Skip to main content
Log in

Recent Developments and Trends in Unconventional UAVs Control: A Review

  • Review Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

During the previous years, one of the biggest challenges in the field of unconventional drones is the control of these systems due to their special shape and morphological complexities. Among the potential advantages of these drones is their variable and adaptable morphology in flight. Nevertheless, these structural advantages make their control a complex task and different to the ordinary drone. Hence, the key point of this manuscript is to present a wide overview related to the main recent advances in techniques and control architectures used for this new class of Unmanned Aerial Vehicles (UAVs). Furthermore, the control strategies applied on these particular vehicles will be explored in depth, where the principal constraints, advantages, proposed solutions and the findings of each work, will be examined, discussed and synthesized. The large number of the control architectures and schemes proposed by the authors in this area will be also analyzed in this review. Lastly, prevalent challenges, future research directions and trends will be addressed at the end of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mohsan, S.A.H., Othman, N.Q.H., Li, Y., Alsharif, M.H., Khan, M.A.: Unmanned aerial vehicles (uavs): practical aspects, applications, open challenges, security issues, and future trends. Intel. Serv. Robot. 1–29 (2023)

  2. Mueller, M.W., Lee, S.J., D’Andrea, R.: Design and control of drones. Annu. Rev. Control. Robot. Auton. Syst. 5. https://www.annualreviews.org/doi/abs/10.1146/annurev-control-042920-012045 (2021)

  3. Canetta, L., Mattei, G., Guanziroli, A.: Exploring commercial uav market evolution from customer requirements elicitation to collaborative supply network management. In: 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC), pp. 1016–1022. https://doi.org/10.1109/ICE.2017.8279993 (2017)

  4. Ahmed, F., Mohanta, J., Keshari, A., Yadav, P.S.: Recent advances in unmanned aerial vehicles: a review. Arab. J. Sci. Eng. 1–22 (2022). https://link.springer.com/article/10.1007/s13369-022-06738-0

  5. Zhao, M., Ma, Z., Zhou, Z., Zheng, Z.: Wspeed: drone energy optimization for multiple-package delivery considering weight changes. In: 2021 International Conference on Space-Air-Ground Computing (SAGC), pp. 1–6 (2021). https://doi.org/10.1109/SAGC52752.2021.00007

  6. Shahmoradi, J., Talebi, E., Roghanchi, P., Hassanalian, M.: A comprehensive review of applications of drone technology in the mining industry. Drones 4(3), 34 (2020). https://doi.org/10.3390/drones4030034

    Article  Google Scholar 

  7. Wang, T., Umemoto, K., Endo, T., Matsuno, F.: Modeling and control of a quadrotor uav equipped with a flexible arm in vertical plane. IEEE Access 9, 98 476–98 489 (2021). https://ieeexplore.ieee.org/abstract/document/9477634

  8. Roldán-Gómez, J.J., González-Gironda, E., Barrientos, A.: A survey on robotic technologies for forest firefighting: applying drone swarms to improve firefighters’ efficiency and safety. Appl. Sci. 11(1), 363 (2021). https://doi.org/10.3390/app11010363

    Article  Google Scholar 

  9. Silvestrou, A., Georgiou, A.M., Kolios, P., Panayiotou, C.G.: Multi-parametric performance evaluation of drone-based surveying for disaster risk management. In: GISTAM, pp. 123–129 (2022)

  10. Fernández-Hernandez, J., González-Aguilera, D., Rodríguez-Gonzálvez, P., Mancera-Taboada, J.: Image-based modelling from unmanned aerial vehicle (uav) photogrammetry: an effective, low-cost tool for archaeological applications. Archaeometry 57(1), 128–145 (2015). https://doi.org/10.1111/arcm.12078

    Article  Google Scholar 

  11. Ayamga, M., Akaba, S., Nyaaba, A.A.: Multifaceted applicability of drones: a review. Technol. Forecast. Soc. Chang. 167, 120677 (2021). https://www.sciencedirect.com/science/article/pii/S0040162521001098

  12. Butcher, P.A., Colefax, A.P., Gorkin, R.A., III., Kajiura, S.M., López, N.A., Mourier, J., Purcell, C.R., Skomal, G.B., Tucker, J.P., Walsh, A.J., et al.: The drone revolution of shark science: a review. Drones 5(1), 8 (2021). https://doi.org/10.3390/drones5010008

    Article  Google Scholar 

  13. Bouzid, Y., Bestaoui, Y., Siguerdidjane, H.: Quadrotor-uav optimal coverage path planning in cluttered environment with a limited onboard energy. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 979–984 (2017)

  14. Daadi, A., Boulebtinai, H., Derrouaoui, S.H., Boudjema, F.: Sliding mode controller based on the sliding mode observer for a qball 2+ quadcopter with experimental validation. Int. J. Robot. Control. Syst. 2(2), (2022)

