Skip to main content
Log in

Multi-Agent Systems for Search and Rescue Applications

  • Defense, Military, and Surveillance Robotics (S Ferrari and P Zhu, Section Editors)
  • Published:
Current Robotics Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The goal of this review is to evaluate the current status of multi-robot systems in the context of search and rescue. This includes an investigation of their current use in the field, what major technical challenge areas currently preclude more widespread use, and which key topics will drive future development and adoption.

Recent Findings

Work blending machine learning with classical control techniques is driving progress in perception-driven autonomy, decentralized multi-robot coordination, and human–robot interaction, among others. Ad hoc mesh networking has achieved reliability suitable for safety-critical applications and may be a partial solution for communication. New modular and multimodal platforms may overcome mobility limitations without significantly increasing cost.

Summary

Multi-agent systems are not currently ready for deployment in search and rescue applications; however, progress is being made in a number of critical domains. As the field matures, research should focus on realistic evaluations of constituent technologies, and on confronting the challenges of simulation-to-reality transfer, algorithmic bias in autonomous agents that rely on machine learning, and novelty-versus-reliability incentive mismatch

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. World Disasters Report. IFRC campaigns. 2015. http://ifrc-media.org/interactive/world-disasters-report-2015/. Accessed 8 Jul 2020.

  2. World Disasters Report 2010 - Urban Risk - IFRC. https://www.ifrc.org/en/publications-and-reports/world-disasters-report/wdr2010/. Accessed 8 Jul 2020

  3. •• Murphy RR, Tadokoro S, Kleiner A. Disaster Robotics. In: Siciliano B, Khatib O, editors. Springer Handb. Robot. Cham: Springer International Publishing; 2016. p. 1577–604. This review collects and analyzes field reports over the past two decades and contains insights from some of the preeminent field roboticists working in this space.

  4. Kruijff-Korbayová I, Freda L, Gianni M, et al. Deployment of ground and aerial robots in earthquake-struck Amatrice in Italy (brief report). In: 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR); 2016. p. 278–9.

    Chapter  Google Scholar 

  5. Fernandes O, Murphy R, Adams J, Merrick D. Quantitative data analysis: CRASAR small unmanned aerial Systems at Hurricane Harvey. In: 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR); 2018. p. 1–6.

    Google Scholar 

  6. Whitman J, Zevallos N, Travers M, Choset H. Snake robot urban search after the 2017 Mexico City earthquake. In: 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR); 2018. p. 1–6.

    Google Scholar 

  7. Adams J, Hart L, McBride J, Merrick D, Murphy R. Use of small unmanned aerial Systems for Tactical Response during Kilauea volcano lower east rift zone event. In: 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR); 2018. p. 1–2.

    Google Scholar 

  8. Murphy RR, Duncan BA, Collins T, Kendrick J, Lohman P, Palmer T, et al. Use of a small unmanned aerial system for the SR-530 Mudslide Incident near Oso, Washington. J Field Robot. 2016;33:476–88.

    Article  Google Scholar 

  9. • Erdelj M, Natalizio E, Chowdhury KR, Akyildiz IF. Help from the sky: leveraging UAVs for disaster management. IEEE Pervasive Comput. 2017;16:24–32 A recent survey focused specifically on how fleets of UAVs can be used for disaster response, interesting in that it divides envisioned implementations based on both Disaster Stage (e.g., Preparedness, Response, and Recovery) and Type (e.g., geophysical, climatological).

    Article  Google Scholar 

  10. Murphy RR, Kleiner A. A community-driven roadmap for the adoption of safety security and rescue robots. In: 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR); 2013. p. 1–5.

    Google Scholar 

  11. •• Delmerico J, Mintchev S, Giusti A, et al. The current state and future outlook of rescue robotics. J Field Robot. 2019;36:1171–91 This review is broad but contains a well-sourced overview of topics pertaining to ground and aerial platforms for robotic search and rescue. It is authored by some of the preeminent academic researchers working in the fields of autonomy, control, and novel platforms.

    Article  Google Scholar 

  12. Williams A, Sebastian B, Ben-Tzvi P. Review and analysis of search, extraction, evacuation and medical field treatment robots. J Intell Robot Syst. 2019;96:401–18.

    Article  Google Scholar 

  13. Liu Y, Nejat G. Robotic urban search and rescue: a survey from the control perspective. J Intell Robot Syst. 2013;72:147–65.

