Skip to main content
Log in

Task Planning System with Priority for AAL Environments

  • Short Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

There are numerous problems concerning the concepts of the Internet of Robotic Things (IoRT). Two notions are particularly challenging to achieve: heterogeneity and interoperability. A new architecture is proposed here to solve these problems. The goal of this study is to examine the design and development of a completely new architecture that integrates a range of components and robots into an intelligent environment. The following elements of the architecture are described, the connection with the environment, monitoring, the planning system, and the knowledge base of the system. In the main part, the article analyzes how the architecture generates plans from pre-established knowledge through ontologies and how it prioritizes certain plans over others. In this context, the structure within the ontologies is detailed, as well as their operation, how they can include relevant user information, and their assistance in generating plans. For the purpose of evaluating the architecture, the outcomes of two cases are presented in a virtual scenario and through a series of activities whose performance is examined in terms of time and priority.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Code or Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study. The code is available by the corresponding author on reasonable request.

References

  1. Simoens, P., Dragone, M., Saffiotti, A.: The Internet of Robotic Things: A review of concept, added value and applications. Int. J. Adv. Robot. Syst. 15(1), 1–11 (2018). https://doi.org/10.1177/1729881418759424

    Article  Google Scholar 

  2. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Elsevier/Morgan Kaufmann, San Mateo (2004). https://doi.org/10.1016/B978-1-55860-856-6.X5000-5

    MATH  Google Scholar 

  3. McGann, C., Py, F., Rajan, K., Thomas, H., Henthorn, R., McEwen, R.: A deliberative architecture for AUV control. Proceedings - IEEE International Conference on Robotics and Automation, pp. 1049–1054. https://doi.org/10.1109/ROBOT.2008.4543343 (2008)

  4. Chanel, C., Lesire, C., Töchteil-Konigsbuch, F.: A robotic execution framework for online probabilistic (re)planning. In: Proceedings International Conference on Automated Planning and Scheduling, ICAPS, vol. 2014-Janua. www.aaai.org, pp 454–462 (2014)

  5. Gaschler, A., Petrick, R.P.A., Giuliani, M., Rickert, M., Knoll, A.: KVP: A knowledge of volumes approach to robot task planning. In: IEEE International Conference on Intelligent Robots and Systems. https://doi.org/10.1109/IROS.2013.6696354, http://homepages.inf.ed.ac.uk/, pp 202–208 (2013)

  6. Lu, F., Tian, G., Li, Q.: An improved JSHOP2 planner oriented to service robot multi-tasks planning. In: Proceedings of the 28th Chinese Control and Decision Conference, CCDC 2016. https://doi.org/10.1109/CCDC.2016.7532213, pp 6756–6760 (2016)

  7. Goldman, R.P., Kuter, U.: Hierarchical task network planning in common Lisp: The case of SHOP3. Proceedings of ELS ’19: European Lisp Symposium (ELS ’19), pp. 73–80. https://doi.org/10.5281/zenodo.2633324 (2019)

  8. Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carrera, A., Palomeras, N., Hurtós, N., Carreras, M.: Rosplan: Planning in the robot operating system. In: Proceedings International Conference on Automated Planning and Scheduling, ICAPS, vol. 2015-Janua. www.aaai.org, pp 333–341 (2015)

  9. Coles, A., Coles, A., Fox, M., Long, D.: Forward-chaining partial-order planning. ICAPS 2010 - Proceedings of the 20th International Conference on Automated Planning and Scheduling (Icaps), pp. 42–49 (2010)

  10. Eyerich, P., Mattmüller, R., Röger, G.: Using the context-enhanced additive heuristic for temporal and numeric planning. Springer Tracts in Adv. Robot. 76(STAR), 49–64 (2012). https://doi.org/10.1007/978-3-642-25116-0_6

    Article  Google Scholar 

  11. Gerevini, A., Serina, I.: LPG: A planner based on local search for planning graphs with action costs. Aips 2002(2), 13–22 (2002)

    Google Scholar 

  12. Canal, G., Cashmore, M., Krivić, S., Alenyà, G., Magazzeni, D., Torras, C.: Probabilistic planning for robotics with ROSPlan. In: Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11649 LNAI. https://doi.org/10.1007/978-3-030-23807-0_20, https://www.turtlebot.com/, pp 236–250 (2019)

  13. González-Santamarta, M., Rodríguez-Lera, F. J., Álvarez-Aparicio, C., Guerrero-Higueras, A.́M., Fernández-Llamas, C.: MERLIN a cognitive architecture for service robots. Appl. Sci. (Switzerland) 10(17). https://doi.org/10.3390/app10175989 (2020)

  14. Harman, H., Chintamani, K., Simoens, P.: Robot assistance in dynamic smart environments—a hierarchical continual planning in the now framework. Sensors (Switzerland) 19(22). https://doi.org/10.3390/s19224856 (2019)

  15. Sakamoto, J., Kiyoyama, K., Matsumoto, K., Pyo, Y., Kawamura, A., Kurazume, R.: Development of ROS-TMS 5.0 for informationally structured environment. ROBOMECH J. 5, 24 (2018). https://doi.org/10.1186/s40648-018-0123-9