  15. Derrouaoui, S.H., Bouzid, Y., Guiatni, M., Dib, I.: A comprehensive review on reconfigurable drones: classification, characteristics, design and control technologies. Unmanned Syst. 10(01), 2–29 (2022). https://www.worldscientific.com/doi/abs/10.1142/S2301385022300013

  16. Derrouaoui, S.H., Bouzid, Y., Guiatni, M.: Pso based optimal gain scheduling backstepping flight controller design for a transformable quadrotor. J. Intell. Robot. Syst. 102(3), 1–25 (2021). https://link.springer.com/article/10.1007/s10846-021-01422-1

  17. Kadri, K., Boudjema, F., Bouzid, Y., Ghazali, M., Sahouli, H.: Active disturbance rejection control of unconventional quadrotor based on grey wolf optimization algorithm. In: 2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS), pp. 1–7 (2023)

  18. Schiano, F., Kornatowski, P.M., Cencetti, L., Floreano, D.: Reconfigurable drone system for transportation of parcels with variable mass and size. IEEE Robot. Autom. Lett. (2022). https://ieeexplore.ieee.org/abstract/document/9899697

  19. Derrouaoui, S.H., Bouzid, Y., Guiatni, M., Dib, I. and Moudjari, N.: Design and modeling of unconventional quadrotors. In: 2020 28th Mediterranean Conference on Control and Automation (MED). IEEE, pp. 721–726. https://ieeexplore.ieee.org/abstract/document/9183002 (2020)

  20. Gokbel, E., Ersoy, S.: Launchable rotary wing uav designs and launch mechanism designs for rotary wing uav. J. Mechatron. Artif. Intell. Eng. 2(2), 102–113 (2021). https://www.extrica.com/article/22339

  21. Jung, S., Kim, Y.: Low-power peaking-free extended-observer-based pitch autopilot for morphing unmanned aerial vehicle. J. Guid. Control. Dyn. pp. 1–10 (2021). https://arc.aiaa.org/doi/abs/10.2514/1.G005998?journalCode=jgcd

  22. de Croon, G., Dupeyroux, J., Fuller, S., Marshall, J.: Insect-inspired ai for autonomous robots. Sci. Robot. 7(67), eabl6334 (2022). https://doi.org/10.1126/scirobotics.abl6334

  23. Lyu, C., Lu, D., Xiong, C., Hu, R., Jin, Y., Wang, J., Zeng, Z., Lian, L.: Toward a gliding hybrid aerial underwater vehicle: Design, fabrication, and experiments. J. Field Robot. (2022). https://doi.org/10.1002/rob.22063

    Article  Google Scholar 

  24. Zubair, M., Choi, Y.J., Suthar, B., Jung, S.: Vibration suppression mechanism for foldable robot arm for drones. In: 2021 18th International conference on ubiquitous robots (UR), pp. 119–123 (2021). https://doi.org/10.1109/UR52253.2021.9494686

  25. Guo, T., Feng, L., Zhu, C., Zhou, X., Chen, H.: Conceptual research on a mono-biplane aerodynamics-driven morphing aircraft. Aerospace 9(7), 380. https://doi.org/10.3390/aerospace9070380 (2022)

  26. Savastano, E., Perez-Sanchez, V., Arrue, B., Ollero, A.: High-performance morphing wing for large-scale bio-inspired unmanned aerial vehicles. IEEE Robot. Autom. Lett. https://doi.org/10.1109/LRA.2022.3185389 (2022)

  27. Carlson, S.J., Arora, P., Papachristos, C.: A multi-vtol modular aspect ratio reconfigurable aerial robot. In: 2022 International conference on robotics and automation (ICRA), pp. 8–15. https://doi.org/10.1109/ICRA46639.2022.9811542

  28. Derrouaoui, S.H., Bouzid, Y., Belmouhoub, A., Guiatni, M.: Enhanced nonlinear adaptive control of a novel over-actuated reconfigurable quadcopter. In: 2023 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 229–234 (2023)

  29. Belmouhoub, A., Bouzid, Y., Medjmadj, S., Derrouaoui, S.H., Siguerdidjane, H., Guiatni, M.: Fast terminal synergetic control for morphing quadcopter with time-varying parameters. Aerosp. Sci. Technol. 141, 108540 (2023)

    Article  Google Scholar 

  30. Patnaik, K., Zhang, W.: Towards reconfigurable and flexible multirotors. Int. J. Intell. Robot. Appl. 5(3), 365–380. https://link.springer.com/article/10.1007/s41315-021-00200-4 (2021)

  31. Harvey, C., Gamble, L.L., Bolander, C.R., Hunsaker, D.F., Joo, J.J., Inman, D.J.: A review of avian-inspired morphing for uav flight control. Prog. Aerosp. Sci. 132, 100825. https://www.sciencedirect.com/science/article/abs/pii/S0376042122000173 (2022)

  32. de Azambuja, R., Fouad, H., Bouteiller, Y., Sol, C., Beltrame, G.: When being soft makes you tough: A collision-resilient quadcopter inspired by arthropods’ exoskeletons. In: 2022 International conference on robotics and automation (ICRA), pp. 7854–7860. https://ieeexplore.ieee.org/abstract/document/9811841 (2022)

