Skip to main content
Log in

Intelligent Escape of Robotic Systems: A Survey of Methodologies, Applications, and Challenges

  • Survey Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Intelligent escape is an interdisciplinary field that employs artificial intelligence (AI) techniques to enable robots with the capacity to intelligently react to potential dangers in dynamic, intricate, and unpredictable scenarios. As the emphasis on safety becomes increasingly paramount and advancements in robotic technologies continue to advance, a wide range of intelligent escape methodologies has been developed in recent years. This paper presents a comprehensive survey of state-of-the-art research work on intelligent escape of robotic systems. Four main methods of intelligent escape are reviewed, including planning-based methodologies, partitioning-based methodologies, learning-based methodologies, and bio-inspired methodologies. The strengths and limitations of existing methods are summarized. In addition, potential applications of intelligent escape are discussed in various domains, such as search and rescue, evacuation, military security, and healthcare. In an effort to develop new approaches to intelligent escape, this survey identifies current research challenges and provides insights into future research trends in intelligent escape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code Availability

Not applicable.

References

  1. Casini, M., Garulli, A.: A two-pursuer oneevader game with equal speed and finite capture radius. Journal of Intelligent & Robotic Systems 106(4), 77 (2022)

    Google Scholar 

  2. Lopez, V.G., Lewis, F.L., Wan, Y., Sanchez, E.N., Fan, L.: Solutions for multiagent pursuit-evasion games on communication graphs: Finite-time capture and asymptotic behaviors. IEEE Trans. Autom. Control 65(5), 1911–1923 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Xu, Y., Yang, H., Jiang, B., Polycarpou, M.M.: Multiplayer pursuit-evasion differential games with malicious pursuers. IEEE Trans. Autom. Control 67(9), 4939–4946 (2022)

    MathSciNet  MATH  Google Scholar 

  4. Yasin, J.N., Mohamed, S.A., Haghbayan, M.-H., Heikkonen, J., Tenhunen, H., Plosila, J.: Unmanned aerial vehicles (uavs): Collision avoidance systems and approaches. IEEE Access 8, 105139–105155 (2020)

    Google Scholar 

  5. Zhang, Z., Zheng, L., Chen, Z., Kong, L., Karimi, H.R.: Mutual-collision-avoidance scheme synthesized by neural networks for dual redundant robot manipulators executing cooperative tasks. IEEE Trans. Neural Netw Learn. Sys. 32(3), 1052–1066 (2020)

    Google Scholar 

  6. Ding, Y., Thomas, U.: Collision avoidance with proximity servoing for redundant serial robot manipulators. In: 2020 IEEE International Conference on Robotics and Automation (ICRA). pp. 10249–10255 (2020). IEEE

  7. Li, W.: A dynamics perspective of pursuitevasion: capturing and escaping when the pursuer runs faster than the agile evader. IEEE Trans. Autom. Control 62(1), 451–457 (2016)

    MATH  Google Scholar 

  8. Currier, T.M., Lheron, S., Modarres-Sadeghi, Y.: A bio-inspired robotic fish utilizes the snap-through buckling of its spine to generate accelerations of more than 20g. Bioinspiration Biomimetics 15(5), 055006 (2020)

    Google Scholar 

  9. Boyer, A., Farzaneh, F.: Towards an ethic of robotics. J Org. Psychol. 21(3), 84–100 (2021)

    Google Scholar 

  10. Birajdar, G.S., Singh, R., Gehlot, A., Thakur, A.K.: Development in building fire detection and evacuation system-a comprehensive review. Int. J. Electr. Comput. Eng. (IJECE) 10, 6644–6654 (2020)

    Google Scholar 

  11. Muhammad, S., Mohammad, N., Bashar, A., Khan, M.A.: Designing human assisted wireless sensor and robot networks using probabilistic model checking. J Intell. Robotic Syst. 94, 687–709 (2019)

    Google Scholar 

  12. Haddeler, G., Aybakan, A., Akay, M.C., Temeltas, H.: Evaluation of 3d lidar sensor setup for heterogeneous robot team. J Intell. Robotic Syst. 100, 689–709 (2020)

