Skip to main content
Log in

IR and NMR spectra, intramolecular hydrogen bonding and conformations of mercaptothiacalix[4]arene molecules and their para-tert-butyl-derivative

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

It is demonstrated that the introduction of p-tert-butyl groups dramatically influences the conformational behaviour of the mercaptothiacalix[4]arene molecules. Quantum-chemical computations in combination with IR and NMR spectroscopy prove that, in contrast to closely related calixarenes, the 1,3-alternate becomes a dominant conformer of p-tert-butyl-mercaptothiacalix[4]arene not only in crystal, but also in solutions and in vacuum. It is shown that the title molecules form essentially non-cooperative intramolecular hydrogen bonds: their SH groups are intramolecularly H-bonded solely to the sulfide groups bridging thiophenolic units. The enthalpy of this bonding, evaluated from Iogansen’s rule, amounts to ca. 1.5 kcal mol−1 per one SH···S bond, which about four times smaller than the enthalpies of cooperative intramolecular H-bonds formed by related calixarenes and thiacalixarenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. (a) Gutsche, C.D.: Calixarenes (Monographs in Supramolecular Chemistry). Washington University (USA), London Royal Soc. Chem. (1989); (b) Gutsche, C.D.: Calixarenes Revisited. The Royal Society of Chemistry, Cambridge (1998)

  2. Asfari, Z., Böhmer, V., Harrowfield, J.M., Vicens, J. (ed.): Calixarenes 2001. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  3. (a) Mandolini, L., Ungaro, R. (ed.): Calixarenes in Action. Imperial College, London (2000); (b) Vicens, J., Harrowfield, J. (ed.): Calixarenes in Nanoworld. Springer, Dordrecht (2007); (c) Lhotak, P.: Chemistry of thiacalixarenes. Eur. J. Org. Chem. 1675–1692 (2004); (d) Morohashi, N., Narumi, F., Iki, N., Hattori, T., Miyano, S.: Thiacalixarenes. Chem. Rev. 106, 5291–5316 (2006)

    Google Scholar 

  4. Hajek, F., Hosseini, M.W., Graf, E., De Cian, A., Fischer, J.: Molecular tectonics. 6. Self-assembly of convex and concave molecular tectons to form a linear molecular array in the solid state. Angew. Chem., Int. Ed. Engl. 36, 1760–1762 (1997)

    Article  CAS  Google Scholar 

  5. (a) Iki, N., Kumagai, H., Morohashi, N., Ejima, K., Hasegawa, M., Miyanari, S., Miyano, S.: Selective oxidation of thiacalix[4]arenes to the sulfinyl- and sulfonylcalix[4]arenes and their coordination ability to metal ions. Tetrahedron Lett. 39, 7559–7562 (1998); (b) Mislin, G., Graf, E., Hosseini, M.W., Bilyk, A., Hall, A.K., Harrowfield, J.M., Skelton, B.W., White, A.H.: Thiacalixarenes as cluster keepers: synthesis and structural analysis of a magnetically coupled tetracopper(II) square. Chem. Commun. 373–374 (1999); (c) Lamartine, R., Bavoux, C., Vocanson, F., Martin, A., Senlis, G., Perrin, M.: Synthesis, X-ray crystal structure and complexation properties towards metal ions of new thiacalix[4]arenes Tetrahedron Lett. 42, 1021–1024 (2001); (d) Stoikov, I.I., Omran, O.A., Solovieva, S.E., Latypov, Sh.K., Enikeev, K.M., Gubaidullin, A.T., Antipin, I.S., Konovalov, A.I.: The synthesis of tetracarbonyl derivatives of thiacalix[4]arene in different conformations and their complexation properties towards alkali metal ions. Tetrahedron. 59, 1469–1476 (2003); (e) Solovieva, S.E., Gruner, M., Omran, A.O., Gubaidullin, A.T., Litvinov, I.A., Habicher, W.D., Antipin, I.S., Konovalov, A.I. Izv. Akad. Nauk. Ser. Khim. (Russian) 2041–2048 (2005); Russ. Chem. Bull., Int. Ed.: Synthesis, structure, and complexation properties of tetraamide derivatives of thiacalix[4]arene in different conformations. 54, 2104–2112 (2005); (f) Iki, N., Morohashi, N., Narumi, F., Miyano, S.: High complexation ability of thiacalixarene with transition metal ions. The effects of replacing methylene bridges of tetra(p-t-butyl)calix[4]arenetetrol by epithio groups. Bull. Chem. Soc. Jpn. 71, 1597–1603 (1998); (g) Bilyk, A., Hall, A.K., Harrowfield, J.M., Hosseini, M.W., Skelton, B.W., White, A.H.: Systematic structural coordination chemistry of p-tert-butyltetrathiacalix[4]arene: 1. Group 1 elements and congeners. Inorg. Chem. 40, 672–686 (2001); (h) Iki, N., Miyano, S.: Can thiacalixarene surpass calixarene? J. Incl. Phen. Macr. Chem. 41, 99–105 (2001).