  33. Billingsley, E., Ghommem, M., Vasconcellos, R., Abdelkefi, A.: Role of active morphing in the aerodynamic performance of flapping wings in formation flight. Drones 5(3), 90. https://www.mdpi.com/2504-446X/5/3/90 (2021)

  34. Kumar, D., Shandilya, S., et al.: A bioinspired mav with nanocomposite wings and flexure joints: design and structural dynamic analysis. Int. J. Appl. Sci. Eng. 18(2), 1–15. https://gigvvy.com/journals/ijase/articles/ijase-202106-18-2-001 (2021)

  35. Hamandi, M., Sable, Q., Tognon, M., Franchi, A.: Understanding the omnidirectional capability of a generic multi-rotor aerial vehicle. In: 2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO), pp. 1–6. https://ieeexplore.ieee.org/abstract/document/9571051 (2021)

  36. Schlup, A., Bishay, P., Mclennan, T., Barajas, C., Talebian, B., Thatcher, G., Flores, R., Perez-Norwood, J., Torres, C., Kibret, K. et al.: Matamorph 2: A new experimental uav with twist-morphing wings and camber-morphing tail stabilizers. In: AIAA Scitech 2021 Forum, pp. 0584. https://arc.aiaa.org/doi/abs/10.2514/6.2021-0584 (2021)

  37. Xiong, Z., Xu, Y., Wang, Z., Pian, X., Wang, Y.: Preliminary design method and prototype testing of a novel rotors retractable hybrid vtol uav. IEEE Access 9, 161 141–161 160. https://ieeexplore.ieee.org/abstract/document/9628104 (2021)

  38. Derrouaoui, S.H., Bouzid, Y., Belmouhoub, A., Guiatni, M.: Improved robust control of a new morphing quadrotor uav subject to aerial configuration change. Unmanned Systems (2023)

  39. Calvente, L., Acosta, J.Á. and Ollero, A.: Design and manufacture of the wing folding mechanism for a bioinspired ornithopter. In: 2021 Aerial robotic systems physically interacting with the environment (AIRPHARO), pp. 1–6. https://ieeexplore.ieee.org/abstract/document/9571024 (2021)

  40. Mennu, M., Tran, B., Ifju, P.: Piezoelectric actuators as control surfaces for morphing vehicle. In: Mechanics of composite, hybrid and multifunctional materials, fracture, fatigue, failure and damage evolution, vol. 3, pp. 85–88. https://doi.org/10.1007/978-3-030-86741-6_14 (2022)

  41. Ma, H.-J., Liu, Y., Li, T., Yang, G.-H.: Nonlinear high-gain observer-based diagnosis and compensation for actuator and sensor faults in a quadrotor unmanned aerial vehicle. IEEE Trans. Industr. Inform. 15(1), 550–562. https://ieeexplore.ieee.org/abstract/document/8435995

  42. Guiatni, M., Saidani, H., Bouzid, Y.: Fault tolerant control design for actuator loss of effectiveness in quadrotor uavs. In: 2019 International Russian Automation Conference (RusAutoCon), pp. 1–7. https://ieeexplore.ieee.org/abstract/document/8867636/ (2019)

  43. Saggai, A., Zeghlache, S., Benyettou, L., Djerioui, A.: Fault tolerant control against actuator faults based on interval type-2 fuzzy sliding mode controller for a quadrotor aircraft. In: 2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-Being (IHSH), pp. 181–186. https://ieeexplore.ieee.org/abstract/document/9378754 (2021)

  44. Jung, W., Bang, H.: Fault and failure tolerant model predictive control of quadrotor uav. Int. J. Aeronaut. Space Sci. 22(3), 663–675. https://link.springer.com/article/10.1007/s42405-020-00331-1 (2021)

  45. Tang, P., Zhang, F., Ye, J., Lin, D.: An integral tsmc-based adaptive fault-tolerant control for quadrotor with external disturbances and parametric uncertainties. Aerosp. Sci. Technol. 109, 106415. https://doi.org/10.1016/j.ast.2020.106415 (2021)

  46. Fourlas, G.K., Karras, G.C.: A survey on fault diagnosis and fault-tolerant control methods for unmanned aerial vehicles. Machines 9(9), 197. https://doi.org/10.3390/machines9090197 (2021)

  47. Yang, P., Wang, Z., Zhang, Z., Hu, X.: Sliding mode fault tolerant control for a quadrotor with varying load and actuator fault. Actuators 10(12), 323. https://doi.org/10.3390/act10120323 (2021)

  48. Avant, T., Lee, U., Katona, B., Morgansen, K.: Dynamics, hover configurations, and rotor failure restabilization of a morphing quadrotor. In: 2018 Annual American Control Conference (ACC), pp. 4855–4862. https://doi.org/10.23919/ACC.2018.8431628 (2018)

