Scholar 

  56. Kim, H., Kim, Y., Yoon, M., Lim, S., Park, S.M., Seo, G., Kim, K.: Highly selective carbon dioxide sorption in an organic molecular porous material. J. Am. Chem. Soc. 132(35), 12200–12202 (2010). https://doi.org/10.1021/ja105211w

    Article  CAS  PubMed  Google Scholar 

  57. Reddy, K.R.K.K., Cavallini, T.S., Demets, G.J.F., Silva, L.F.: Bromine and iodine-cucurbit[6]uril complexes: preparation and applications in synthetic organic chemistry. N. J. Chem. 38(6), 2262–2264 (2014). https://doi.org/10.1039/c4nj00284a

    Article  CAS  Google Scholar 

  58. Tian, J., Ma, S., Thallapally, P.K., Fowler, D., McGrail, B.P., Atwood, J.L.: Cucurbit[7]uril: an amorphous molecular material for highly selective carbon dioxide uptake. Chem. Commun. 47(27), 7626–7628 (2011). https://doi.org/10.1039/c1cc12689j

    Article  CAS  Google Scholar 

  59. Üzgür Yazaydın, A., Snurr, R.Q., Park, T.H., Koh, K., Liu, J., LeVan, M.D., Benin, A.I., Jakubczak, P., Lanuza, M., Galloway, D.B., Low, J.J., Willis, R.R.: Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J. Am. Chem. Soc. 131(51), 18198–18199 (2009). https://doi.org/10.1021/ja9057234

    Article  CAS  Google Scholar 

  60. Pan, S., Saha, R., Mandal, S., Mondal, S., Gupta, A., Fernández-Herrera, M.A., Merino, G., Chattaraj, P.K.: Selectivity in gas adsorption by molecular cucurbit[6]uril. J. Phys. Chem. C 120(26), 13911–13921 (2016). https://doi.org/10.1021/acs.jpcc.6b02545

    Article  CAS  Google Scholar 

  61. Venkataramanan, N.S., Suvitha, A., Mizuseki, H., Kawazoe, Y.: Computational study on the interactions of mustard gas with cucurbituril macrocycles. Int. J. Quantum Chem. 115(21), 1515–1525 (2015). https://doi.org/10.1002/qua.24964

    Article  CAS  Google Scholar 

  62. Kim, B.S., Ko, Y.H., Kim, Y., Lee, H.J., Selvapalam, N., Lee, H.C., Kim, K.: Water soluble cucurbit[6]uril derivative as a potential Xe carrier for 129Xe NMR-based biosensors. Chem. Commun. 2008(24), 2756 (2008). https://doi.org/10.1039/b805724a

    Article  CAS  Google Scholar 

  63. Fusaro, L., Locci, E., Lai, A., Luhmer, M.: NMR study of the reversible trapping of SF6by cucurbit[6]uril in aqueous solution. J. Phys. Chem. B 112(47), 15014–15020 (2008). https://doi.org/10.1021/jp806685z

    Article  CAS  PubMed  Google Scholar 

  64. Cowgill, U.: Studies in Environmental Science, pp. 233–259. Elsevier, Amsterdam (1984). https://doi.org/10.1016/s0166-1116(08)72112-5

    Book  Google Scholar 

  65. Kim, K., Ko, Y.H., Lee, S.H., Narayanan, S., Lee, D.W.: Composition for odor removal comprising cucurbituril—patent us9433234b2 (2016)

  66. Kim, K., Ko, Y.H., Lee, S.H., Narayanan, S., Lee, D.W.: Composition for odor removal and fragance emission comprising complexes of cucurbituril and fragrance—Patent us20150297772a1 (2015)

  67. Coulston, R., Tanner, A., Martinez-Santiago, J.: Pro-fragrance composition—Patent us20190046426a1 (2019)

  68. e Silva, F.C.S., de Lima, S.M., Demets, G.J.F.: Reusable cucurbit[6]uril-loaded poly(urethane) sponges for oily waters treatment. RSC Adv. 4, 58796–58799 (2014). https://doi.org/10.1039/C4RA11038B