    Article  Google Scholar 

  14. • Cadena C, Carlone L, Carrillo H, Latif Y, Scaramuzza D, Neira J, et al. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans Robot. 2016;32:1309–32 Simultaneous localization and mapping is one of the most critical topics for field robotics in general and for multi-robot search and rescue in particular. This is a recent overview of the topic and contains a number of useful references for state-of-the-art research.

    Article  Google Scholar 

  15. Zou D, Tan P, Yu W. Collaborative visual SLAM for multiple agents: a brief survey. Virtual Real Intell Hardw. 2019;1:461–82.

    Article  Google Scholar 

  16. Lajoie P-Y, Ramtoula B, Chang Y, Carlone L, Beltrame G. DOOR-SLAM: Distributed, Online, and Outlier Resilient SLAM for Robotic Teams. IEEE Robot Autom Lett. 2020;5:1656–63.

    Article  Google Scholar 

  17. Bowman SL, Atanasov N, Daniilidis K, Pappas GJ. Probabilistic data association for semantic SLAM. In: 2017 IEEE International Conference on Robotics and Automation (ICRA); 2017. p. 1722–9.

    Chapter  Google Scholar 

  18. Pickem D, Glotfelter P, Wang L, Mote M, Ames A, Feron E, et al. The Robotarium: a remotely accessible swarm robotics research testbed. In: 2017 IEEE International Conference on Robotics and Automation (ICRA); 2017. p. 1699–706.

    Chapter  Google Scholar 

  19. Zafar MN, Mohanta JC. Methodology for path planning and optimization of mobile robots: a review. Procedia Comput Sci. 2018;133:141–52.

    Article  Google Scholar 

  20. Mohanan MG, Salgoankar A. A survey of robotic motion planning in dynamic environments. Robot Auton Syst. 2018;100:171–85.

    Article  Google Scholar 

  21. Jahanshahi H, Jafarzadeh M, Sari NN, Pham V-T, Huynh VV, Nguyen XQ. Robot motion planning in an unknown environment with danger space. Electronics. 2019;8:201.

    Article  Google Scholar 

  22. Foehn P, Brescianini D, Kaufmann E, Cieslewski T, Gehrig M, Muglikar M, Scaramuzza D (2020) AlphaPilot: Autonomous Drone Racing. ArXiv200512813 Cs Eess

  23. Manderson T, Wapnick S, Meger D, Dudek G (2020) Learning to drive off road on smooth terrain in unstructured environments using an on-board camera and sparse aerial images. ArXiv200404697 Cs

  24. Liu Y, Bucknall R. A survey of formation control and motion planning of multiple unmanned vehicles. Robotica. 2018;36:1019–47.

    Article  Google Scholar 

  25. Weinstein A, Cho A, Loianno G, Kumar V. Visual inertial odometry swarm: an autonomous swarm of vision-based quadrotors. IEEE Robot Autom Lett. 2018;3:1801–7.

    Article  Google Scholar 

  26. • Khamis A, Hussein A, Elmogy A. Multi-robot task allocation: a review of the state-of-the-art. In: Koubâa A, Martínez-de Dios JR, editors. Coop. Robots Sens. Netw. 2015. Cham: Springer International Publishing; 2015. p. 31–51. Efficient task allocation in the face of uncertainty is a core challenge in multi-robot search and rescue. This is a recent overview of the topic and contains a number of useful references for state-of-the-art research.

  27. Korsah GA, Stentz A, Dias MB. A comprehensive taxonomy for multi-robot task allocation. Int J Robot Res. 2013;32:1495–512.

    Article  Google Scholar 

  28. Choudhury S, Gupta JK, Kochenderfer MJ, Sadigh D, Bohg J (2020) Dynamic multi-robot task allocation under uncertainty and temporal constraints. ArXiv200513109 Cs

  29. Pickem D, Glotfelter P, Wang L, Mote M, Ames A, Feron E, et al. The Robotarium: a remotely accessible swarm robotics research testbed. In: 2017 IEEE International Conference on Robotics and Automation (ICRA); 2017. p. 1699–706.

    Chapter  Google Scholar 

  30. Farinelli A, Iocchi L, Nardi D. Multirobot systems: a classification focused on coordination. IEEE Trans Syst Man Cybern Part B Cybern. 2004;34:2015–28.