  49. Salmi, A., Guiatni, M., Bouzid, Y., Derrouaoui, S.H., Boudjema, F.: Emergency control strategy of a reconfigurable quadrotor with total loss of one rotor. In: 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD), pp. 398–403 (2022)

  50. Salmi, A., Guiatni, M., Bouzid, Y., Derrouaoui, S.H., Boudjema, F.: Fault tolerant control based on thau observer of a reconfigurable quadrotor with total loss of actuator. Unmanned Syst. 1–17 (2023)

  51. Derrouaoui, S.H., Bouzid, Y., Guiatni, M., Kada, H., Dib, I., Moudjari, N.: Backstepping controller applied to a foldable quadrotor for 3d trajectory tracking. In: ICINCO, pp. 537–544. https://www.scitepress.org/Papers/2020/98902/98902.pdf (2020)

  52. Belmouhoub, A., Medjmadj, S., Bouzid, Y., Derrouaoui, S., Guiatni, M.: Enhanced backstepping control for an unconventional quadrotor under external disturbances. Aeronaut. J. 1–24. https://doi.org/10.1017/aer.2022.72 (2022)

  53. Bagherzadeh, S.A., Jokar, F., Mohammadkarimi, H.: Flight mechanics and control of tilt rotor/tilt wing unmanned aerial vehicles: A review. AUT J. Model. Simul. 53(1), 5–5. https://miscj.aut.ac.ir/article_4350.html (2021)

  54. Ghazali, M., Bouzid, Y., Belhocine, M., Derrouaoui, S.H.: Toward a new multirotor design with spatial configuration and tilted rotors. In: 2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS), pp. 1–6 (2023)

  55. Bai, S., Chirarattananon, P.: Splitflyer air: A modular quadcopter that disassembles into two bicopters mid-air. IEEE/ASME Trans. Mech. https://ieeexplore.ieee.org/abstract/document/9761971 (2022)

  56. Zhao, M., Anzai, T., Okada, K., Kawasaki, K., Inaba, M.: Singularity-free aerial deformation by two-dimensional multilinked aerial robot with 1-dof vectorable propeller. IEEE Robot. Autom. Lett. 6(2), 1367–1374. https://ieeexplore.ieee.org/abstract/document/9343757 (2021)

  57. Jia, H., Bai, S., Ding, R., Shu, J., Deng, Y., Khoo, B.L., Chirarattananon, P.: A quadrotor with a passively reconfigurable airframe for hybrid terrestrial locomotion. IEEE/ASME Trans. Mech. https://ieeexplore.ieee.org/abstract/document/9761826 (2022)

  58. Baldini, A., Felicetti, R., Freddi, A., Longhi, S., Monteriù, A.: Modeling and control of a telescopic quadrotor using disturbance observer based control. In: 2022 30th Mediterranean Conference on Control and Automation (MED), pp. 396–402. https://ieeexplore.ieee.org/abstract/document/9837197/ (2022)

  59. Wang, J., Liu, Y., Niu, S., Song, H.: Bio-inspired routing for heterogeneous unmanned aircraft systems (uas) swarm networking. Comput. & Electr. Eng. 95, 107401. https://www.sciencedirect.com/science/article/abs/pii/S0045790621003669 (2021)

  60. Lessieur, A., Sihite, E., Dangol, P., Singhal, A., Ramezani, A.: Mechanical design and fabrication of a kinetic sculpture with application to bioinspired drone design. In: Unmanned systems Technology XXIII, vol. 11758. International Society for Optics and Photonics, pp. 1175806. https://doi.org/10.1117/12.2587898 (2021)

  61. Pi, C.-H. , Ye, W.-Y., Cheng, S.: Robust quadrotor control through reinforcement learning with disturbance compensation. Appl. Sci. 11(7), 3257. https://doi.org/10.3390/app11073257 (2021)

  62. Belmouhoub, A., Bouzid, Y., Medjmadj, S., Hocine Derrouaoui, S., Guiatni, M.: Backstepping control merged with disturbances observer for quadrotor with rotating arms. Unmanned Syst. 1–14 (2023)

  63. Martins, L., Cardeira, C., Oliveira, P.: Feedback linearization with zero dynamics stabilization for quadrotor control. J. Intell. Robot. Syst. 101(1), 1–17. https://doi.org/10.1007/s10846-020-01265-2 (2021)

  64. Mofid, O., Mobayen, S., Zhang, C., Esakki, B.: Desired tracking of delayed quadrotor uav under model uncertainty and wind disturbance using adaptive super-twisting terminal sliding mode control. ISA Trans. 123, 455–471 (2022)

    Article  Google Scholar 

  65. Zhang, Y., Chen, Z., Zhang, X., Sun, Q., Sun, M.: A novel control scheme for quadrotor uav based upon active disturbance rejection control. Aerosp. Sci. Technol. 79, 601–609 (2018)

