Skip to main content

Constrained Optimal Control of Cable-Driven Parallel Robots Based on SDRE

  • Conference paper
  • First Online:
Cable-Driven Parallel Robots (CableCon 2021)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 104))

Included in the following conference series:

Abstract

This paper addresses constrained optimal control of Cable-Driven Parallel Robots (CDPRs) in details. As it is known, in a CDPR mechanism, cables should remain in tension at all movement maneuvers in contrast to conventional robots. In this paper, considering this constraint, an optimal control scheme is presented for this class of robots. To this end, first, the general dynamic model of the CDPR is converted to state-dependent coefficient (SDC) linear structure. In this model, uncertainties of the cable robot are included as a vector in the SDC linear structure. Next, a constrained optimal control algorithm based on the Hamiltonian and Karush-Kuhn-Tucker (KKT) conditions is proposed using the state-dependent coefficient parameterization form. The proposed control scheme is formed based on the state-dependent Riccati equation (SDRE), and the stability of the closed-loop system is proved using Lyapunov second method. Simulation results show the effectiveness of the proposed control algorithm in terms of tracking and coping with the uncertainties and external disturbances.

Supported by Electrical Engineering Department of Tehran Polytechnic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babaghasabha, R., Khosravi, M.A., Taghirad, H.D.: Adaptive robust control of fully-constrained cable driven parallel robots. Mechatronics 25, 27–36 (2015)

    Article  Google Scholar 

  2. Bruckmann, T., Mikelsons, L., Brandt, T., Hiller, M., Schramm, D.: Wire robots part i: Kinematics, analysis & design (2008)

    Google Scholar 

  3. Çimen, T.: State-dependent Riccati equation (SDRE) control: a survey. IFAC Proc. Vol. 41(2), 3761–3775 (2008)

    Article  Google Scholar 

  4. Cloutier, J.R., D’Souza, C.N., Mracek, C.P.: Nonlinear regulation and nonlinear H control via the state-dependent Riccati equation technique: Part 1, theory. In: Proceedings of the International Conference on Nonlinear Problems in Aviation and Aerospace, pp. 117–131. Embry Riddle University (1996)

    Google Scholar 

  5. Hervé, J., Sparacino, F.: Structural synthesis of parallel robots generating spatial translation. In: Proceedings of the 5th IEEE International Conference on Advanced Robotics, pp. 808–813 (1991)

    Google Scholar 

  6. Kawamura, S., Kino, H., Won, C.: High-speed manipulation by using parallel wire-driven robots. Robotica 18(1), 13–21 (2000)

    Article  Google Scholar 

  7. Khosravi, M.A., Taghirad, H.D.: Dynamic analysis and control of cable driven robots with elastic cables. Trans. Can. Soc. Mech. Eng. 35(4), 543–557 (2011)

    Article  Google Scholar 

  8. Khosravi, M.A., Taghirad, H.D.: Experimental performance of robust PID controller on a planar cable robot. In: Cable-Driven Parallel Robots, pp. 337–352. Springer (2013)

    Google Scholar 

  9. Khosravi, M.A., Taghirad, H.D.: Robust PID control of fully-constrained cable driven parallel robots. Mechatronics 24(2), 87–97 (2014)

    Article  Google Scholar 

  10. Kilicaslan, S.: Tracking control of elastic joint parallel robots via state-dependent Riccati equation. Turk. J. Electr. Eng. Comput. Sci. 23(2), 522–538 (2015)

    Article  Google Scholar 

  11. Korayem, M.H., Nekoo, S.R.: Nonlinear optimal control via finite time horizon state-dependent Riccati equation. In: 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), pp. 878–883. IEEE (2014)

    Google Scholar 

  12. Landsberger, S.E.: Design and construction of a cable-controlled, parallel link manipulator. Ph.D. thesis, Massachusetts Institute of Technology (1984)