  6. Rao, Ph., Hosseini, M.W., De Cian, A., Fischer, J.: Synthesis and structural analysis of mercaptothiacalix[4]arene. Chem. Commun. 2169–2170 (1999)

  7. Akdas, H., Graf, E., Hosseini, M.W., De Cian, A., Bilyk, A., Skelton, B.W., Koutsantonis, G.A., Murray, I., Harrowfield, J.M., White, A.H.: Koilands from thiophiles: mercury(II) clusters from thiacalixarenes. Chem. Commun. 1042–1043 (2002)

  8. Kovalenko, V.I., Chernova, A.V., Borisoglebskaya, E.I., Katsyuba, S.A., Zverev, V.V., Shagidullin, R.R., Antipin, I.S., Solovieva, S.E., Stoikov, I.I., Konovalov, A.I.: Cooperative intramolecular hydrogen bond and conformations of thiocalix[4]arene molecules Izv. Akad. Nauk. Ser. Khim. (Russian) 762 (2002); Russ. Chem. Bull., Int. Ed. 51, 825–827 (2002)

  9. Katsyuba, S., Kovalenko, V., Chernova, A., Vandyukova, E., Zverev, V., Shagidullin, R., Antipin, I., Solovieva, S., Stoikov, I., Konovalov, A.: Vibrational spectra, co-operative intramolecular hydrogen bonding and conformations of calix[4]arene and thiacalix[4]arene molecules and their para-tert-butyl derivatives. Org. Biomol. Chem. 3, 2558–2565 (2005)

    Article  CAS  Google Scholar 

  10. Baker, J., Jarzecki, A., Pulay, P.: Direct scaling of primitive valence force constants: an alternative approach to scaled quantum mechanical force fields. J. Phys. Chem. A 102, 1412–1424 (1998)

    Article  CAS  Google Scholar 

  11. Parr, R.G., Yang, W.: Density Functional Methods of Atoms and Molecules. Oxford University Press, New York (1989)

    Google Scholar 

  12. Suwattanamala, A., Magalhaes, A.L., Gomes, J.A.N.F.: Structure and conformational equilibrium of new thiacalix[4]arene derivatives. Chem. Phys. Lett. 385, 368–373 (2004)

    Article  CAS  Google Scholar 

  13. Suwattanamala, A., Magalhaes, A.L., Gomes, J.A.N.F.: Computational study of calix[4]arene derivatives and complexation with Zn2+. Chem. Phys. 310, 109–122 (2005)

    Article  CAS  Google Scholar 

  14. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B.G., Chen, W., Wong, M.W., Andres, J.L., Head-Gordon, M., Replogle, E.S., Pople, J.A.: Gaussian 98 (Revision A.2), Gaussian, Inc., Pittsburgh (1998)

    Google Scholar 

  15. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange J. Chem. Phys. 98, 5648–5662 (1993)

    Article  CAS  Google Scholar 

  16. Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  17. (a) Sipachev, V.A.: Local centrifugal distortions caused by internal motions of molecules J. Mol. Struct. 567–568, 67–72 (2001); (b) Sipachev, V.A.: Anharmonic corrections to structural experiment data. Struct. Chem. 2/3, 167–172 (2000).

    Google Scholar 

  18. (a) Katsyuba, S.A., Grunenberg, J., Schmutzler, R.: Vibrational spectra and conformational isomerism of calixarene building blocks. Part I. Diphenylmethane, (C6H5)2CH2. J. Mol. Struct. 559, 315–320 (2001); (b) Katsyuba, S.A., Vandyukova, E.E.: Scaled quantum mechanical computations of vibrational spectra of organoelement molecules, containing the atoms P, S, and Cl. Chem. Phys. Lett. 377, 658–662 (2003).

    Google Scholar 

  19. (a) Ditchfield, R.: Self-consistent perturbation-theory of diamagnetism. 1. Gauge-invariant LCAO method for NMR chemical-shifts. Mol. Phys. 27, 789–807 (1974); (b) Wolinski, K., Hinton, J.F., Pulay, P.: Efficient implementation of the gauge-independent atomic orbital method for NMR chemical-shift calculations. J. Am. Chem. Soc. 112, 8251–8260 (1990).

    Google Scholar 

  20. Groenen, L.C., Steinwender, E., Lutz, B.T.G., van der Maas, J.H., Reinhoudt, D.N.: Solvent effects on the conformations and hydrogen bond structure of partially methylated p-tert-butylcalix[4]arenes. J. Chem. Soc. Perkin Trans. 2, 1893–1898 (1992)

    Google Scholar 

  21. (a) Andreetti, G.D., Ungaro, R., Pochini, A.: Crystal and molecular structure of cyclo{quater[(5-t-butyl-2-hydroxy-1,3-phenylene)methylene]} toluene (1:1) clathrate. J. Chem. Soc., Chem. Commun. 1005–1007 (1979); (b) Ungaro, R., Pochini, A., Andreetti, G.D., Sangermano, V.: Molecular inclusion in functionalized macrocycles. Part 8. The crystal and molecular structure of calix[4]arene from phenol and its (1:1) and (3:1) acetone clathrates. J. Chem. Soc., Perkin Trans. 2, 1979–1985 (1984); (c) Akdas, H., Bringel, L., Graf, E., Hosseini, M.W., Mislin, G., Pansanel, J., Cian, A., Fischer, J.: Thiacalixarenes: synthesis and structural analysis of thiacalix[4]arene and of p-tert-butylthiacalix[4]arene. Tetrahedron Lett. 39, 2311–2314 (1998).