    Article  Google Scholar 

  66. Kartal, Y., Subbarao, K., Gans, N.R., Dogan, A., Lewis, F.: Distributed backstepping based control of multiple uav formation flight subject to time delays. IET Control. Theory Appl. 14(12), 1628–1638 (2020)

    Article  MathSciNet  Google Scholar 

  67. Belmouhoub, A., Bouzid,Y., Medjmadj, S., Derrouaoui, S.H., Guiatni, M.: Advanced backstepping control: Application on a foldable quadrotor. In: 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD), pp. 609–615 (2022)

  68. D’antonio, D.S., Cardona, G.A., Saldaña, D.: The catenary robot: Design and control of a cable propelled by two quadrotors. IEEE Robot. Autom. Lett. 6(2), 3857–3863. https://ieeexplore.ieee.org/abstract/document/9364354 (2021)

  69. Şahin, H., Kose, O., Oktay, T.: Simultaneous autonomous system and powerplant design for morphing quadrotors. Aircr. Eng. Aerosp. Technol. https://www.emerald.com/insight/content/doi/10.1108/AEAT-06-2021-0180/full/html (2022)

  70. Idrissi, M., Salami, M., Annaz, F.: Modelling, simulation and control of a novel structure varying quadrotor. Aerosp. Sci. Technol. 119, 107093. https://www.sciencedirect.com/science/article/abs/pii/S1270963821006039 (2021)

  71. Kim, C., Lee, H., Jeong, M., Myung, H.: A morphing quadrotor that can optimize morphology for transportation. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS. IEEE, pp. 9683–9689. https://ieeexplore.ieee.org/abstract/document/9636558 (2021)

  72. Zhang, J., Liu, Y., Gao, L., Liu, B., Zhu, Y., Zang, X., Zhao, J., Cai, H.: Bioinspired drone actuated using wing and aileron motion for extended flight capabilities. IEEE Robot. Autom. Lett. 7(4), 11 197–11 204. https://ieeexplore.ieee.org/abstract/document/9835019 (2022)

  73. Rockenbauer, F.M., Jeger, S.L., Beltran, L., Berger, M.A., Harms, M., Kaufmann, N., Rauch, M., Reinders, M., Lawrance, N., Stastny, T., et al.: Dipper: A dynamically transitioning aerial–aquatic unmanned vehicle. Robot. Sci. Syst. (RRS). https://www.researchgate.net/profile/Friedrich-Rockenbauer-2/publication/353193757_Dipper_A_Dynamically_Transitioning_Aerial-Aquatic_Unmanned_Vehicle/links/60f535c516f9f3130092f3c5/Dipper-A-Dynamically-Transitioning-Aerial-Aquatic-Unmanned-Vehicle.pdf (2021)

  74. Xu, J., D’Antonio, D.S., Saldaña, D.: Modular multi-rotors: From quadrotors to fully-actuated aerial vehicles. arXiv:2202.00788 (2022)

  75. Bardera, R., Crespo, J., Rodríguez-Sevillano, Á Muñoz-Campillejo, J., Barderas, E.B., Cobo-González, Á Design of a flight control system for a bioinspired drone. In: AIAA AVIATION 2022 Forum, pp. 3389. https://doi.org/10.2514/6.2022-3389 (2022)

  76. Zhao, N., Luo, Y., Wang, G., Shen, Y.: A deployable articulated mechanism enabled in-flight morphing aerial gripper. Mech. Mach. Theory. 167, 104518. https://www.sciencedirect.com/science/article/abs/pii/S0094114X21002706 (2022)

  77. Kaufmann, E., Bauersfeld, L., Scaramuzza, D.: A benchmark comparison of learned control policies for agile quadrotor flight. arXiv:2202.10796 (2022)

  78. Abazari, A.: Design, fabrication, and soft impact modeling and simulation of a collision-resilient foldable micro quadcopter. Ph.D. dissertation. http://repository.bilkent.edu.tr/handle/11693/110518 (2022)

  79. Ruiz, F., Arrue, B., Ollero, A.: Sophie: soft and flexible aerial vehicle for physical interaction with the environment. arXiv:2205.12883 (2022)

  80. Win, S.K.H., Win, L.S.T., Sufiyan, D., Foong, S.: Design and control of the first foldable single-actuator rotary wing micro aerial vehicle. Bioinspir. Biomim. 16(6), 066019. https://iopscience.iop.org/article/10.1088/1748-3190/ac253a/meta (2021)

  81. Xu, J., Hao, Y., Wang, S.: Flight control simulation and flight test of foldable rotor uav. J. Phys. Conf. Ser. 2252(1), 012052. https://iopscience.iop.org/article/10.1088/1742-6596/2252/1/012052/meta (2022)

  82. Pi, C.-H., Ruan, L., Yu, P., Su, Y., Cheng, S., Tsao, T.-C.: A simple six degree-of-freedom aerial vehicle built on quadcopters. In: 2021 IEEE Conference on control technology and applications (CCTA). IEEE, pp. 329–334. https://ieeexplore.ieee.org/abstract/document/9658811 (2021)

