Skip to main content
Log in

Time-Varying Trajectory Tracking Controller Design for Cable-Suspended Planar Parallel Robots

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Cable robots are an important class of both parallel and serial robots. Since this kind of robot inherits nonlinear dynamics, designing a nonlinear suboptimal controller such that the robot tracks time-varying trajectories in complex missions to achieve optimal performance is of great importance. In this paper, a nonlinear suboptimal controller is suggested to track time-varying desired trajectories by the cable-suspended planar parallel robots (CSPPRs). For this aim, the mechanical and electromechanical models of the CSPPRs based on Newton’s second law are derived. After that, the controller is designed by taking three main steps. At first, a reference model is formulated by paying attention to the desired trajectory. Next, the pseudo-linearization technique is used to rewrite the state-space representation of an augmented system consisting of the robot and the reference model. Finally, a state-dependent Riccati equation is numerically solved to achieve the control law. The effectiveness of the proposed controller is verified by both simulation results and experimental results. The results show that the proposed controller is able to stabilize the closed-loop system while the tracking error converges asymptotically to zero and robust tracking performance is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Korayem, M.H., Yousefzadeh, M., Beyranvand, B.: Dynamics and control of a 6-dof cable-driven parallel robot with visco-elastic cables in presence of measurement noise. J. Intell. Robot. Syst. 88(1), 73–95 (2017)

    Article  Google Scholar 

  2. Korayem, M.H., Tourajizadeh, H., Bamdad, M.: Dynamic load carrying capacity of flexible cable suspended robot: robust feedback linearization control approach. J. Intell. Robot. Syst. 60(3), 341–363 (2010)

    Article  MATH  Google Scholar 

  3. Fattah, A., Agrawal, S.K.: On the design of cable-suspended planar parallel robots. J. Mech. Des. 127(5), 1021–1028 (2005)

    Article  Google Scholar 

  4. Longval, J.M., Gosselin, C.: Dynamic trajectory planning and geometric design of a two-DOF translational cable-suspended planar parallel robot using a parallelogram cable loop. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2018)

  5. Nan, R., Li, D., Jin, C., Wang, Q., Zhu, L., Zhu, W., Zhang, H., Yue, Y., Qian, L.: The five-hundred-meter aperture spherical radio telescope (FAST) project. Int. J. Mod. Phys. D 20(06), 989–1024 (2011)

    Article  Google Scholar 

  6. Chen, Q., Zi, B., Sun, Z., Li, Y., Xu, Q.: Design and development of a new cable-driven parallel robot for waist rehabilitation. IEEE/ASME Trans. Mechatronics 24(4), 1497–1507 (2019)

    Article  Google Scholar 

  7. Vrabel, R.: Design of the state feedback-based feed-forward controller asymptotically stabilizing the overhead crane at the desired end position. arXiv preprint arXiv:1903.02956 (2019)

  8. Barbazza, L., Oscari, F., Minto, S., Rosati, G.: Trajectory planning of a suspended cable driven parallel robot with reconfigurable end effector. Robot. Comput. Integr. Manuf. 48, 1–11 (2017)

    Article  Google Scholar 

  9. Kawamura, S., Kino, H., Won, C.: High-speed manipulation by using parallel wire-driven robots. Robotica 18(1), 13–21 (2000)

    Article  Google Scholar 

  10. Aref, M.M., Taghirad, H.: Geometrical workspace analysis of a cabledriven redundant parallel manipulator: KNTU CDRPM. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1958–1963 (2008)

  11. Gosselin, C., Ren, P., Foucault, S.: Dynamic trajectory planning of a two–DOF cable–suspended parallel robot. In: IEEE International Conference on Robotics and Automation, pp. 1476–1481 (2012)

  12. Khosravi, M.A., Taghirad, H.: Robust PID control of fully-constrained cable driven parallel robots. Mechatronics 24(2), 87–97 (2014)

    Article  Google Scholar 

  13. Jiang, X., Gosselin, C.: Dynamic point-to-point trajectory planning of a three-DOF cable-suspended parallel robot. IEEE Trans. Robot. 32(6), 1550–1557 (2016)

    Article  Google Scholar 

  14. Campeau-Lecours, A., Foucault, S., Laliberte, T., Mayer-St-Onge, B., Gosselin, C.: A cable-suspended intelligent crane assist device for the intuitive manipulation of large payloads. IEEE/ASME Trans. Mechatron. 21(4), 2073–2084 (2016)

    Article  Google Scholar 

  15. Dion-Gauvin, P., Gosselin, C.: Dynamic point-to-point trajectory planning of a three-DOF cable-suspended mechanism using the hypocycloid curve. IEEE/ASME Trans. Mechatron. 23(4), 1964–1972 (2018)

    Article  Google Scholar 

  16. Jia, H., Shang, W., Xie, F., Zhang, B., Cong, S.: Second-order slidingmode-based synchronization control of cable-driven parallel robots. IEEE/ASME Trans. Mechatron. 25(1), 383–394 (2019)

    Article  Google Scholar 

  17. Scalera, L., Gasparetto, A., Zanotto, D.: Design and experimental validation of a 3-DOF underactuated pendulum-like robot. IEEE/ASME Trans. Mechatron. 25(1), 217–228 (2019)

