Skip to main content
Log in

A new spectrofluorometric method for the determination of nicotine base on the inclusion interaction of methylene blue and cucurbit[7]uril

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new method for the fluorometric detection of the nicotine in water is presented. Use of methylene blue (MB) bound to cucurbit[7]uril (CB7) affords the competitive fluorescence inclusion method for the detection of nicotine in aqueous solution. At the same time, the characteristics of host–guest complex between CB7 and MB were studied. It was found that the fluorescence intensity of MB regularly increased upon the addition of CB7. While an appropriate amount of nicotine was added to the MB–CB7 system, the fluorescence intensity of the system quenched remarkably. The method has a linear range of 0.2 ∼ 8.0 μg mL−1 and a detection of 0.05 μg mL−1. The method was applied satisfactorily to determine nicotine in cigarettes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Freeman WA, Mock WL, Shih N-Y (1981) Cucurbituril. J Am Chem Soc 103:7367

    Article  CAS  Google Scholar 

  2. Mock WL, Shih NY (1983) Host–guest binding capacity of cucurbituril. J Org Chem 48(20):3618

    Article  CAS  Google Scholar 

  3. Buschmann HJ, Schollmeyer E, Mutihac L (2003) The formation of amino acid and dipeptide complexes with β-cyclodextrin and cucurbit[6]uril in aqueous solutions studied by titration calorimetry. Thermochim Acta 399:203

    Article  CAS  Google Scholar 

  4. Whang D, Heo J, Park JH, Kim K (1998) A molecular bowl with metal ion as bottom: reversible inclusion of organic molecules in cesium ion complexed cucurbituril. Angew Chem Int Ed 37:78

    Article  CAS  Google Scholar 

  5. Ong W, Kaifer MG, Kaifer AE (2002) Cucurbit[7]uril: a very effective host for viologens and their cation radicals. Org Lett 4(10):1791

    Article  CAS  Google Scholar 

  6. Sindelar V, Moon K, Kaifer AE (2004) Binding selectivity of cucurbit[7]uril: bis(pyridinium)-1,4-xylylene versus 4,4′-bipyridinium guest sites. Org Lett 6(16):2665

    Article  CAS  Google Scholar 

  7. Wagner BD, Stojanovic N, Day AI, Blanch RJ (2003) Host properties of cucurbit[7]uril: fluorescence enhancement of anilinonaphthalene sulfonates. J Phys Chem B 107:1074

    Google Scholar 

  8. Mohanty J, Bhasikuttan AC, Nau WM, Pal H (2006) Host–guest complexation of neutral red with macrocyclic host molecules: contrasting pKa shifts and binding affinities for cucurbit[7]uril and β-cyclodextrin. J Phys Chem B 110:5132

    Article  CAS  Google Scholar 

  9. Sindelar V, Cejas MA, Raymo FM, Kaifer AE (2005) Tight inclusion complexation of 2,7-dimethyldiazapyrenium in cucurbit[7]uril. New J Chem 29:280–282

    Article  CAS  Google Scholar 

  10. Hedges AR (1998) Industrial applications of cyclodextrins. Chem Rev 98(5):2035

    Article  CAS  Google Scholar 

  11. Singh M, Sharma R, Banerjee UC (2002) Biotechnological applications of cyclodextrins. Biotechnol Adv 20(5–6):341

    Article  CAS  Google Scholar 

  12. Brunnemann KD, Hoffmann D (1991) Analytical studies on N-nitrosamines in tobacco and tobacco smoke. Recent Adv Tob Sci 17:71

    Google Scholar 

  13. Yildiz D (2004) Nicotine, its metabolism and an overview of its biological effects. Toxicon 43:619

    Article  CAS  Google Scholar 

  14. Dash AK, Wong ST (1996) Liquid chromatographic method for the determination of nicotine in pharmaceutical formulations. J Chromatogr A 749:81

    Article  CAS  Google Scholar 

  15. Domino EF, Hariharan M, VanNoord T, Demana T (1992) Current experience with HPLC and GC-MS analyses of nicotine and cotinine. Med Sci Res 20:859

    CAS  Google Scholar 

  16. Marsh A, Clark BJ, Altria KD (2004) Orthogonal separations of nicotine and nicotine-related alkaloids by various capillary electrophoretic modes. Electrophoresis 25:1270