    Article  Google Scholar 

  31. Ghena B, Adkins J, Shangguan L, Jamieson K, Levis P, Dutta P. Challenge: unlicensed LPWANs are not yet the path to ubiquitous connectivity. In: 25th Annu. Int. Conf. Mob. Comput. Netw. Los Cabos Mexico: ACM; 2019. p. 1–12.

  32. Lauri M, Heinänen E, Frintrop S. Multi-robot active information gathering with periodic communication. In: 2017 IEEE International Conference on Robotics and Automation (ICRA); 2017. p. 851–6.

    Chapter  Google Scholar 

  33. Varadharajan VS, St-Onge D, Adams B, Beltrame G. Swarm relays: distributed self-healing ground-and-air connectivity chains. IEEE Robot Autom Lett. 2020;5:5347–54.

    Article  Google Scholar 

  34. Sánchez-García J, García-Campos JM, Arzamendia M, Reina DG, Toral SL, Gregor D. A survey on unmanned aerial and aquatic vehicle multi-hop networks: wireless communications, evaluation tools and applications. Comput Commun. 2018;119:43–65.

    Article  Google Scholar 

  35. Drew DS, Kilberg B, Pister KSJ. Future mesh-networked pico air vehicles. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS); 2017. p. 1075–82.

    Chapter  Google Scholar 

  36. Zhang Z, Glaser S, Watteyne T, Malek S. Long-term monitoring of the Sierra Nevada snowpack using wireless sensor networks. IEEE Internet Things J. 2020:1–1.

  37. Dujovne D, Watteyne T, Vilajosana X, Thubert P. 6TiSCH: deterministic IP-enabled industrial internet (of things). IEEE Commun Mag. 2014;52:36–41.

    Article  Google Scholar 

  38. Vásárhelyi G, Virágh C, Somorjai G, Tarcai N, Szörenyi T, Nepusz T, et al. Outdoor flocking and formation flight with autonomous aerial robots. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2014. p. 3866–73.

    Google Scholar 

  39. Chang T, Tuset-Peiro P, Vilajosana X, Watteyne T. OpenWSN OpenMote: Demo’ing a complete ecosystem for the industrial internet of things. In: 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON); 2016. p. 1–3.

    Google Scholar 

  40. Walter V, Saska M, Franchi A. Fast mutual relative localization of UAVs using ultraviolet LED markers. In: 2018 Int. Conf. Unmanned Aircr. Syst: ICUAS; 2018. p. 1217–26.

  41. Rivard F, Bisson J, Michaud F, Letourneau D. Ultrasonic relative positioning for multi-robot systems. In: 2008 IEEE International Conference on Robotics and Automation (ICRA); 2008. p. 323–8.

    Chapter  Google Scholar 

  42. Kapoor R, Ramasamy S, Gardi A, Schyndel RV, Sabatini R. Acoustic sensors for air and surface navigation applications. Sensors. 2018;18:499.

    Article  Google Scholar 

  43. Allotta B, Caiti A, Costanzi R, Di Corato F, Fenucci D, Monni N, et al. Cooperative navigation of AUVs via acoustic communication networking: field experience with the Typhoon vehicles. Auton Robot. 2016;40:1229–44.

    Article  Google Scholar 

  44. Hoshiba K, Washizaki K, Wakabayashi M, Ishiki T, Kumon M, Bando Y, et al. Design of UAV-embedded microphone array system for sound source localization in outdoor environments. Sensors. 2017;17:2535.

    Article  Google Scholar 

  45. Nakadai K, Kumon M, Okuno HG, et al. Development of microphone-array-embedded UAV for search and rescue task. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2017. p. 5985–90.

    Chapter  Google Scholar 

  46. Ayanian N, Kumar V. Decentralized feedback controllers for multiagent teams in environments with obstacles. IEEE Trans Robot. 2010;26:878–87.

    Article  Google Scholar 

  47. Michaud F, Lepage P, Frenette P, Letourneau D, Gaubert N. Coordinated maneuvering of automated vehicles in platoons. IEEE Trans Intell Transp Syst. 2006;7:437–47.

    Article  Google Scholar 

  48. Paulos J, Chen SW, Shishika D, Kumar V. Decentralization of multiagent policies by learning what to communicate. In: 2019 International Conference on Robotics and Automation (ICRA); 2019. p. 7990–6.

