Skip to main content
Log in

Determination of thiabendazole in aqueous solutions using a cucurbituril-enhanced fluorescence method

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The complexation of thiabendazole (TBZ) with the cucurbit[6]uril (Q[6]), cucurbit[7]uril (Q[7]) and symmetric tetramethyl-cucurbit[6]uril (TMeQ[6]) in aqueous solution has been investigated using UV–vis and fluorespectrometry. The experimental results show 1:1 host–guest inclusion complexes at pH 6.5 for all three macrocyclic hosts, and the corresponding formation constants by UV and fluorescence methods are (5.37 ± 1.05) × 104 L mol−1 and (1.47 ± 0.41) × 104 L mol−1 for the Q[6]-TBZ system (7.76 ± 0.51) × 104 L mol−1 and (9.36 ± 0.22) × 104 L mol−1 for the Q[7]-TBZ system (1.28 ± 0.78) × 104 L mol−1 and (2.69 ± 0.55) × 104 L mol−1 for the TMeQ[6]-TBZ system, respectively. Based on the enhancement of the fluorescence intensity of TBZ with the addition of Q[n]s in neutral media, a fluorespectrometry method for the determination of TBZ in aqueous solution in the presence of Q[n] was established. In the range of 6.0 × 10−8 mol L−1–8.0 × 10−6 mol L−1 a linear relationship was obtained between fluorescence intensity and TBZ concentration. The detection limit was found to be between 5.51 and 8.85 × 10−9 mol L−1. The interference of coexisting ions was found to be slight. The proposed method has been successfully applied to the determination of TBZ in different aqueous solutions with satisfactory recoveries of 92–103%. The method seems to be suitable for environmental water analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. The Compilation of Residues Limits Standards for Pesticides and Veterinary Drugs in Foodstuffs in the World. Dalian Maritime University Press, Dalian (2002)

  2. Muccio, A.D., Girolimetti, S., Barbini, D.A., Pelosi, P., Generali, T., Vergori, L., Merulis, G.D., Leonelli, A., Stefanilli, P.: Selective clean-up applicable to aqueous acetone extracts for the determination of carbendazim and thiabendazole in fruits and vegetables by high-performance liquid chromatography with UV Detection. J. Chromatogr. A 833, 61–65 (1999)

    Article  Google Scholar 

  3. Fernandez-Alba, A.R., Tejedor, A., Aguera, A., Contreras, M., Garrido, J.: Determination of imidacloprid and benzimidazole residues in fruit and vegetables by liquid chromatography-mass spectrometry after ethyl acetate multiresidue extraction. J. AOAC Int. 83, 748–755 (2000)

    CAS  Google Scholar 

  4. Liu, X.S., Ton, Z.F., Zheng, L., Huo, H.H., Liu, J.Y.: Simultaneous determination of thiabendazole and carbendazim residues in concentrated pineapple juice by solid phase extraction and high performance liquid chromatography. J. Anal. Sci. 23, 311–314 (2007)

    Article  CAS  Google Scholar 

  5. Hu, Y.X., Yang, X.M., Wang, Z., Wang, C., Zhao, J.: Determination of carbendazim and thiabendazole in tomatoes by solid-phase microextraction coupled with high performance liquid chromatography and fluorescence detection. Chin. J. Chromatogr. 23, 81–584 (2005)

    Google Scholar 

  6. Li, J.H., He, Q., Zhao, J., Kong, X.H.: Rapid determination of thiabendazole in juice concentrate by ion exchange chromatography and fluorescence detection. Agrochemicals 46, 772–773 (2007)

    CAS  Google Scholar 

  7. Tang, B., Ma, L., Wang, H.Y., Zhang, G.Y.: Study on the supramolecular interation of curcumin and β-cyclodextrin by spectrophotometry and its analytical application. J. Agric. Food Chem. 50, 1355–1361 (2002)