    Google Scholar 

  13. Jin, G., Sun, Y., Geng, J., Yuan, X., Chen, T., Liu, H., Wang, F., Sun, L.: Bioinspired soft caterpillar robot with ultra-stretchable bionic sensors based on functional liquid metal. Nano Energy 84, 105896 (2021)

    Google Scholar 

  14. Gilles, M.A., Vladimirsky, A.: Evasive path planning under surveillance uncertainty. Dyn. Games Appl. 10(2), 391–416 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Gong, Z., He, B., Hu, C., Zhang, X., Kang, W.: Online adaptive dynamic programmingbased solution of networked multiple-pursuer and single-evader game. Electronics 11(21), 3583 (2022)

  16. Zhou, Z., Xu, H.: Decentralized optimal large scale multi-player pursuit-evasion strategies: A mean field game approach with reinforcement learning. Neurocomputing 484, 46–58 (2022)

    Google Scholar 

  17. Scott, W.L., Leonard, N.E.: Optimal evasive strategies for multiple interacting agents with motion constraints. Automatica 94, 26–34 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Lewis Scott, W., Ehrich Leonard, N.: Minimum-time trajectories for steered agent with constraints on speed, lateral acceleration, and turning rate. Journal of Dynamic Systems, Measurement, and Control 140(7) (2018)

  19. Makkapati, V.R., Tsiotras, P.: Optimal evading strategies and task allocation in multiplayer pursuit-evasion problems. Dyn. Games Appl. 9, 1168–1187 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Hu, L., Naeem, W., Rajabally, E., Watson, G., Mills, T., Bhuiyan, Z., Raeburn, C., Salter, I., Pekcan, C.: A multiobjective optimization approach for colregs-compliant path planning of autonomous surface vehicles verified on networked bridge simulators. IEEE Trans. Intell. Transp. Syst. 21(3), 1167–1179 (2019)

    Google Scholar 

  21. Wang, J., Yan, Y., Zhang, K., Chen, Y., Cao, M., Yin, G.: Path planning on large curvature roads using driver-vehicle-road system based on the kinematic vehicle model. IEEE Trans. Veh. Technol. 71(1), 311–325 (2021)

    Google Scholar 

  22. Saravanakumar, A., Kaviyarasu, A., Ashly Jasmine, R.: Sampling based path planning algorithm for uav collision avoidance. Sādhanā 46(3), 112 (2021)

    Google Scholar 

  23. Dong, J., Zhang, X., Jia, X.: Strategies of pursuit-evasion game based on improved potential field and differential game theory for mobile robots. In: Pro. International Conference on Instrumentation, Measurement, Computer, Communication and Control, Harbin, China, pp. 1452–1456 (2012)

  24. Chen, X., Zhao, M., Yin, L.: Dynamic path planning of the uav avoiding static and moving obstacles. J. Intell. Robot. Syst. 99, 909–931 (2020)

    Google Scholar 

  25. Ajeil, F.H., Ibraheem, I.K., Humaidi, A.J., Khan, Z.H.: A novel path planning algorithm for mobile robot in dynamic environments using modified bat swarm optimization. J Eng. 2021(1), 37–48 (2021)

    Google Scholar 

  26. Zaccone, R., Martelli, M.: A collision avoidance algorithm for ship guidance applications. J. Mar. Eng. Technol. 19(sup1), 62–75 (2020)

    Google Scholar 

  27. Tang, H., Sun, W., Lin, A., Xue, M., Zhang, X.: A gwo-based multi-robot cooperation method for target searching in unknown environments. Expert Syst. Appl. 186, 115795 (2021)

    Google Scholar 

  28. Goodwin, M., Granmo, O.-C., Radianti, J.: Escape planning in realistic fire scenarios with ant colony optimisation. Appl. Intell. 42, 24–35 (2015)

    Google Scholar 

  29. Zhu, Q., Wang, K., Shao, Z., Biegler, L.T.: Receding horizon optimization method for solving the cops and robbers problems in a complex environment with obstacles: categories (2), (5). J. Intell. Robot. Syst. 100, 83–112 (2020)