    Chapter  Google Scholar 

  49. Dorigo M, Bonabeau E, Theraulaz G. Ant algorithms and stigmergy. Futur Gener Comput Syst. 2000;16:851–71.

    Article  Google Scholar 

  50. Johansson R, Saffiotti A. Navigating by stigmergy: a realization on an RFID floor for minimalistic robots. In: 2009 IEEE International Conference on Robotics and Automation (ICRA); 2009. p. 245–52.

    Chapter  Google Scholar 

  51. Ziparo VA, Kleiner A, Nebel B, Nardi D. RFID-based exploration for large robot teams. In: Proceedings 2007 IEEE International Conference on Robotics and Automation (ICRA); 2007. p. 4606–13.

    Chapter  Google Scholar 

  52. Fujisawa R, Imamura H, Hashimoto T, Matsuno F. Communication using pheromone field for multiple robots. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2008. p. 1391–6.

    Google Scholar 

  53. Hölldobler B, Wilson EO. The ants: Harvard University Press; 1990.

  54. Chang T, Watteyne T, Wheeler B, et al. 6TiSCH on SCμM: running a synchronized protocol stack without crystals. Sensors. 2020;20:1912.

    Article  Google Scholar 

  55. Losey DP, Li M, Bohg J, Sadigh D. Learning from my partner’s actions: roles in decentralized robot teams. In: Conference on robot learning; 2020. p. 752–65.

    Google Scholar 

  56. Human–robot interaction: status and challenges - Thomas B. Sheridan, 2016. https://journals-sagepub-com.stanford.idm.oclc.org/doi/full/10.1177/0018720816644364. Accessed 17 Jul 2020

  57. Murphy RR, Burke JL. Up from the rubble: lessons learned about HRI from search and rescue. Proc Hum Factors Ergon Soc Annu Meet. 2005;49:437–41.

    Article  Google Scholar 

  58. Murphy RR, Kravitz J, Stover SL, Shoureshi R. Mobile robots in mine rescue and recovery. IEEE Robot Autom Mag. 2009;16:91–103.

    Article  Google Scholar 

  59. • Murphy RR, Tadokoro S. User interfaces for human–robot interaction in field robotics. In: Tadokoro S, editor. Disaster Robot. Results ImPACT Tough Robot. Chall. Cham: Springer International Publishing; 2019. p. 507–28. A set of guidelines distilled from field reports, references, and expert interviews for designing HRI interfaces, with a focus on real deployment constraints. Although the interfaces are not specifically for multi-robot systems, many of the guidelines are still relevant.

  60. Kolling A, Walker P, Chakraborty N, Sycara K, Lewis M. Human interaction with robot swarms: a survey. IEEE Trans Hum-Mach Syst. 2016;46:9–26.

    Article  Google Scholar 

  61. Nagi J, Giusti A, Gambardella LM, Di Caro GA. Human-swarm interaction using spatial gestures. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2014. p. 3834–41.

    Google Scholar 

  62. Alonso-Mora J, Haegeli Lohaus S, Leemann P, Siegwart R, Beardsley P. Gesture based human - multi-robot swarm interaction and its application to an interactive display. In: 2015 IEEE International Conference on Robotics and Automation (ICRA); 2015. p. 5948–53.

    Chapter  Google Scholar 

  63. Kim LH, Drew DS, Domova V, Follmer S. User-defined swarm robot control. In: Proc. 2020 CHI Conf. Hum. Factors Comput. Syst. Honolulu, HI, USA: Association for Computing Machinery; 2020. p. 1–13.

  64. McLurkin J, Smith J, Frankel J, Sotkowitz D, Blau D, Schmidt B. Speaking swarmish: human-robot interface design for large swarms of autonomous mobile robots. In AAAI spring symposium: to boldly go where no human-robot team has gone before 2006 Mar 28 (Vol. 72).

  65. Chen JYC, Barnes MJ, Harper-Sciarini M. Supervisory control of multiple robots: human-performance issues and user-interface design. IEEE Trans Syst Man Cybern Part C Appl Rev. 2011;41:435–54.

    Article  Google Scholar 

  66. Sellner B, Heger FW, Hiatt LM, Simmons R, Singh S. Coordinated multiagent teams and sliding autonomy for large-scale assembly. Proc IEEE. 2006;94:1425–44.