    Google Scholar 

  13. Lewis, F.L., Vrabie, D., Syrmos, V.L.: Optimal Control. Wiley, Hoboken (2012)

    Book  Google Scholar 

  14. Menon, P., Lam, T., Crawford, L., Cheng, V.: Real-time computational methods for SDRE nonlinear control of missiles. In: Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301), vol. 1, pp. 232–237. IEEE (2002)

    Google Scholar 

  15. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  16. Oh, S.R., Agrawal, S.K.: Generation of feasible set points and control of a cable robot. IEEE Trans. Rob. 22(3), 551–558 (2006)

    Article  Google Scholar 

  17. Schmidt, V.L.: Modeling techniques and reliable real-time implementation of kinematics for cable-driven parallel robots using polymer fiber cables. Fraunhofer Verlag, Stuttgart (2017)

    Google Scholar 

  18. Zi, B., Duan, B., Du, J., Bao, H.: Dynamic modeling and active control of a cable-suspended parallel robot. Mechatronics 18(1), 1–12 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanie Marufkhani or Mohammad A. Khosravi .

Editor information

Editors and Affiliations

Appendices

A Appendix

The dynamic matrices of the 3 DOF planar CDPR are presented as follows [9]:

$$\begin{aligned}M = \left[ {\begin{array}{*{20}{c}} m&{}0&{}0\\ 0&{}m&{}0\\ 0&{}0&{}{{I_z}} \end{array}} \right] ;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,C\left( {x,\dot{x}} \right) = 0;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,G = \left[ {\begin{array}{*{20}{c}} 0\\ {mg}\\ 0 \end{array}} \right] ;\end{aligned}$$

where parameters \(m = 2.5\left( \boldsymbol{kg} \right) \), \({I_z} = 0.03\left( \boldsymbol{kg\,{m^2}} \right) \), and are considered. The position of the cable attachment points is considered as Article [9].

B Appendix

Consider the following notations:

Notation B.1: The symbol \(\left[ \left[ {.} \right] \right] \) indicates that the inside parameter is a vector, e.g.,

$$\begin{aligned} \left[ \left[ \theta \right] \right] = {\left[ {\begin{array}{*{20}{c}} {\theta _1^T}&{\theta _2^T}&\ldots&{\theta _N^T} \end{array}} \right] ^T} \end{aligned}$$
(64)

which N is the number of the vector elements.

Notation B.2: The symbol \(\left\{ . \right\} \) indicates the tensor space in which the inside parameter dimensions must be homogenized according to the problem.

Notation B.3: \({\theta _{i:}}\) and \({\theta _{:i}}\) represent the \(i_{th}\) row and \(i_{th}\) column of matrix \({\theta }\), respectively.

Since algebraically, the derivatives of the matrices R(z(t)) and Q(z(t)) in terms of z(t) create more extensive dimensions than R(z(t)) and Q(z(t)), the vectors \({\left[ \left[ {{e^T}\left( t \right) \cdot \frac{{\partial Q(z(t))}}{{\partial z\left( t \right) }} \cdot e\left( t \right) } \right] \right] }\) and \({{\left[ \left[ {{f^T}\left( t \right) \cdot \frac{{\partial R(z(t))}}{{\partial z\left( t \right) }} \cdot f\left( t \right) } \right] \right] }}\) are used. With regards to Notation B.1, after multiplying their internal parameters, an answer vector is formed for each of them. Hence, the dimensions of the problem are not affected. According to the discussed topics and taking advantage of Notation B.2, the tensor space \({\left\{ {{e^T}\left( t \right) \cdot \frac{{\partial Q(z(t))}}{{\partial z\left( t \right) }} \cdot e\left( t \right) } \right\} }\) and \({\left\{ {{f^T}\left( t \right) \cdot \frac{{\partial R(z(t))}}{{\partial z\left( t \right) }} \cdot f\left( t \right) } \right\} }\) can be calculated. The exact amount of vectors \({\left[ \left[ {{e^T}\left( t \right) \cdot \frac{{\partial Q(z(t))}}{{\partial z\left( t \right) }} \cdot e\left( t \right) } \right] \right] }\) and \({\left[ \left[ {{f^T}\left( t \right) \cdot \frac{{\partial R(z(t))}}{{\partial z\left( t \right) }} \cdot f\left( t \right) } \right] \right] }\) are obtained as Eqs. (65) and (66).