  83. Choi, H.C., Wee, I., Corah, M., Sabet, S., Kim, T., Touma, T., Shim, D.H., Agha-mohammadi, A.-a.:Baxter: bi-modal aerial-terrestrial hybrid vehicle for long-endurance versatile mobility. In: International Symposium on Experimental Robotics. Springer, pp. 60–72. https://link.springer.com/chapter/10.1007/978-3-030-71151-1_6 (2020)

  84. Li, B., Ma, L., Wang, D., Sun, Y.: Driving and tilt-hovering–an agile and manoeuvrable aerial vehicle with tiltable rotors. IET Cyber-Syst. Robot. 3(2), 103–115. https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/csy2.12014 (2021)

  85. Bai, L., Wang, H., Chen, X., Zheng, J., Xin, L., Deng, Y., Sun, Y.: Design and experiment of a deformable bird-inspired uav perching mechanism. J. Bionic Eng. 18(6), 1304–1316. https://link.springer.com/article/10.1007/s42235-021-00098-5 (2021)

  86. Kumar, R., Deshpande, A.M., Wells, J.Z., Kumar, M.: Flight control of sliding arm quadcopter with dynamic structural parameters. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS, pp. 1358–1363 (2020)

  87. Ryll, M., Bicego, D., Giurato, M., Lovera, M., Franchi, A.: Fast-hex–a morphing hexarotor: Design, mechanical implementation, control and experimental validation. IEEE/ASME Trans. Mech. (2021)

  88. Bucki, N., Tang, J., Mueller, M.W.: Design and control of a midair reconfigurable quadcopter using unactuated hinges. arXiv:2103.16632 (2021)

  89. Su, Y., Ruan, L., Yu, P., Pi, C.H., Gerber, M.J., Tsao, T.C.: A fast and efficient attitude control algorithm of a tilt-rotor aerial platform using inputs redundancies. IEEE Robot. Autom. Lett. https://ieeexplore.ieee.org/abstract/document/9664339 (2021)

  90. Marques, F.M.M., et al.: Effects of endowing tilt-rotor mechanisms in the context of multi-copters (2022). https://repositorio.ufu.br/handle/123456789/34631

  91. Papadimitriou, A., Nikolakopoulos, G.: Switching model predictive control for online structural reformations of a foldable quadrotor. In: IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. IEEE, pp. 682–687. https://ieeexplore.ieee.org/abstract/document/9254691 (2020)

  92. Song, Y., Scaramuzza, D.: Policy search for model predictive control with application to agile drone flight. IEEE Trans. Robot. (2022). https://ieeexplore.ieee.org/abstract/document/9719129

  93. Derrouaoui, S.H., Bouzid, Y., Guiatni, M., Belmouhoub, A.: Trajectory tracking of a reconfigurable multirotor using optimal robust sliding mode controller. http://dspace.univ-eloued.dz/handle/123456789/10842 (2022)

  94. Derrouaoui, S.H., Bouzid, Y., Guiatni, M.: Nonlinear robust control of a new reconfigurable unmanned aerial vehicle. Robotics 10(2), 76. https://www.mdpi.com/2218-6581/10/2/76 (2021)

  95. Yi, S., Watanabe, K., Nagai, I.: Backstepping-based super-twisting sliding mode control for a quadrotor manipulator with tiltable rotors. J. Robot. Control. (JRC) 3(2), 128–137 (2022)

    Article  Google Scholar 

  96. Salmi, A., Bouzid, Y., Guiatni, M.: Passive fault tolerant control of a new reconfigurable quadrotor. http://dspace.univ-eloued.dz/handle/123456789/10829 (2022)

  97. Yu, L., He, G., Wang, X., Zhao, S.: Robust fixed-time sliding mode attitude control of tilt tri-rotor uav in helicopter mode. IEEE Trans. Ind. Electron. https://ieeexplore.ieee.org/abstract/document/9570130 (2021)

  98. Gu, X., Xian, B., Li, J.: Model free adaptive control design for a tilt trirotor unmanned aerial vehicle with quaternion feedback: theory and implementation. Int. J. Adapt. Control. Signal. Process. 36(1), 122–137. https://onlinelibrary.wiley.com/doi/abs/10.1002/acs.3344 (2022)

  99. Yi, S., Watanabe, K., Nagai, I.: Anti-disturbance control of a quadrotor manipulator with tiltable rotors based on integral sliding mode control. Artif. Life Robot. 26(4), 513–522. https://doi.org/10.1007/s10015-021-00700-3 (2021)

  100. Wang, X., Sun, S.: Incremental fault-tolerant control for a hybrid quad-plane uav subjected to a complete rotor loss. Aerosp. Sci. Technol. pp. 107105. https://www.sciencedirect.com/science/article/pii/S1270963821006155 (2021)

  101. Liang, X., Wang, Q., Xu, B., Dong, C.: Back-stepping fault-tolerant control for morphing aircraft based on fixed-time observer. Int. J. Control. Autom. Syst. 19(12), 3924–3936. https://link.springer.com/article/10.1007/s12555-020-0764-3 (2021)