    Article  Google Scholar 

  18. Tao, M., Feng, B., Li, L., Li, L.: Forward kinematics solution of cable robot based on neural network and LM algorithm. In: 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), vol. 5, pp. 2519–2524 (2021)

  19. Carpio, M., Saltaren, R., Viola, J., Calderon, C., Guerra, J.: Proposal of a decoupled structure of Fuzzy-PID controllers applied to the position control in a planar CDPR. Electronics 10(6), 745 (2021)

    Article  Google Scholar 

  20. Huang, Y., Chen, Y., Zhang, X., Zhang, H., Song, C., Ota, J.: A novel cable-driven 7-DOF anthropomorphic manipulator. IEEE/ASME Trans. Mechatron. 26(4), 2174–2185 (2020)

    Article  Google Scholar 

  21. Zhang, B., Shang, W., Cong, S., Li, Z.: Coordinated dynamic control in the task space for redundantly actuated cable-driven parallel robots. IEEE/ASME Trans. Mechatron. 26(5), 2396–2407 (2020)

    Article  Google Scholar 

  22. Zi, B., Qian, S.: Design, analysis and control of cable-suspended parallel robots and its applications. (2017)

  23. Wang, R., Xie, Y., Chen, X., Li, Y.: Kinematic and dynamic modeling and workspace analysis of a suspended cable-driven parallel robot for schönflies motions. Machines 10(6), 451 (2022)

    Article  Google Scholar 

  24. Miyasaka, M., Haghighipanah, M., Li, Y., Matheson, J., Lewis, A., Hannaford, B.: Modeling cable-driven robot with hysteresis and cable-pulley network friction. IEEE/ASME Trans. Mechatron. 25(2), 1095–1104 (2020)

    Article  Google Scholar 

  25. Liu, Z., Zhang, X., Cai, Z., Peng, H., Wu, Z.: Real-time dynamics of cabledriven continuum robots considering the cable constraint and friction effect. IEEE Robot. Autom. Lett. 6(4), 6235–6242 (2021)

    Article  Google Scholar 

  26. Abu-Khalaf, M., Lewis, F.L.: Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach. Automatica 41(5), 779–791 (2005)

  27. Pearson, J.: Approximation methods in optimal control I sub-optimal control. Int. J. Electron. 13(5), 453–469 (1962)

    Google Scholar 

  28. Marcelo Tusset, A., Piccirillo, V., Bueno, A.M., Manoel Balthazar, J., Sado, D., Felix, J.L.P., Brasil, R.M.LRd.F.: Chaos control and sensitivity analysis of a double pendulum arm excited by an RLC circuit based nonlinear shaker. J. Vib. Control. 22(17), 3621–3637 (2016)

  29. Batmani, Y., Davoodi, M., Meskin, N.: Event-triggered suboptimal tracking controller design for a class of nonlinear discrete-time systems. IEEE Trans. Ind. Electron. 64(10), 8079–8087 (2017)

    Article  Google Scholar 

  30. Batmani, Y., Najafi, S.: Event-triggered \(H_\infty \) depth control of remotely operated underwater vehicles. IEEE Trans. Syst. Man Cybern. Syst. 51(2), 1224–1232 (2019)

    Article  Google Scholar 

  31. Batmani, Y., Khodakaramzadeh, S.: Non-linear estimation and observerbased output feedback control. IET Control Theory Appl. 14(17), 2548–2555 (2020)

    Article  MathSciNet  Google Scholar 

  32. Do, T.D., Choi, H.H., Jung, J.-W.: SDRE-based near optimal control system design for PM synchronous motor. IEEE Trans. Ind. Electron. 59(11), 4063–4074 (2011)

    Article  Google Scholar 

  33. Nasiri, N., Fakharian, A., Menhaj, M.B.: A novel controller for nonlinear uncertain systems using a combination of sdre and function approximation technique: Regulation and tracking of flexible-joint manipulators. J. Frankl. Inst. 358(10), 5185–5212 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ogata, K., et al.: Modern Control Engineering vol. 5. Prentice hall Upper Saddle River NJ, (2010)

  35. Çimen, T.: Systematic and effective design of nonlinear feedback controllers via the state-dependent Riccati equation (SDRE) method. Annu. Rev. Control. 34(1), 32–51 (2010)

    Article  Google Scholar 

  36. Batmani, Y., Davoodi, M., Meskin, N.: Nonlinear suboptimal tracking controller design using state-dependent Riccati equation technique. IEEE IEEE Trans. Control. Syst. Technol. 25(5), 1833–1839 (2016)

    Article  Google Scholar 

  37. Wernli, A., Cook, G.: Suboptimal control for the nonlinear quadratic regulator problem. Automatica 11(1), 75–84 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  38. Modares, H., Lewis, F.L.: Linear quadratic tracking control of partially-unknown continuous-time systems using reinforcement learning. IEEE Trans. Autom. Control. 59(11), 3051–3056 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yazadan Batmani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omidi, S., Batmani, Y. & Farhadi, S. Time-Varying Trajectory Tracking Controller Design for Cable-Suspended Planar Parallel Robots. J Intell Robot Syst 108, 76 (2023). https://doi.org/10.1007/s10846-023-01936-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-01936-w

Keywords

Navigation