    Google Scholar 

  30. Cognetti, M., De Simone, D., Patota, F., Scianca, N., Lanari, L., Oriolo, G.: Realtime pursuit-evasion with humanoid robots. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 4090–4095 (2017). IEEE

  31. Isaacs, R.: Differential Games: a Mathematical Theory with Applications to Warfare and Pursuit. Control and Optimization. Courier Corporation, New York (1999)

    MATH  Google Scholar 

  32. Liang, X., Zhou, B., Jiang, L., Meng, G., Xiu, Y.: Collaborative pursuit-evasion game of multi-uavs based on apollonius circle in the environment with obstacle. Connection Science, 1–21 (2023)

  33. Liang, L., Deng, F., Shi, X., Lu, M.: A multi-robot cooperative confrontation game with limited range of motion. In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 764–769 (2019). IEEE

  34. Ramana, M.V., Kothari, M.: Pursuit-evasion games of high speed evader. J. Intell. Robot. Syst. 85, 293–306 (2017)

    Google Scholar 

  35. Sun, Z., Sun, H., Li, P., Zou, J.: Cooperative strategy for pursuit-evasion problem with collision avoidance. Ocean Eng. 266, 112742 (2022)

    Google Scholar 

  36. Kumar, A., Ojha, A.: Experimental evaluation of certain pursuit and evasion schemes for wheeled mobile robots. Int. J. Autom. Comput. 16(4), 491–510 (2019)

    Google Scholar 

  37. Ruiz, U.: Time-optimal escape of an omnidirectional agent from the field of view of a differential drive robot. Int. J. Control Autom. Syst. 21(1), 292–305 (2023)

    Google Scholar 

  38. Oyler, D.W., Kabamba, P.T., Girard, A.R.: Pursuit–evasion games in the presence of obstacles. Automatica 65, 1–11 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Yan, R., Shi, Z., Zhong, Y.: Reach-avoid games with two defenders and one attacker: An analytical approach. IEEE transactions on cybernetics 49(3), 1035–1046 (2018)

    Google Scholar 

  40. Fang, X., Wang, C., Xie, L., Chen, J.: Cooperative pursuit with multi-pursuer and one faster free-moving evader. IEEE Transactions on Cybernetics 52(3), 1405–1414 (2020)

    Google Scholar 

  41. Di, K., Yang, S., Wang, W., Yan, F., Xing, H., Jiang, J., Jiang, Y.: Optimizing evasive strategies for an evader with imperfect vision capacity. J. Intell. Robot. Syst. 96(3), 419–437 (2019)

    Google Scholar 

  42. Wang, L., Wang, M., Yue, T.: A fuzzy deterministic policy gradient algorithm for pursuit-evasion differential games. Neurocomputing 362, 106–117 (2019)

    Google Scholar 

  43. Weitzenfeld, A.: A prey catching and predator avoidance neural-schema architecture for single and multiple robots. J. Intell. Rob. Syst. 51, 203–233 (2008)

    Google Scholar 

  44. Qi, Q., Zhang, X., Guo, X.: A deep reinforcement learning approach for the pursuit evasion game in the presence of obstacles. In: Proc. IEEE International Conference on Real-time Computing and Robotics, Asahikawa, Japan, pp. 68–73 (2020)

  45. Zhang, R., Zong, Q., Zhang, X., Dou, L., Tian, B.: Game of drones: multi-uav pursuitevasion game with online motion planning by deep reinforcement learning. IEEE Trans. Neural. Netw. Learn. Syst. 10, 10 (2022)

    Google Scholar 

  46. Xu, G., Jiang, W., Wang, Z., Wang, Y.: Autonomous obstacle avoidance and target tracking of uav based on deep reinforcement learning. J Intell. Robotic Syst. 104(4), 60 (2022)

    Google Scholar 

  47. Xu, C., Zhang, Y., Wang, W., Dong, L.: Pursuit and evasion strategy of a differential game based on deep reinforcement learning. Front. Bioeng. Biotechnol. 10, 827408 (2022)