  102. Tal, E., Karaman, S.: Global incremental flight control for agile maneuvering of a tailsitter flying wing. arXiv:2207.13218 (2022)

  103. Dellemann, L.F., De Wagter, C.: Hybrid uav attitude control using indi and dynamic tilt-twist. In: 12th International Micro Air Vehicle Conference, pp. 131–136. https://research.tudelft.nl/en/publications/hybrid-uav-attitude-control-using-indi-and-dynamic-tilt-twist (2021)

  104. Hamandi, M., Seneviratne, L., Zweiri, Y.: Static hovering realization for multirotor aerial vehicles with tiltable propellers. https://doi.org/10.48550/arXiv.2207.10929 (2022)

  105. Chen, L., Lv, Z., Shen, X., Wu, Y., Sun, X.-M.: Adaptive attitude control for a coaxial tilt-rotor uav via immersion and invariance methodology. IEEE/CAA J. Autom. Sinica. 9(9), 1710–1713. https://ieeexplore.ieee.org/abstract/document/9865030 (2022)

  106. Marshall, J.A., Carter, G.I., L’Afflitto, A.: Model reference adaptive control for prescribed performance and longitudinal control of a tail-sitter uav. In: AIAA SCITECH 2022 Forum, pp. 1380. https://arc.aiaa.org/doi/abs/10.2514/6.2022-1380 (2022)

  107. Derrouaoui, S.H., Bouzid, Y., Guiatni, M.: Adaptive integral backstepping control of a reconfigurable quadrotor with variable parameters’ estimation. In: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, pp. 09596518221087803. https://journals.sagepub.com/doi/abs/10.1177/09596518221087803 (2022)

  108. He, A., Zhang, Y., Zhao, H., Wang, B., Gao, Z.: Adaptive fault-tolerant control of a hybrid vtol uav against actuator faults and model uncertainties under fixed-wing mode. Int. J. Aerosp. Eng. 2022. https://www.hindawi.com/journals/ijae/2022/8191154/ (2022)

  109. Butt, J.M., Ma, X., Chu, X., Au, K.S.: Adaptive flight stabilization framework for a planar 4r-foldable quadrotor: Utilizing morphing to navigate in confined environments. In: 2022 American Control Conference (ACC), pp. 1–7. https://ieeexplore.ieee.org/abstract/document/9867402/ (2022)

  110. Patnaik, K., Zhang, W.: Adaptive attitude control for foldable quadrotors. arXiv:2209.08676 (2022)

  111. Barroso-Barderas, E., Rodríguez-Sevillano, Á.A., Bardera-Mora, R., Crespo-Moreno, J., Matías-García, J.C.: Design of non-conventional flight control systems for bioinspired micro air vehicles. Drones 6(9), 248 . https://doi.org/10.3390/drones6090248 (2022)

  112. Dalwadi, N., Deb, D., Ozana, S.: Rotor failure compensation in a biplane quadrotor based on virtual deflection. Drones 6(7), 176. https://doi.org/10.3390/drones6070176 (2022)

  113. Mousaei, M., Geng, J., Keipour, A., Bai, D. and Scherer, S.: Design, modeling and control for a tilt-rotor vtol uav in the presence of actuator failure. arXiv:2205.05533 (2022)

  114. Hu, D., Pei, Z., Shi, J., Tang, Z.: Design, modeling and control of a novel morphing quadrotor. IEEE Robot. Autom. Lett. 6(4), 8013–8020. https://doi.org/10.1109/LRA.2021.3098302 (2021)

  115. Su, X., Wu, Y., Guo, F., Cui, J., Yang, G.: Trajectory optimization of an unmanned aerial–aquatic rotorcraft navigating between air and water. Int. J. Adv. Robot. Syst. 18(2), 1729881421992258. https://journals.sagepub.com/doi/full/10.1177/1729881421992258 (2021)

  116. Maki, T., Zhao, M., Okada, K., Inaba, M.: Elastic vibration suppression control for multilinked aerial robot using redundant degrees-of-freedom of thrust force. IEEE Robot. Autom. Lett. https://doi.org/10.1109/LRA.2022.3145060 (2022)

  117. Papadimitriou, A., Mansouri, S.S., Kanellakis, C., Nikolakopoulos, G.: Geometry aware nmpc scheme for morphing quadrotor navigation in restricted entrances. In: 2021 European Control Conference (ECC). IEEE, pp. 1597–1603. https://ieeexplore.ieee.org/abstract/document/9655205 (2021)

  118. Wang, S., Polyakov, A., Zheng, G.: Quadrotor stabilization under time and space constraints using implicit pid controller. J. Frank. Inst. 359(4), 1505–1530 (2022). https://doi.org/10.1016/j.jfranklin.2022.01.002

  119. Chen, L., Liu, Z., Gao, H., Wang, G.: Robust adaptive recursive sliding mode attitude control for a quadrotor with unknown disturbances. ISA Trans. 122, 114–125. https://doi.org/10.1016/j.isatra.2021.04.046 (2022)