    Article  CAS  Google Scholar 

  69. Elbashir, A.A., Aboul-Enein, H.Y.: Supramolecular analytical application of cucurbit[n]urils using fluorescence spectroscopy. Crrit. Rev. Anal. Chem. 45(1), 52–61 (2014). https://doi.org/10.1080/10408347.2013.876354

    Article  CAS  Google Scholar 

  70. Li, Y.P., Wu, H., Du, L.M.: Study on the inclusion interactions of berberine hydrochloride and cucurbit[7] by spectrofluorimetry. Chin. Chem. Lett. 20(3), 322–325 (2009). https://doi.org/10.1016/j.cclet.2008.10.045

    Article  CAS  Google Scholar 

  71. Li, C.F., Du, L.M., Wu, W.Y., Sheng, A.Z.: Supramolecular interaction of cucurbit[n]urils and coptisine by spectrofluorimetry and its analytical application. Talanta 80(5), 1939–1944 (2010). https://doi.org/10.1016/j.talanta.2009.10.049

    Article  CAS  PubMed  Google Scholar 

  72. Li, C.F., Du, L.M., Zhang, H.M.: Study on the inclusion interaction of cucurbit[n]urils with sanguinarine by spectrofluorimetry and its analytical application. Spectrochim. Acta A 75(2), 912–917 (2010). https://doi.org/10.1016/j.saa.2009.12.036

    Article  CAS  Google Scholar 

  73. Zhou, Y.Y., Yang, J., Liu, M., Wang, S.F., Lu, Q.: A novel fluorometric determination of melamine using cucurbit[7]uril. J. Luminesc. 130(5), 817–820 (2010). https://doi.org/10.1016/j.jlumin.2009.12.001

    Article  CAS  Google Scholar 

  74. Huang, Y., Wang, J., Xue, S.F., Tao, Z., Zhu, Q.J., Tang, Q.: Determination of thiabendazole in aqueous solutions using a cucurbituril-enhanced fluorescence method. J. Inclus. Phenom. Macrocyc. Chem. 72(3–4), 397–404 (2011). https://doi.org/10.1007/s10847-011-9999-1

    Article  CAS  Google Scholar 

  75. Jiménez, J., Blasco, S., Blanco, E., Atienzar, P., del Pozo, M., Quintana, C.: On-surface cucurbit[n]uril supramolecular recognition for an optical sensor design. Chemistry Select 4(24), 7036–7041 (2019). https://doi.org/10.1002/slct.201901127

    Article  CAS  Google Scholar 

  76. Zhou, Y., Yu, H., Zhang, L., Sun, J., Wu, L., Lu, Q., Wang, L.: Host properties of cucurbit [7] uril: fluorescence enhancement of acridine orange. J. Inclus. Phenom. Macrocyc. Chem. 61(3–4), 259–264 (2008). https://doi.org/10.1007/s10847-008-9414-8

    Article  CAS  Google Scholar 

  77. Occello, V.N.S., Veglia, A.V.: Cucurbit[6]uril nanocavity as an enhanced spectrofluorimetric method for the determination of pyrene. Anal. Chim. Acta 689(1), 97–102 (2011). https://doi.org/10.1016/j.aca.2011.01.027

    Article  CAS  Google Scholar 

  78. del Pozo, M., Hernández, L., Quintana, C.: A selective spectrofluorimetric method for carbendazim determination in oranges involving inclusion-complex formation with cucurbit[7]uril. Talanta 81(4–5), 1542–1546 (2010). https://doi.org/10.1016/j.talanta.2010.02.066

    Article  CAS  PubMed  Google Scholar 

  79. Rankin, M.A., Wagner, B.D.: Fluorescence enhancement of curcumin upon inclusion into cucurbituril. Supramol. Chem. 16(7), 513–519 (2004). https://doi.org/10.1080/10610270412331283583

    Article  CAS  Google Scholar 

  80. Sinha, M.K., Reany, O., Parvari, G., Karmakar, A., Keinan, E.: Switchable cucurbituril-bipyridine beacons. Chem. Eur. J. 16(30), 9056–9067 (2010). https://doi.org/10.1002/chem.200903067