    Article  Google Scholar 

  67. Swamy G, Reddy S, Levine S, Dragan AD (2020) Scaled autonomy: enabling human operators to control robot fleets. ArXiv191002910 Cs Stat

  68. Xu A, Dudek G. Towards modeling real-time trust in asymmetric human–robot collaborations. In: Inaba M, Corke P, editors. Robot. Res. 16th Int. Symp. ISRR. Cham: Springer International Publishing; 2016. p. 113–29.

  69. Wu H, Guan Y, Rojas J. A latent state-based multimodal execution monitor with anomaly detection and classification for robot introspection. Appl Sci. 2019;9:1072.

    Article  Google Scholar 

  70. Liu Y, Nejat G. Multirobot cooperative learning for semiautonomous control in urban search and rescue applications. J Field Robot. 2016;33:512–36.

    Article  Google Scholar 

  71. Brunete A, Ranganath A, Segovia S, de Frutos JP, Hernando M, Gambao E. Current trends in reconfigurable modular robots design. Int J Adv Robot Syst. 2017;14:1729881417710457.

    Article  Google Scholar 

  72. Seo J, Paik J, Yim M. Modular reconfigurable robotics. Annu Rev Control Robot Auton Syst. 2019;2:63–88.

    Article  Google Scholar 

  73. Pfotzer L, Ruehl S, Heppner G, Roennau A, Dillmann R. KAIRO 3: a modular reconfigurable robot for search and rescue field missions. In: 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014); 2014. p. 205–10.

    Chapter  Google Scholar 

  74. Mahkam N, Bakir A, Özcan O. Miniature modular legged robot with compliant backbones. IEEE Robot Autom Lett. 2020;5:3923–30.

    Article  Google Scholar 

  75. Daudelin J, Jing G, Tosun T, Yim M, Kress-Gazit H, Campbell M. An integrated system for perception-driven autonomy with modular robots. Sci Robot. 2018;3:eaat4983.

    Article  Google Scholar 

  76. Medeiros VS, Jelavic E, Bjelonic M, Siegwart R, Meggiolaro MA, Hutter M. Trajectory optimization for wheeled-legged quadrupedal robots driving in challenging terrain. IEEE Robot Autom Lett. 2020;5:4172–9.

    Article  Google Scholar 

  77. Grimminger F, Meduri A, Khadiv M, et al. An open torque-controlled modular robot architecture for legged locomotion research. IEEE Robot Autom Lett. 2020;5:3650–7.

    Article  Google Scholar 

  78. Mulgaonkar Y, Araki B, Koh J, Guerrero-Bonilla L, Aukes DM, Makineni A, et al. The flying monkey: a mesoscale robot that can run, fly, and grasp. In: 2016 IEEE International Conference on Robotics and Automation (ICRA); 2016. p. 4672–9.

    Chapter  Google Scholar 

  79. Pope MT, Kimes CW, Jiang H, Hawkes EW, Estrada MA, Kerst CF, et al. A multimodal robot for perching and climbing on vertical outdoor surfaces. IEEE Trans Robot. 2017;33:38–48.

    Article  Google Scholar 

  80. Karydis K, Kumar V. Energetics in robotic flight at small scales. Interface Focus. 2017;7:20160088.

    Article  Google Scholar 

  81. Mathew N, Smith SL, Waslander SL. Multirobot rendezvous planning for recharging in persistent tasks. IEEE Trans Robot. 2015;31:128–42.

    Article  Google Scholar 

  82. Culbertson P, Slotine J-JE, Schwager M (2020) Decentralized adaptive control for collaborative manipulation of rigid bodies. ArXiv200503153 Cs

  83. Tang S, Sreenath K, Kumar V. Multi-robot trajectory generation for an aerial payload transport system. In: Amato NM, Hager G, Thomas S, Torres-Torriti M, editors. Robot. Res. Cham: Springer International Publishing; 2020. p. 1055–71.

  84. Herguedas R, López-Nicolás G, Aragüés R, Sagüés C. Survey on multi-robot manipulation of deformable objects. In: 2019 24th IEEE Int. Conf. Emerg. Technol. Fact. Autom: ETFA; 2019. p. 977–84.

  85. Carpin S, Lewis M, Wang J, Balakirsky S, Scrapper C. Bridging the gap between simulation and reality in urban search and rescue. In: Lakemeyer G, Sklar E, Sorrenti DG, Takahashi T, editors. RoboCup 2006 Robot Soccer World Cup X. Berlin, Heidelberg: Springer; 2007. p. 1–12.