    Google Scholar 

  48. Ji, X., Hai, J., Luo, W., Lin, C., Xiong, Y., Ou, Z., Wen, J.: Obstacle avoidance in multi-agent formation process based on deep reinforcement learning. J. Shanghai Jiaotong Univ. (Sci.) 26, 680–685 (2021)

    Google Scholar 

  49. Gao, Y., Sibirtseva, E., Castellano, G., Kragic, D.: Fast adaptation with metareinforcement learning for trust modelling in human-robot interaction. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 305–312 (2019). IEEE

  50. Shree, V., Allen, S., Asfora, B., Banfi, J., Campbell, M.: Learning to assess danger from movies for cooperative escape planning in hazardous environments. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5885–5892 (2022). IEEE

  51. Li, J., Xu, Z., Zhu, D., Dong, K., Yan, T., Zeng, Z., Yang, S.X.: Bio-inspired intelligence with applications to robotics: a survey. Intell. Rob. 1(1), 58–83 (2021)

    Google Scholar 

  52. Tu, Z., Fei, F., Deng, X.: Bio-inspired rapid escape and tight body flip on an at-scale flapping wing hummingbird robot via reinforcement learning. IEEE Trans. Rob. 37(5), 1742–1751 (2021)

    Google Scholar 

  53. Prasath, S.G., Mandal, S., Giardina, F., Kennedy, J., Murthy, V.N., Mahadevan, L.: Dynamics of cooperative excavation in ant and robot collectives. Elife 11, 79638 (2022)

    Google Scholar 

  54. Lin, H.-T., Leisk, G.G., Trimmer, B.: Goqbot: a caterpillar-inspired soft-bodied rolling robot. Bioinspiration Biomimetics 6(2), 026007 (2011)

    Google Scholar 

  55. Nishimura, Y., Mikami, S.: Learning adaptive escape behavior for wheel-legged robot by inner torque informationprasath2022dynamics. In: 2016 Joint 8th International Conference on Soft Computing and Intelligent Systems (SCIS) and 17th International Symposium on Advanced Intelligent Systems (ISIS), pp. 10–15 (2016). IEEE

  56. Weymouth, G., Subramaniam, V., Triantafyllou, M.: Ultra-fast escape maneuver of an octopus-inspired robot. Bioinspiration Biomimetics 10(1), 016016 (2015)

    Google Scholar 

  57. He, Z., Yang, Y., Jiao, P., Wang, H., Lin, G., Pähtz, T.: Copebot: underwater soft robot with copepod-like locomotion. Soft Rob. 10(2), 314–325 (2023)

    Google Scholar 

  58. Berlinger, F., Wulkop, P., Nagpal, R.: Selforganized evasive fountain maneuvers with a bioinspired underwater robot collective. In: IEEE International Conference on Robotics and Automation, Xi’an, China, pp. 9204–9211 (2021)

  59. Berlinger, F., Gauci, M., Nagpal, R.: Implicit coordination for 3d underwater collective behaviors in a fish-inspired robot swarm. Sci. Robot. 6(50), 8668 (2021)

    Google Scholar 

  60. Min, H., Wang, Z.: Design and analysis of group escape behavior for distributed autonomous mobile robots. In: IEEE International Conference on Robotics and Automation, Shanghai, China, pp. 6128–6135 (2011)

  61. Marchese, A.D., Onal, C.D., Rus, D.: Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Rob. 1(1), 75–87 (2014)

    Google Scholar 

  62. Papadopoulou, M., Hildenbrandt, H., Sankey, D.W., Portugal, S.J., Hemelrijk, C.K.: Selforganization of collective escape in pigeon flocks. PLoS Comput. Biol. 18(1), 1009772 (2022)

    Google Scholar 

  63. Doran, C., Bierbach, D., Lukas, J., Klamser, P., Landgraf, T., Klenz, H., Habedank, M., Arias-Rodriguez, L., Krause, S., Romanczuk, P., et al.: Fish waves as emergent collective antipredator behavior. Curr. Biol. 32(3), 708–714 (2022)

    Google Scholar 

  64. Ioannou, C.C., Couzin, I.D., James, R., Croft, D.P., Krause, J.: Social organisation and information transfer in schooling fish. Fish Cognit. Behav. 2, 217–239 (2011)