    Article  CAS  PubMed  Google Scholar 

  81. del Pozo, M., Fernández, Á., Quintana, C.: On-line competitive host-guest interactions in a turn-on fluorometric method to amantadine determination in human serum and pharmaceutical formulations. Talanta 179, 124–130 (2018). https://doi.org/10.1016/j.talanta.2017.10.064

    Article  CAS  PubMed  Google Scholar 

  82. Cavallaro, G., Lazzara, G., Rozhina, E., Konnova, S., Kryuchkova, M., Khaertdinov, N., Fakhrullin, R.: Organic-nanoclay composite materials as removal agents for environmental decontamination. RSC Adv. 9(69), 40553–40564 (2019). https://doi.org/10.1039/c9ra08230a

    Article  CAS  Google Scholar 

  83. Mako, T.L., Racicot, J.M., Levine, M.: Supramolecular luminescent sensors. Chem. Rev. 119(1), 322 (2018). https://doi.org/10.1021/acs.chemrev.8b00260

    Article  CAS  PubMed  Google Scholar 

  84. Zhou, Y., Yu, H., Zhang, L., Xu, H., Wu, L., Sun, J., Wang, L.: A new spectrofluorometric method for the determination of nicotine base on the inclusion interaction of methylene blue and cucurbit[7]uril. Microchim. Acta 164(1–2), 63–68 (2008). https://doi.org/10.1007/s00604-008-0032-3

    Article  CAS  Google Scholar 

  85. Yao, F., Liu, H., Wang, G., Du, L., Yin, X., Fu, Y.: Determination of paraquat in water samples using a sensitive fluorescent probe titration method. J. Environ. Sci. 25(6), 1245–1251 (2013). https://doi.org/10.1016/s1001-0742(12)60124-7

    Article  CAS  Google Scholar 

  86. Yang, J., Du, L., Wu, H., Chang, Y., Li, C.: Determination of L-cystine by a new sensitive cucurbit[7]uril/palmatine probe. Chin. J. Chem. 29(6), 1268–1272 (2011). https://doi.org/10.1002/cjoc.201190235

    Article  CAS  Google Scholar 

  87. Li, C.F., Du, L.M., Wu, H., Chang, Y.X.: Determination of l-phenylalanine by cucurbit[7]uril sensitized fluorescence quenching method. Chin. Chem. Lett. 22(7), 851–854 (2011). https://doi.org/10.1016/j.cclet.2010.12.029

    Article  CAS  Google Scholar 

  88. Wang, G.Q., Du, L.M., Guo, Y.H., Qin, Y.F., Wang, J.W., Wu, H.: Study on the supramolecular interaction of astemizole with cucurbit[7]uril and its analytical application. Anal. Methods 5(1), 173–179 (2013). https://doi.org/10.1039/c2ay25929j

    Article  CAS  Google Scholar 

  89. Wang, G.Q., Guo, L., Du, L.M., Fu, Y.L.: Competitive supramolecular interaction of carbachol and berberine with cucurbit[7]uril and its analytical application. Microchem. J. 110, 285–291 (2013). https://doi.org/10.1016/j.microc.2013.04.011

    Article  CAS  Google Scholar 

  90. Wu, W.Y., Yang, J.Y., Du, L.M., Wu, H., Li, C.F.: Determination of ethambutol by a sensitive fluorescent probe. Spectrochim. Acta A 79(3), 418–422 (2011). https://doi.org/10.1016/j.saa.2011.02.045

    Article  CAS  Google Scholar 

  91. Nagarajan, E.R., Oh, D.H., Selvapalam, N., Ko, Y.H., Park, K.M., Kim, K.: Cucurbituril anchored silica gel. Tetrahed. Lett. 47(13), 2073–2075 (2006). https://doi.org/10.1016/j.tetlet.2006.01.139

    Article  CAS  Google Scholar 

  92. Ma, L., Liu, S.M., Yao, L., Xu, L.: Preparation and chromatographic performance evaluation of cucurbit[7]uril immobilized silica. J. Chromatogr. A 1376, 64–73 (2015). https://doi.org/10.1016/j.chroma.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  93. Kim, K., Selvapalam, N., Ko, Y.H., Park, K.M., Kim, D., Kim, J.: Functionalized cucurbiturils and their applications. Chem. Soc. Rev. 36(2), 267–279 (2007). https://doi.org/10.1039/b603088m