    Google Scholar 

  22. Schatz, J.: Recent application of ab initio calculations on calixarenes and calixarene complexes. A review. Collect. Czech. Chem. Comm. 69, 1169–1194 (2004), and references cited therein.

  23. (a) Bernardino, R.J., Cabral, B.J.C.: Structure, conformational equilibrium, and proton affinity of calix[4]arene by density functional theory. J. Phys.Chem. A 103, 9080–9085 (1999); (b) Bernardino, R.J., Cabral B.J.C.: Complexation of calix[4]arene with alkali metal cations: conformational binding selectivity and cation-driven inclusion. Supramol. Chem. 14, 57–66 (2002).

    Google Scholar 

  24. Bernardino, R.J., Cabral, B.J.C.: Structure and conformational equilibrium of thiacalix[4]arene by density functional theory. J. Mol. Struct. 549, 253–260 (2001)

    CAS  Google Scholar 

  25. According to HF/4-31G* computations (Ref. 26), the symmetry of the cone conformer of calix[4]arene is C2. Probably, this result differs from other quantum chemical data (Ref. 8, 9, 22) because of the comparatively small basis set.

  26. Billes, F., Mohammed-Ziegler, I.: Ab initio equilibrium geometry and vibrational spectroscopic study of 25,26,27,28-tetrahydroxycalix[4]arene. Supramol.Chem. 14, 451–459 (2002)

    Article  CAS  Google Scholar 

  27. (a) Cancès, M.T., Mennucci, B., Tomasi, J.: A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 107, 3032–3041 (1997); (b) Cossi, M., Barone, V., Mennucci, B., Tomasi, J.: Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chem. Phys. Lett. 286, 253–260 (1998); (c) Mennucci, B., Tomasi, J.: Continuum solvation models: a new approach to the problem of solute’s charge distribution and cavity boundaries. J. Chem. Phys. 106, 5151–5158 (1997); (d) Cossi, M., Scalmani, G., Rega, N., Barone, V.: New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J. Chem. Phys. 117, 43–54 (2002).

    Google Scholar 

  28. Wilson, E.B. Jr.: The normal modes and frequencies of vibration of the regular plane hexagon model of the benzene molecule. Phys. Rev. 45, 706–714 (1934)

    Article  CAS  Google Scholar 

  29. Katsyuba, S.A., Schmutzler, R., Hohm, U., Kunze, C.: Vibrational spectra and conformational isomerism of calixarene building blocks. III. 2,6-Dimethylanisole and n-propyl-2,6-dimethylphenyl ether. J. Mol. Struct. 610, 113–125 (2002)

    Article  CAS  Google Scholar 

  30. David, J.G., Hallam, H.E.: Hydrogen-bonding studies of thiophenols. Spectrochim. Acta 21, 841–850 (1965)

    Article  CAS  Google Scholar 

  31. Iogansen, A.V.: Direct proportionality of the hydrogen bonding energy and the intensification of the stretching ν(XH) vibration in infrared spectra. Spectrochim. Acta (A) 55, 1585–1612 (1999)

    Article  Google Scholar 

  32. Shagidullin, R.R., Chernova, A.V., Katsyuba, S.A., Avvakumova, L.V., Shagidullin, Rif.R.: Energetics of intramolecular hydrogen bonds and conformations of ω-diphenylphosphoryl- and ω-diphenylthiophosphoryl-substituted aliphatic alcohol molecules. Izv. Akad. Nauk. Ser. Khim. (Russian) 55 (2004); Russ. Chem. Bull., Int. Ed. 53, 55–59 (2004).

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to all staff-members of the Supercomputer centre of the Kazan Scientific Centre of the Russian Academy of Sciences and especially to Dr. D. Chachkov for technical assistance in the computations and valuable advice. Special thanks are due to Dr. M.A. Tafipolsky for permission to use his version of the program, adopted from Sipachev [17].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Katsyuba.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 39KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsyuba, S.A., Zvereva, E.E., Chernova, A.V. et al. IR and NMR spectra, intramolecular hydrogen bonding and conformations of mercaptothiacalix[4]arene molecules and their para-tert-butyl-derivative. J Incl Phenom Macrocycl Chem 60, 281–291 (2008). https://doi.org/10.1007/s10847-007-9376-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-007-9376-2

Keywords

Navigation