$$\begin{aligned}&{\left[ \left[ {{e^T}\left( t \right) \cdot \frac{{\partial Q(z(t))}}{{\partial z\left( t \right) }} \cdot e\left( t \right) } \right] \right] = \left[ {\begin{array}{*{20}{c}} {{e^T}\frac{{\partial {Q_{:1}}}}{{\partial {z_1}}}}&{} \ldots &{}{{e^T}\frac{{\partial {Q_{:n}}}}{{\partial {z_1}}}}\\ \vdots &{} \ddots &{} \vdots \\ {{e^T}\frac{{\partial {Q_{:1}}}}{{\partial {z_n}}}}&{} \cdots &{}{{e^T}\frac{{\partial {Q_{:n}}}}{{\partial {z_n}}}} \end{array}} \right] e\left( t \right) } \end{aligned}$$
(65)
$$\begin{aligned}&{\left[ \left[ {{f^T}\left( t \right) \cdot \frac{{\partial R(z(t))}}{{\partial z\left( t \right) }} \cdot f\left( t \right) } \right] \right] = \left[ {\begin{array}{*{20}{c}} {{f^T}\frac{{\partial {R_{:1}}}}{{\partial {z_1}}}}&{} \ldots &{}{{f^T}\frac{{\partial {R_{:n}}}}{{\partial {z_1}}}}\\ \vdots &{} \ddots &{} \vdots \\ {{f^T}\frac{{\partial {R_{:1}}}}{{\partial {z_n}}}}&{} \cdots &{}{{f^T}\frac{{\partial {R_{:n}}}}{{\partial {z_n}}}} \end{array}} \right] f\left( t \right) } \end{aligned}$$
(66)

According to Notation B.3, the mentioned tensor spaces are computed.

$$\begin{aligned}&{\left\{ {\frac{{\partial A(z(t))}}{{\partial z(t)}} \cdot z(t)} \right\} = \left[ {\begin{array}{*{20}{c}} {\frac{{\partial {A_{1:}}}}{{\partial {z_1}}}z}&{} \ldots &{}{\frac{{\partial {A_{1:}}}}{{\partial {z_n}}}z}\\ \vdots &{} \ddots &{} \vdots \\ {\frac{{\partial {A_{n:}}}}{{\partial {z_1}}}z}&{} \cdots &{}{\frac{{\partial {A_{n:}}}}{{\partial {z_n}}}z} \end{array}} \right] } \end{aligned}$$
(67)
$$\begin{aligned}&{\left\{ {\frac{{\partial B(z(t))}}{{\partial z(t)}} \cdot f(t)} \right\} = \left[ {\begin{array}{*{20}{c}} {\frac{{\partial {B_{1:}}}}{{\partial {z_1}}}f}&{} \ldots &{}{\frac{{\partial {B_{1:}}}}{{\partial {z_n}}}f}\\ \vdots &{} \ddots &{} \vdots \\ {\frac{{\partial {B_{n:}}}}{{\partial {z_1}}}f}&{} \cdots &{}{\frac{{\partial {B_{n:}}}}{{\partial {z_n}}}f} \end{array}} \right] } \end{aligned}$$
(68)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marufkhani, H., Khosravi, M.A. (2021). Constrained Optimal Control of Cable-Driven Parallel Robots Based on SDRE. In: Gouttefarde, M., Bruckmann, T., Pott, A. (eds) Cable-Driven Parallel Robots. CableCon 2021. Mechanisms and Machine Science, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-030-75789-2_20

Download citation

Publish with us

Policies and ethics