    Article  CAS  PubMed  Google Scholar 

  94. Wang, X., Qi, M., Fu, R.: Separation performance of cucurbit[7]uril in ionic liquid-based sol-gel coating as stationary phase for capillary gas chromatography. J. Chromatogr. A 1371, 237–243 (2014). https://doi.org/10.1016/j.chroma.2014.10.066

    Article  CAS  PubMed  Google Scholar 

  95. Liu, S., Xu, L., Wu, C., Feng, Y.: Preparation and characterization of perhydroxyl-cucurbit669uril bonded silica stationary phase for hydrophilic-interaction chromatography. Talanta 64(4), 929–934 (2004). https://doi.org/10.1016/j.talanta.2004.04.012

    Article  CAS  PubMed  Google Scholar 

  96. Wang, L., Wang, X., Qi, M., Fu, R.: Cucurbit[6]uril in combination with guanidinium ionic liquid as a new type of stationary phase for capillary gas chromatography. J. Chromatogr. A 1334, 112–117 (2014). https://doi.org/10.1016/j.chroma.2014.01.070

    Article  CAS  PubMed  Google Scholar 

  97. Sun, T., Ji, N., Qi, M., Tao, Z., Fu, R.: Separation performance of cucurbit[8]uril and its coordination complex with cadmium (II) in capillary gas chromatography. J. Chromatogr. A 1343, 167–173 (2014). https://doi.org/10.1016/j.chroma.2014.03.084

    Article  CAS  PubMed  Google Scholar 

  98. Zhang, P., Qin, S., Qi, M., Fu, R.: Cucurbit[n]urils as a new class of stationary phases for gas chromatographic separations. J. Chromatogr. A 1334, 139–148 (2014). https://doi.org/10.1016/j.chroma.2014.01.083

    Article  CAS  PubMed  Google Scholar 

  99. Kim, K. Oh, D.H., Nagarajan, E.R., Ko, Y.H., Samal, S.: Cucurbituil containing polymer, stationay phase and column using the same—Patent wo2005010058 (2005)

  100. Wei, F., Feng, Y.Q.: Rapid determination of aristolochic acid I and II in medicinal plants with high sensitivity by cucurbit[7]uril-modifier capillary zone electrophoresis. Talanta 74(4), 619–624 (2008). https://doi.org/10.1016/j.talanta.2007.06.030

    Article  CAS  PubMed  Google Scholar 

  101. Wei, F., Liu, S.M., Xu, L., Cheng, G.Z., Wu, C.T., Feng, Y.Q.: The formation of cucurbit[n]uril (n = 6, 7) complexes with amino compounds in aqueous formic acid studied by capillary electrophoresis. Electrophoresis 26(11), 2214–2224 (2005). https://doi.org/10.1002/elps.200410260

    Article  CAS  PubMed  Google Scholar 

  102. Keinan, E.: Synthetic binding pairs comprising cucurbituril derivatives and polyammonium compouds and uses thereof—Patent wo2005023816 (2005)

  103. Xu, L., Liu, S.M., Wu, C.T., Feng, Y.Q.: Separation of positional isomers by cucurbit[7]uril-mediated capillary electrophoresis. Electrophoresis 25(1819), 3300–3306 (2004). https://doi.org/10.1002/elps.200305912

    Article  CAS  PubMed  Google Scholar 

  104. Lee, J., Perez, L., Liu, Y., Wang, H., Hooley, R.J., Zhong, W.: Separation of methylated histone peptides via host-assisted capillary electrophoresis. Anal. Chem. 90(3), 1881–1888 (2018). https://doi.org/10.1021/acs.analchem.7b03969

    Article  CAS  PubMed  Google Scholar 

  105. Demets, G.J.F., Teodosio, T.M.B., Correia, H.D., Cavallini, T.S.: Materiais semi-permeáveis para nanofiltração e uso dos mesmos. Patent Br- PI10025561 (2010)