    Article  CAS  Google Scholar 

  8. Ma, L., Tang, B., Chu, C.: Spectrofluorimetric study of the β-cyclodextrin-dapsone -linear alcohol supramolecular system and determination of dapsone. Anal. Chim. Acta 469, 183–273 (2002)

    Article  Google Scholar 

  9. Tang, B., Ma, L., Ma, C.: Spectrofluorimetric study of the β-cyclodextrin-rubidate complex and determination of rubidate by β-CD-enhanced fluorimetry. Talanta 58, 841–848 (2002)

    Article  CAS  Google Scholar 

  10. Tang, B., Wang, X., Liang, H.L., Jia, B.X., Chen, Z.: Study on the supramolecular interaction of tiabendazole and β-Cyclodextrin by spectrophotometry and is analytical application. J. Agric. Food Chem. 53, 8452–8459 (2005)

    Article  CAS  Google Scholar 

  11. Natalia, L.P., Alicia, V.V.: Determination of poorly fluorescent carbamate pesticides in water, bendiocarb and promecarb, using cyclodextrin nanocavities and related media. Anal. Chim. Acta 583, 63–71 (2007)

    Article  Google Scholar 

  12. Natalia, L., Pacioni, V.N., Sueldo, O., Márcio, L., Alicia, V.V.: Spectrofluorimetric determination of benzoimidazolic pesticides: effect of p-sulfonatocalix[6]arene and cyclodextrins. Anal. Chim. Acta 624, 133–140 (2008)

    Article  Google Scholar 

  13. Kim, K., Selvapalam, N., Ko, Y.H., Park, K.M., Kim, D., Kim, J.: Functionalized cucurbiturils and their applications. Chem. Soc. Rev. 36, 267–279 (2007)

    Article  CAS  Google Scholar 

  14. Freeman, W.A., Mock, W.L., Shih, N.Y.: Cucurbituril. J. Am. Chem. Soc. 103, 367–7368 (1981)

    Google Scholar 

  15. Day, A.I., Arnold, A.P.: Method for synthesis cucurbiturils[P]. WO 0068232, 8 (2000)

  16. Kim, J., Jung, I.S., Kim, S.Y., Lee, E., Kang, J.K., Sakamoto, S., Yamaguchi, K., Kim, K.: New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7 and 8). Am. Chem. Soc. 122, 540–541 (2000)

    Article  CAS  Google Scholar 

  17. Day, A.I., Blanch, R.J., Amold, A.P.: A cucurbituril-based gyroscane: a new supramolecular form. Angew. Chem. Int. Ed. 41, 275–277 (2002)

    Article  CAS  Google Scholar 

  18. Blanck, R.J., Sleeman, A.J., White, T.J., Arnold, A.P., Day, A.I.: Cucurbit[7]uril and o-carborane self-assemble to form a molecular ball bearing. Nano. Lett. 2, 147–149 (2002)

    Article  Google Scholar 

  19. Liu, J.X., Tao, Z., Xue, S.F., Zhu, Q.J., Zhang, J.X.: Investigation of host-guest compounds of cucurbit[n = 5–8]uril with some piperazine derivatives. Chin. J. Inorg. Chem. 20, 139–147 (2004)

    CAS  Google Scholar 

  20. Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005)

    Article  CAS  Google Scholar 

  21. Li, C.J., Li, J., Jia, X.S.: Selective binding and highly sensitive fluorescent sensor of palmatine and dehydrocorydaline alkaloids by cucurbit[7]uril. Org. Biomol. Chem. 7, 2699–2703 (2009)

    Article  CAS  Google Scholar 

  22. Mix, R., Hoffmann, K., Buschmann, H.-J., Friedrich, J.F., Resch-Genger, U.: Coupling of fluorescence labels to plasma-chemically functionalized and cucurbituril modified surfaces. Vakuum in Forschung und Praxis 19, 31–37 (2007)