  86. Carpin S, Lewis M, Wang J, Balakirsky S, Scrapper C. USARSim: a robot simulator for research and education. In: Proc. 2007 IEEE Int. Conf. Robot. Autom; 2007. p. 1400–5.

  87. Koenig N, Howard A. Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2004. p. 2149–54.

    Google Scholar 

  88. Shah S, Dey D, Lovett C, Kapoor A. AirSim: high-fidelity visual and physical simulation for autonomous vehicles. In: Hutter M, Siegwart R, editors. Field Serv. Robot. Cham: Springer International Publishing; 2018. p. 621–35.

  89. Savva M, Kadian A, Maksymets O, et al. Habitat: a platform for embodied AI research. In: Proceedings of the IEEE/CVF International Conference on Computer Vision; 2019. p. 9339–47.

    Google Scholar 

  90. DARPA Subterranean (SubT) Challenge. https://www.darpa.mil/program/darpa-subterranean-challenge. Accessed 7 Jul 2020.

  91. McAllister R, Kahn G, Clune J, Levine S. Robustness to out-of-distribution inputs via task-aware generative uncertainty. In: 2019 International Conference on Robotics and Automation (ICRA); 2019. p. 2083–9.

    Chapter  Google Scholar 

  92. Dole L, Ju W. Face and ecological validity in simulations: lessons from search-and-rescue HRI. In: Proc. 2019 CHI Conf. Hum. Factors Comput. Syst. Glasgow, Scotland UK: Association for Computing Machinery; 2019. p. 1–8.

  93. Finch C, Emrich CT, Cutter SL. Disaster disparities and differential recovery in New Orleans. Popul Environ. 2010;31:179–202.

    Article  Google Scholar 

  94. Davis JR, Wilson S, Brock-Martin A, Glover S, Svendsen ER. The impact of disasters on populations with health and health care disparities. Disaster Med Public Health Prep. 2010;4:30–8.

    Article  Google Scholar 

  95. Rufat S, Tate E, Burton CG, Maroof AS. Social vulnerability to floods: review of case studies and implications for measurement. Int J Disaster Risk Reduct. 2015;14:470–86.

    Article  Google Scholar 

  96. Black R, Arnell NW, Adger WN, Thomas D, Geddes A. Migration, immobility and displacement outcomes following extreme events. Environ Sci Policy. 2013;27:S32–43.

    Article  Google Scholar 

  97. Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E. Deep learning for computer vision: a brief review. Comput Intell Neurosci. 2018;2018:e7068349.

    Article  Google Scholar 

  98. Niroui F, Zhang K, Kashino Z, Nejat G. Deep reinforcement learning robot for search and rescue applications: exploration in unknown cluttered environments. IEEE Robot Autom Lett. 2019;4:610–7.

    Article  Google Scholar 

  99. Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring fairness in machine learning to advance health equity. Ann Intern Med. 2018;169:866–72.

    Article  Google Scholar 

  100. Garcia M. Racist in the machine: the disturbing implications of algorithmic bias. World Policy J. 2016;33:111–7.

    Article  Google Scholar 

  101. Buolamwini J, Gebru T. Gender shades: intersectional accuracy disparities in commercial gender classification. In: Conference on fairness, accountability and transparency; 2018. p. 77–91.

    Google Scholar 

  102. Finn RL, Wright D. Unmanned aircraft systems: surveillance, ethics and privacy in civil applications. Comput Law Secur Rev. 2012;28:184–94.

    Article  Google Scholar 

  103. Hayes P, Kelly S. Distributed morality, privacy, and social media in natural disaster response. Technol Soc. 2018;54:155–67.

    Article  Google Scholar 

  104. ARGOS - Autonomous robot for gas and oil sites challenge. http://www.argos-challenge.com/en. Accessed 7 Jul 2020.

  105. MBZIRC - The Mohamed Bin Zayed International Robotics Challenge. https://www.mbzirc.com/challenge/2020. Accessed 7 Jul 2020.

  106. European Robotics League - Emergency Robots. https://www.eu-robotics.net/robotics_league/erl-emergency/about/index.html. Accessed 7 Jul 2020.

  107. ELROB - The European Land-Robot Trial | ELROB.org. https://www.elrob.org/. Accessed 7 Jul 2020.

  108. ARCHE – Advanced Robotics Capabilities for Hazardous Environments. http://arche.website/en/home/. Accessed 7 Jul 2020.