  106. Correia, H.D., Demets, G.J.F.: Cucurbit[6]uril/PVC-based semipermeable membranes as electrode modifiers for electrochemical investigation of insoluble substrates. Electrochem. Commun. 11(10), 1928–1931 (2009). https://doi.org/10.1016/j.elecom.2009.08.018

    Article  CAS  Google Scholar 

  107. Tadini, M., Balbino, M., Eleoterio, I., de Oliveira, L., Dias, L., Demets, G., de Oliveira, M.: Developing electrodes chemically modified with cucurbit[6]uril to detect 3,4-methylenedioxymethamphetamine (MDMA) by voltammetry. Electrochim. Acta 121, 188–193 (2014). https://doi.org/10.1016/j.electacta.2013.12.107

    Article  CAS  Google Scholar 

  108. de Menezes, M.M.M.T., Balbino, M.A., Castro, A.S., Eleotério, I.C., Demets, G.J.F., de Oliveira, O.V., Ipólito, A.J., McCord, B.R., de Oliveira, M.F.: Chemically modified piezoelectric devices to detect seized marijuana and cocaine samples: a new tool for forensic chemistry. SM J. Forensic Res. Criminol. 1(1), 1–7 (2017)

    Google Scholar 

  109. del Pozo, M., Hernandez, P., Hernandez, L., Quintana, C.: The use of cucurbit[8]uril host-guest interactions in the development of an electrochemical sensor: characterization and application to tryptophan determination. J. Mater. Chem. 21(35), 13657–13663 (2011). https://doi.org/10.1039/c1jm12063h

    Article  CAS  Google Scholar 

  110. del Pozo, M., Blanco, E., Fatas, E., Hernandez, P., Quintana, C.: New supramolecular interactions for electrochemical sensors development: different cucurbit[8]uril sensing platform designs. Analyst 137, 4302–4308 (2012). https://doi.org/10.1039/C2AN35325C

    Article  PubMed  Google Scholar 

  111. del Pozo, M., Alonso, M., Hernández, L., Quintana, C.: An electrochemical approach for the cucurbit[7]uril/carbendazim supramolecular inclusion complex. application to carbendazim determination in apples. Electroanal. 23(1), 189–195 (2011). https://doi.org/10.1002/elan.201000442

    Article  CAS  Google Scholar 

  112. Buaki-Sogo, M., del Pozo, M., Hernández, P., García, H., Quintana, C.: Graphene in combination with cucurbit[n]urils as electrode modifiers for electroanalytical biomolecules sensing. Talanta 101, 135–140 (2012). https://doi.org/10.1016/j.talanta.2012.09.016

    Article  CAS  PubMed  Google Scholar 

  113. Blanco, E., Quintana, C., Hernández, P., Hernández, L.: A voltammetric study of the interaction between cucurbit[6]uril and divalent metal ions. Electroanal. 22(17–18), 2123–2130 (2010). https://doi.org/10.1002/elan.201000066

    Article  CAS  Google Scholar 

  114. Demets, G., Schneider, B., Correia, H., Goncalves, R., Nobre, T., Zaniquelli, M.: A technique to produce thin cucurbit[6]uril films. J. Nanosci. Nanotechnol. 8, 432–435 (2008). https://doi.org/10.1166/jnn.2008.051

    Article  CAS  PubMed  Google Scholar 

  115. Blanco, E., Quintana, C., Hernández, L., Hernández, P.: Atomic force microscopy study of new sensing platforms: cucurbit[n]uril (n=6, 7) on gold. Electroanal. 25(1), 263–268 (2013). https://doi.org/10.1002/elan.201200379

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank FAPESP (Grant Number 2017/19595-5) and CNPq (Grant No. 309909/2018-0 and 158644/2019-0) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégoire Jean-François Demets.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cicolani, R.S., Souza, L.R.R., de Santana Dias, G.B. et al. Cucurbiturils for environmental and analytical chemistry. J Incl Phenom Macrocycl Chem 99, 1–12 (2021). https://doi.org/10.1007/s10847-020-00999-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-020-00999-8

Keywords

Navigation