    Article  CAS  Google Scholar 

  23. Zhou, Y.Y., Yu, H.P., Zhang, L., Xu, H.W., Wu, L., Sun, J.Y., Wang, L.: A new spectrofluorometric method for the determination of nicotine base on the inclusion interaction of methylene blue and cucurbit[7]uril. Microchim. Acta. 164, 63–68 (2009)

    Article  CAS  Google Scholar 

  24. Zhou, Y.Y., Yu, H.P., Zhang, L., Sun, J.Y., Wu, L., Lu, Q., Wang, L.: Host properties of cucurbit [7] uril: fluorescence enhancement of acridine orange. J. Incl. Phenom. Macrocycl. Chem. 61, 259–264 (2008)

    Article  CAS  Google Scholar 

  25. Apurba, L.K., Werner, M.N.: Cucurbituril encapsulation of fluorescent dyes. Supramol. Chem. 19, 55–66 (2007)

    Article  Google Scholar 

  26. Zhou, Y.-Y., Yang, J., Liu, M., Wang, S.-F., Lu, Q.: A novel fluorometric determination of melamine using cucurbit[7]uril. J. Lumin. 130, 817–820 (2010)

    Article  CAS  Google Scholar 

  27. Li, C.-F., Dua, L.-M., Wua, W.-Y., Sheng, A.-Z.: Supramolecular interaction of cucurbit[n]urils and coptisine by spectrofluorimetry and its analytical application. Talanta 80, 1939–1944 (2010)

    Article  CAS  Google Scholar 

  28. Li, C.-F., Dua, L.-M., Zhang, H.-M.: Study on the inclusion interaction of cucurbit[n]urils with sanguinarine by spectrofluorimetry and its analytical application. Spectrochim. Acta Part A 75, 912–917 (2010)

    Article  Google Scholar 

  29. Baumes, L.A., Sogo, M.B., Montes-Navajas, P., Corma, A., Garcia, H.: A colorimetric sensor array for the detection of the date-rape drug γ-hydroxybutyric acid (GHB): a supramolecular approach. Chem. Eur. J. 16, 4489–4495 (2010)

    Article  CAS  Google Scholar 

  30. Saleh, N., Al-Rawashdeh, N.A.F.: Fluorescence enhancement of carbendazim fungicide in cucurbit[6]uril. J. Fluoresc. 16, 487–493 (2006)

    Article  CAS  Google Scholar 

  31. Saleh, N., Koner, A.L., Nau, W.M.: Activation and stabilization of drugs by supramolecular pKa shifts: drug-delivery applications tailored for cucurbiturils. Angew. Chem. Int. Ed. 47, 5398–5401 (2008)

    Article  CAS  Google Scholar 

  32. Pozo, M.D., Hernández, L., Quintana, C.: A selective spectrofluorimetric method for carbendazim determination in oranges involving inclusion-complex formation with cucurbit[7]uril. Talanta 81, 1542–1546 (2010)

    Article  Google Scholar 

  33. Zhao, Y.J., Xue, S.F., Zhu, Q., Tao, Z., Zhang, J.X., Wei, Z.B., Long, L.S., Hu, M.L., Xiao, H.P., Day, A.I.: Synthesis of a symmetrical tetrasubstituted cucurbit[6]uril and its host-guest compound with 2, 2′-bipyridine. Chin. Sci. Bull. 49, 1111–1116 (2004)

    Article  CAS  Google Scholar 

  34. Parker, C.A.: Photoluminescence of solutions with applications to photochemistry and analytical chemistry. Elsevier, Amsterdam (1968)

    Google Scholar 

  35. Demas, J.N., Crosby, G.A.: The measurement of photoluminescence quantum yields. A review. J. Phys. Chem. 75, 991–1024 (1971)

    Article  Google Scholar 

  36. Inczédy, J., Lengyel, T., Ure, A., Gelencsér, A.A.: Compendium of analytical nomenclature (Definitive Rules 1997). Blackwell Science, England (1998)