    Article  CAS  Google Scholar 

  17. Cai J, Liu B, Lin P, Su Q (2003) Fast analysis of nicotine related alkaloids in tobacco and cigarette smoke by megabore capillary gas chromatography. J Chromatogr A 1017:187

    Article  CAS  Google Scholar 

  18. Beckett AH, Triggs EJ (1966) Determination of nicotine and its metabolite, cotinine, in urine by gas chromatography. Nature 211:1415

    Article  CAS  Google Scholar 

  19. Al-Tamrah SA (1999) Spectrophotometric determination of nicotine. Anal Chim Acta 379:75

    Article  CAS  Google Scholar 

  20. Liu J-F, Feng Y-D (1998) Determination of nicotine by reagent-injection flow injection photometric method. Talanta 47:833

    Article  CAS  Google Scholar 

  21. Kim J, Jung IS, Kim SY, Lee E, Kang JK, Sakamoto S, Yamaguchi K, Kim K (2000) New cucurbituril homologues: syntheses, isolation, characterization, and x-ray crystal structures of cucurbit[n]uril (n = 5, 7,and 8). J Am Chem Soc 122:540

    Article  CAS  Google Scholar 

  22. Day A, Arnold AP, Blanch RJ, Snushall B (2001) Controlling factors in the synthesis of cucurbituril and its homologues. J Org Chem 66:8094

    Article  CAS  Google Scholar 

  23. Marquez C, Fang H, Nau WM (2004) Cucurbiturils: molecular nanocapsules for time-resolved fluorescence-based assays. IEEE Transactions on Nanobioscience 3(1):39

    Article  Google Scholar 

  24. Rai M, Ramachandran KN, Gupta VK (1994) Spectrophotometric method for the determination of total tobacco alkaloids and nicotine. Analyst 119:1883

    Article  CAS  Google Scholar 

  25. Zhang GM, Shuang SM, Dong Ch, Pan J (2003) Study on the interaction of methylene blue with cyclodextrin derivatives by absorption and fluorescence spectroscopy. Spectrochim Acta Part A 59:2935

    Article  Google Scholar 

  26. Hillson PJ, McKay RB (1965) Aggregation of dye molecules in aqueous solution a polarographic study. Trans Faraday Soc 61:374

    Article  CAS  Google Scholar 

  27. Muńoz De La Peńa A, Salinas F, Gomez MJ, Acedo MI, Sanchez Peńa M (1993) Absorptiometric and spectrofluorimetric study of the inclusion complexes of 2-naphthyloxyacetic acid and 1-naphthylacetic acid with β-cyclodextrin in aqueous solution. J Incl Phenom Mol Recognit Chem 15:131

    Article  Google Scholar 

  28. Nigam S, Durocher G (1996) Spectral and photophysical studies of inclusion complexes of some neutral 3H-indoles and their cations and anions with β-cyclodextrin. J Phys Chem 100:7135

    Article  CAS  Google Scholar 

  29. Faucci MT, Melani F, Mura P (2000) 1H NMR and molecular modelling techniques for the investigation of the inclusion complex of econazole with α-cyclodextrin in the presence of malic acid. J Pharm Biomed Anal 23:25

    Article  CAS  Google Scholar 

  30. Garcia-Fuentes M, Trapani A, Alonso MJ (2006) Protection of the peptide glutathione by complex formation with α-cyclodextrin: NMR spectroscopic analysis and stability study. Eur J Pharm Biopharm 64:146

    Article  CAS  Google Scholar 

  31. Saleh N, Al-Rawashdeh NAF, (2006) Fluorescence enhancement of carbendazim fungicide in cucurbit[6]uril. J Fluoresc 16:487

    Article  CAS  Google Scholar 

  32. Zhu X-S, Sun J, Wu J (2007) Study on the inclusion interactions of β-cyclodextrin and its derivative with dyes by spectrofluorimetry and its analytical application. Talanta 72:237

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the financial supports of the National Natural Science Foundation of P. R. China (20575001), the foundation of Anhui Normal University for young teacher (2006xqn90) and Program for Innovative Research Team in Anhui Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunyou Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Yu, H., Zhang, L. et al. A new spectrofluorometric method for the determination of nicotine base on the inclusion interaction of methylene blue and cucurbit[7]uril. Microchim Acta 164, 63–68 (2009). https://doi.org/10.1007/s00604-008-0032-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-008-0032-3

Keywords

Navigation