  120. Romero, A., Sun, S., Foehn, P., Scaramuzza, D.: Model predictive contouring control for time-optimal quadrotor flight. IEEE Trans. Robot. https://doi.org/10.1109/TRO.2022.3173711 (2022)

  121. Zheng, B., Wu, Y., Li, H., Chen, Z.: Adaptive sliding mode attitude control of quadrotor uavs based on the delta operator framework. Symmetry 14(3), 498 (2022). https://doi.org/10.3390/sym14030498

    Article  Google Scholar 

  122. Zhou, W., et al.: Modelling and controlling of an autonomous tail-sitter vertical take-off and landing (vtol) unmanned aerial vehicles (uavs). https://theses.lib.polyu.edu.hk/handle/200/11224 (2021)

  123. Zahn, O., Bustamante Jr, J., Switzer, C., Daniel, T., Kutz, J.N.: Pruning deep neural networks generates a sparse, bio-inspired nonlinear controller for insect flight. arXiv:2201.01852 (2022)

  124. Lee, H., Jeong, M., Kim, C., Lim, H., Park, C., Hwang, S., Myung, H.: Low-level pose control of tilting multirotor for wall perching tasks using reinforcement learning. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 9669–9676. https://ieeexplore.ieee.org/abstract/document/9636372 (2021)

  125. Patnaik, K., Mishra, S., Chase, Z., Zhang, W.: Collision recovery control of a foldable quadrotor. In: 2021 IEEE/ASME International conference on advanced intelligent mechatronics (AIM). IEEE, pp. 418–423. https://ieeexplore.ieee.org/abstract/document/9517341 (2021)

  126. Shen, Z., Ma, Y., Tsuchiya, T.: Quad-cone-rotor: A novel tilt quadrotor with severe-fault-tolerant ability. arXiv:2108.08520 (2021)

  127. Li, M., Cai, Z., Zhao, J., Wang, J., Wang, Y.: Disturbance rejection and high dynamic quadrotor control based on reinforcement learning and supervised learning. Neural Comput. Applic. pp. 1–21, (2022). https://doi.org/10.1007/s00521-022-07033-7

  128. Zhong, G., Cao, J., Chai, X., Bai, Y.: Design and performance analysis of a triphibious robot with tilting-rotor structure. IEEE Access 9, 10 871–10 879. https://ieeexplore.ieee.org/abstract/document/9317864 (2021)

  129. Bardera, R., Rodríguez-Sevillano, Á.A. and Barroso, E.: Numerical and experimental study of aerodynamic performances of a morphing micro air vehicle. Appl. Mech. 2(3), 442–459, (2021). https://www.mdpi.com/2673-3161/2/3/25

  130. Shiferaw, A.Y., Esakki, B., Pari, T., Elumalai, E., Mobayen, S. and Bartoszewicz, A.: Design and implementation of morphed multi-rotor vehicles with real-time obstacle detection and sensing system. Sensors 21(18), 6192 (2021). Available: https://www.mdpi.com/1424-8220/21/18/6192

  131. Wang, Z., Wang, Y., Cai, Z., Zhao, J., Liu, N., Zhao, Y.: Unified accurate attitude control for dual-tiltrotor uav with cyclic pitch using actuator dynamics compensated ladrc. Sensors 22(4), 1559 (2022). https://www.mdpi.com/1424-8220/22/4/1559

  132. Cuong, C.T., Thai, P.T.: Design of a cubic drone, a foldable quadcopter that can rotate its arm vertically. In: IFToMM Asian Conference on Mechanism and Machine Science, pp. 501–511. https://link.springer.com/chapter/10.1007/978-3-030-91892-7_47 (2021)

  133. LIU, Y., PAN, H., LIU, S., LI, S., LI, Y.: Design and implementation of a tilt-deformable quadrotor. China Mech. Eng. 32(16), 1930 (2021). http://www.cmemo.org.cn/EN/abstract/abstract8522.shtml

  134. Nguyen, K., Au, L.T.K., Phan, H.-V., Park, H.C.: Comparative dynamic flight stability of insect-inspired flapping-wing micro air vehicles in hover: Longitudinal and lateral motions. Aerosp. Sci. Technol. 119, 107085 (2021). https://doi.org/10.1016/j.ast.2021.107085

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Saddam Hocine Derrouaoui], [Yasser Bouzid], [Amina Belmouhoub], [Mohamed Guiatni] and [Houria Siguerdidjane]. The first draft of the manuscript was written by [Saddam Hocine Derrouaoui] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Saddam Hocine Derrouaoui.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derrouaoui, S.H., Bouzid, Y., Belmouhoub, A. et al. Recent Developments and Trends in Unconventional UAVs Control: A Review. J Intell Robot Syst 109, 68 (2023). https://doi.org/10.1007/s10846-023-02002-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-02002-1

Keywords

Navigation