    Google Scholar 

  37. Patrlcla, C.T., Cllne Love, L.J.: Effects of excited-state prototropic equilibria on the fluorescence energies of benzimidazole and thiabendazole homologues. J. Phys. Chem. 86, 5227–5230 (1982)

    Article  Google Scholar 

  38. Liu, Y., You, C.C., Zhang, H.Y.: Supramolecular chemistry—molecular recognition and assembly of synthesis receptor. Nankai University Press, Tianjin (2001)

    Google Scholar 

  39. Koropchak, J.A., Zlotorzynska, E.D.: Tubular donnan dialysis-inductively coupled plasma atomic emission spectrometry. Anal. Chem. 60, 328–331 (1988)

    Article  CAS  Google Scholar 

  40. Capitán, K., Alonso, E.J., Avidad, R., Capitán-Vallvey, L.E., Vilchez, J.L.: Determination of thiabendazole residues in waters by solid-phase spectrofluorometry. Anal. Chem. 65, 1336–1339 (1993)

    Article  Google Scholar 

  41. Dilna, V., Rex, H., Jeff, S., Whitlock, S.A.: Methods for the determination of maleic hydrazide, ethoxyquin and thiabendazole in wastewaters. J. Chromatogr. A 283, 383–389 (1984)

    Article  Google Scholar 

  42. Rekharsky, M.V., Ko, Y.H., Selvapalam, N., Kim, K., Inoue, Y.: Complexation thermodynamics of cucurbit[6]uril with aliphatic alcohols, amines, and diamines. Supramol. Chem. 19, 39–46 (2007)

    Article  CAS  Google Scholar 

  43. Montes-Navajas, P., Baumes, L.A., Corma, A., Garcia, H.: Dual-response colorimetric sensor array for the identification of amines in water based on supramolecular host-guest complexation. Tetrahedron Lett. 50, 2301–2304 (2009)

    Article  CAS  Google Scholar 

  44. Buschmann, H.J., Mutihac, L., Schollmeyer, E.: The formation of homogeneous and heterogeneous 2:1 complexes between dialkyl- and diarylammonium ions and α-cyclodextrin and cucurbit[6]uril in aqueous formic acid. Thermochim. Acta. 495, 28–32 (2009)

    Article  CAS  Google Scholar 

  45. Karcher, S., Kornmueller, A., Jekel, M.: Effects of alkali and alkaline-earth cations on the removal of reactive dyes with cucurbituril. Acta Hydroch Hydrob 27, 38–42 (1999)

    Article  CAS  Google Scholar 

  46. Buschmann, H.-J., Cleve, E., Jansen, K., Wego, A., Schollmeyer, E.: Complex formation between cucurbit[n]urils and alkali, alkaline earth and ammonium ions in aqueous solution. J. Incl. Phenom. Macro. Chem. 40, 117–120 (2001)

    Article  CAS  Google Scholar 

  47. Wyman, I.W., Macartney, D.H.: Cucurbit[7]uril host-guest complexes with small polar organic guests in aqueous solution. Org. Biomol. Chem. 6, 1796–1801 (2008)

    Article  CAS  Google Scholar 

  48. United State Environmental Protection Agency (US EPA), Office of Pesticide Program. www.epa.gov/pesticides/reregistration/thiabendazole. Accessed 25 Jan 2010

Download references

Acknowledgments

We acknowledge the support of the National Natural Science Foundation of China (Grant No. 20972034), Natural Science fund of the Science and Technology Department of GuiZhou Province (Grant No. J-2009-2288), Introduced Talents Start-up Project of GuiZhou University (Grant No.2009023), and the Foundation of the Governor of Guizhou Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai-Feng Xue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 326 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Wang, J., Xue, SF. et al. Determination of thiabendazole in aqueous solutions using a cucurbituril-enhanced fluorescence method. J Incl Phenom Macrocycl Chem 72, 397–404 (2012). https://doi.org/10.1007/s10847-011-9999-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-9999-1

Keywords

Navigation