    Google Scholar 

  65. Ishiwaka, Y., Zeng, X.S., Eastman, M.L., Kakazu, S., Gross, S., Mizutani, R., Nakada, M.: Foids: bio-inspired fish simulation for generating synthetic datasets. ACM Trans Graphics (TOG) 40(6), 1–15 (2021)

    Google Scholar 

  66. Han, S., Chon, S., Kim, J., Seo, J., Shin, D.G., Park, S., Kim, J.T., Kim, J., Jin, M., Cho, J.: Snake robot gripper module for search and rescue in narrow spaces. IEEE Robot. Autom. Lett. 7(2), 1667–1673 (2022)

    Google Scholar 

  67. Sun, Z., Yang, H., Ma, Y., Wang, X., Mo, Y., Li, H., Jiang, Z.: Bit-dmr: A humanoid dual-arm mobile robot for complex rescue operations. IEEE Robot. Autom. Lett. 7(2), 802–809 (2021)

  68. Boukas, E., Kostavelis, I., Gasteratos, A., Sirakoulis, G.C.: Robot guided crowd evacuation. IEEE Trans. Autom. Sci. Eng. 12(2), 739–751 (2014)

    Google Scholar 

  69. Lopez, T.: New smet will take the load off infantry soldiers. Retrieved January 23, 2019 (2018)

  70. Kumar, A., Sharma, K., Singh, H., Naugriya, S.G., Gill, S.S., Buyya, R.: A drone-based networked system and methods for combating coronavirus disease (covid-19) pandemic. Futur. Gener. Comput. Syst. 115, 1–19 (2021)

    Google Scholar 

  71. Drew, D.S.: Multi-agent systems for search and rescue applications. Current Robotics Reports 2, 189–200 (2021)

    Google Scholar 

  72. Wang, H., Zhang, C., Song, Y., Pang, B., Zhang, G.: Three-dimensional reconstruction based on visual slam of mobile robot in search and rescue disaster scenarios. Robotica 38(2), 350–373 (2020)

    Google Scholar 

  73. Dong, J., Ota, K., Dong, M.: Uav-based real-time survivor detection system in postdisaster search and rescue operations. IEEE J Miniatur. Air Space Syst. 2(4), 209–219 (2021)

    Google Scholar 

  74. Zhou, M., Dong, H., Ge, S., Wang, X., Wang, F.-Y.: Robot-guided crowd evacuation in a railway hub station in case of emergencies. J. Intell. Robot. Syst. 104(4), 67 (2022)

    Google Scholar 

  75. Zhou, M., Dong, H., Ioannou, P.A., Zhao, Y., Wang, F.-Y.: Guided crowd evacuation: approaches and challenges. IEEE/CAA J. Autom. Sin. 6(5), 1081–1094 (2019)

    Google Scholar 

  76. Sakour, I., Hu, H.: Robot-assisted crowd evacuation under emergency situations: A survey. Robotics 6(2), 8 (2017)

    Google Scholar 

  77. Tang, B., Jiang, C., He, H., Guo, Y.: Human mobility modeling for robot-assisted evacuation in complex indoor environments. IEEE Trans. Hum.-Mach. Syst. 46(5), 694–707 (2016)

    Google Scholar 

  78. Jiang, C., Ni, Z., Guo, Y., He, H.: Learning human–robot interaction for robot-assisted pedestrian flow optimization. IEEE Trans. Syst. Man Cybern. 49(4), 797–813 (2017)

    Google Scholar 

  79. Panesar, S., Cagle, Y., Chander, D., Morey, J., Fernandez-Miranda, J., Kliot, M.: Artificial intelligence and the future of surgical robotics. Ann. Surg. 270(2), 223–226 (2019)

    Google Scholar 

  80. Wang, H., Cheng, H., Hao, H.: The use of unmanned aerial vehicle in military operations. In: Man-Machine-Environment System Engineering: Proceedings of the 20th International Conference on MMESE, pp. 939–945 (2020). Springer