  109. Krotkov E, Hackett D, Jackel L, Perschbacher M, Pippine J, Strauss J, et al. The DARPA Robotics Challenge Finals: results and perspectives. J Field Robot. 2017;34:229–40.

    Article  Google Scholar 

  110. Winfield AFT, Franco MP, Brueggemann B, et al. euRathlon 2015: a multi-domain multi-robot grand challenge for search and rescue robots. In: Alboul L, Damian D, Aitken JM, editors. Auton. Robot. Syst. Cham: Springer International Publishing; 2016. p. 351–63.

  111. Kruijff-Korbayová I, Colas F, Gianni M, Pirri F, de Greeff J, Hindriks K, Neerincx M, Ögren P, Svoboda T, Worst R (2015) TRADR Project: long-term human–robot teaming for robot assisted disaster response. KI - Künstl Intell 29:193–201

  112. De Cubber G, Doroftei D, Serrano D, Chintamani K, Sabino R, Ourevitch S. The EU-ICARUS project: developing assistive robotic tools for search and rescue operations. In: 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR); 2013. p. 1–4.

    Google Scholar 

  113. Marconi L, Melchiorri C, Beetz M, et al. The SHERPA project: smart collaboration between humans and ground-aerial robots for improving rescuing activities in alpine environments. In: 2012 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR); 2012. p. 1–4.

    Google Scholar 

  114. Chrobocinski P, Makri E, Zotos N, Stergiopoulos C, Bogdos G. DARIUS project: deployable SAR integrated chain with unmanned systems. In: 2012 International Conference on Telecommunications and Multimedia (TEMU); 2012. p. 220–6.

    Chapter  Google Scholar 

  115. IN SEARCH OF A MAN. http://odyssey.community/. Accessed 28 Jul 2020.

  116. Olson E, Strom J, Morton R, Richardson A, Ranganathan P, Goeddel R, et al. Progress toward multi-robot reconnaissance and the MAGIC 2010 competition. Journal of Field Robotics. 2012;29:762–92.

    Article  Google Scholar 

  117. •• Sheh R, Schwertfeger S, Visser A. 16 years of RoboCup Rescue. KI - Künstl Intell. 2016. https://doi.org/10.1007/s13218-016-0444-xRoboCup Rescue League is the most directly relevant competition related to multi-robot systems for search and rescue. This review walks through the history of the competition, advances in the field, and notable findings of many of the participating teams.

  118. Casper J, Yanco H. AAAI/RoboCup-2001 Robot Rescue. AIMag. 2002;23:43–3.

  119. • Shimizu M, Takahashi T. Survey of rescue competitions and proposal of new standard task from ordinary tasks. In: Holz D, Genter K, Saad M, von Stryk O, editors. RoboCup 2018 Robot World Cup XXII. Cham: Springer International Publishing; 2019. p. 311–23. Challenges and competitions have historically been important drivers of robotics research both broadly and more specifically in the context of disaster response robots. This survey details a number of competitions over the past two decades with a focus on their respective evaluation metrics.

  120. Asghar AB, Smith SL, Sundaram S. Multi-robot routing for persistent monitoring with latency constraints. In: 2019 American Control Conference (ACC); 2019. p. 2620–5.

    Chapter  Google Scholar 

  121. A review of collective robotic construction | Science Robotics. https://robotics-sciencemag-org.stanford.idm.oclc.org/content/4/28/eaau8479.abstract. Accessed 21 Jul 2020.

  122. Rouček T, Pecka M, Čížek P, et al. DARPA Subterranean Challenge: Multi-robotic Exploration of Underground Environments. In: Mazal J, Fagiolini A, Vasik P, editors. Model. Simul. Auton. Syst. Cham: Springer International Publishing; 2020. p. 274–90.

  123. (2018) Dimensions. Digital Science, https://app.dimensions.ai

  124. National Robotics Initiative 2.0: Ubiquitous Collaborative Robots | NSF - National Science Foundation. https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503641. Accessed 29 Jul 2020.

Download references

Acknowledgment

This research was supported by an appointment to the Intelligence Community Postdoctoral Research Fellowship Program at Stanford University, administered by Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the Office of the Director of National Intelligence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. Drew.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Defense, Military, and Surveillance Robotics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drew, D.S. Multi-Agent Systems for Search and Rescue Applications. Curr Robot Rep 2, 189–200 (2021). https://doi.org/10.1007/s43154-021-00048-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43154-021-00048-3

Keywords

Navigation