  81. Javaid, M., Haleem, A., Vaish, A., Vaishya, R., Iyengar, K.P.: Robotics applications in covid-19: A review. J. Ind. Integr. Manag. 5(04), 441–451 (2020)

    Google Scholar 

  82. Javaid, M., Haleem, A., Vaishya, R., Bahl, S., Suman, R., Vaish, A.: Industry 4.0 technologies and their applications in fighting covid-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 14(4), 419–422 (2020)

    Google Scholar 

  83. Kyprianou, G., Doitsidis, L., Chatzichristofis, S.A.: Towards the achievement of path planning with multi-robot systems in dynamic environments. J. Intell. Rob. Syst. 104(1), 15 (2022)

    Google Scholar 

  84. Kobayashi, M., Motoi, N.: Local path planning: Dynamic window approach with virtual manipulators considering dynamic obstacles. IEEE Access 10, 17018–17029 (2022)

    Google Scholar 

  85. Huang, T., Pan, H., Sun, W., Gao, H.: Sine resistance network-based motion planning approach for autonomous electric vehicles in dynamic environments. IEEE Trans. Transp. Electrification 8(2), 2862–2873 (2022)

    Google Scholar 

  86. Fareh, R., Khadraoui, S., Abdallah, M.Y., Baziyad, M., Bettayeb, M.: Active disturbance rejection control for robotic systems: A review. Mechatronics 80, 102671 (2021)

    Google Scholar 

  87. Liang, J., Chen, Y., Lai, N., He, B., Miao, Z., Wang, Y.: Low-complexity prescribed performance control for unmanned aerial manipulator robot system under model uncertainty and unknown disturbances. IEEE Trans. Industr. Inf. 18(7), 4632–4641 (2021)

    Google Scholar 

  88. Chu, Z., Wang, F., Lei, T., Luo, C.: Path planning based on deep reinforcement learning for autonomous underwater vehicles under ocean current disturbance. IEEE Transactions on Intelligent Vehicles (2022)

  89. Ferrer, E.C., Hardjono, T., Pentland, A., Dorigo, M.: Secure and secret cooperation in robot swarms. Sci. Robot. 6(56), 1538 (2021)

    Google Scholar 

  90. Yang, C., Zhu, Y., Chen, Y.: A review of human-machine cooperation in the robotics domain. IEEE Trans. Hum.-Mach. Syst. 52(1), 12–25 (2021)

    Google Scholar 

  91. Simetti, E., Indiveri, G., Pascoal, A.M.: Wimust: A cooperative marine robotic system for autonomous geotechnical surveys. J Field Rob. 38(2), 268–288 (2021)

  92. Zhou, Z., Liu, J., Yu, J.: A survey of underwater multi-robot systems. IEEE/CAA J Automatica Sin. 9(1), 1–18 (2021)

    MathSciNet  Google Scholar 

  93. Huang, J., Li, X., Yang, Z., Kong, W., Zhao, Y., Zhou, D.: A novel elitism co-evolutionary algorithm for antagonistic weapon-target assignment. IEEE Access 9, 139668–139684 (2021)

    Google Scholar 

  94. Agarwal, D., Bharti, P.S.: Implementing modified swarm intelligence algorithm based on slime moulds for path planning and obstacle avoidance problem in mobile robots. Appl. Soft Comput. 107, 107372 (2021)

    Google Scholar 

  95. Moorthy, S., Joo, Y.H.: Distributed leaderfollowing formation control for multiple nonholonomic mobile robots via bioinspired neurodynamic approach. Neurocomputing 492, 308–321 (2022)

    Google Scholar 

Download references

Funding

This work was supported by Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the idea for the article. The literature search and data analysis were performed by Junfei Li and the critically revised works were performed by Simon X. Yang. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Simon X. Yang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All images cited from others’ published works in this paper have been properly acknowledged with corresponding references according to academic standards.

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yang, S.X. Intelligent Escape of Robotic Systems: A Survey of Methodologies, Applications, and Challenges. J Intell Robot Syst 109, 55 (2023). https://doi.org/10.1007/s10846-023-01996-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-01996-y

Keywords

Navigation