    Article  Google Scholar 

  16. Broxvall, M., Gritti, M., Saffiotti, A., Seo, B.S., Cho, Y.J.: PEIS ecology: Integrating robots into smart environments. In: Proceedings - IEEE International Conference on Robotics and Automation. https://doi.org/10.1109/ROBOT.2006.1641186, vol. 2006, pp 212–218 (2006)

  17. Walker, N., Jiang, Y., Cakmak, M., Stone, P.: Desiderata for Planning Systems in General-Purpose Service Robots. arXiv:1907.02300

  18. Dragone, M., Amato, G., Bacciu, D., Chessa, S., Coleman, S., Rocco, M.D., Gallicchio, C., Gennaro, C., Lozano, H., Maguire, L., McGinnity, M., Micheli, A., O’Hare, G.M.P., Renteria, A., Saffiotti, A., Vairo, C., Vance, P.: A cognitive robotic ecology approach to self-configuring and evolving AAL systems. Eng. Appl. Artif. Intel. 45, 269–280 (2015). https://doi.org/10.1016/j.engappai.2015.07.004

    Article  Google Scholar 

  19. Paragliola, G., Coronato, A.: A reinforcement-learning-based approach for the planning of safety strategies in AAL applications. In: Intelligent Environments 2018. https://doi.org/10.3233/978-1-61499-874-7-498, vol. 23, pp 498–505 (2018)

  20. Sun, X., Zhang, Y., Chen, J.: RTPO: A domain knowledge base for robot task planning. Electronics (Switzerland) 8(10). https://doi.org/10.3390/electronics8101105 (2019)

  21. Manzoor, S., Rocha, Y.G., Joo, S.H., Bae, S.H., Kim, E.J., Joo, K.J., Kuc, T.Y.: Ontology-based knowledge representation in robotic systems: A survey oriented toward applications. Appl. Sci. (Switzerland) 11(10). https://doi.org/10.3390/app11104324 (2021)

  22. Musen, M. A.: Protégé Team: The Protégé Project: A look back and a look forward. AI Matters 1(4), 4–12 (2015). https://doi.org/10.1145/2757001.2757003

    Article  Google Scholar 

  23. Auer, S., Dietzold, S., Riechert, T.: OntoWiki - A tool for social, semantic collaboration. In: Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4273 LNCS. https://doi.org/10.1007/11926078_53, http://3ba.se, pp 736–749. Springer (2006)

  24. Haase, P., Lewen, H., Studer, R., Tran, D.: The neon ontology engineering toolkit. Www (April), 4–6 (2008)

  25. Tenorth, M., Beetz, M.: KnowRob: A knowledge processing infrastructure for cognition-enabled robots. Int. J. Robot. Res. 32(5), 566–590 (2013). https://doi.org/10.1177/0278364913481635

    Article  Google Scholar 

  26. Beetz, M., Bessler, D., Haidu, A., Pomarlan, M., Bozcuoglu, A.K., Bartels, G.: Know Rob 2.0 - A 2nd generation knowledge processing framework for cognition-enabled robotic agents. In: Proceedings - IEEE International Conference on Robotics and Automation. https://doi.org/10.1109/ICRA.2018.8460964, pp 512–519. Institute of Electrical and Electronics Engineers Inc (2018)

  27. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory Pract. Logic Program. 12(1-2), 67–96 (2012). arXiv:1011.5332, https://doi.org/10.1017/S1471068411000494

    Article  MathSciNet  MATH  Google Scholar 

  28. Bustos, P., Manso, L.J., Bandera, A.J., Bandera, J.P., García-Varea, I., Martínez-Gómez, J.: The CORTEX cognitive robotics architecture: Use cases. Cogn. Syst. Res. 55, 107–123 (2019). https://doi.org/10.1016/j.cogsys.2019.01.003

    Article  Google Scholar 

  29. Casiddu, N., Cesta, A., Cortellessa, G., Orlandini, A., Porfirione, C., Divano, A., Micheli, E., Zallio, M.: Robot interface design: The giraff telepresence robot for social interaction. Biosyst. Biorobotics 11, 499–509 (2015). https://doi.org/10.1007/978-3-319-18374-9_46

    Article  Google Scholar 

  30. Pandey, A.K., Gelin, R.: A mass-produced sociable humanoid robot: Pepper: The first machine of its kind. IEEE Robot. Autom. Mag. 25(3), 40–48 (2018). https://doi.org/10.1109/MRA.2018.2833157

    Article  Google Scholar 

  31. Fikes, R.E., Nilsson, N.J.: Strips: A new approach to the application of theorem proving to problem solving. Artif. Intell. 2(3-4), 189–208 (1971). https://doi.org/10.1016/0004-3702(71)90010-5

    Article  MATH  Google Scholar 

  32. Boren, J., Cousins, S.: The SMACH high-level executive. IEEE Robot. Autom. Mag. 17(4), 18–20 (2010). https://doi.org/10.1109/MRA.2010.938836

    Article  Google Scholar 

  33. Loza-Matovelle, D., Verdugo, A., Zalama, E., Gómez-García-Bermejo, J.: An architecture for the integration of robots and sensors for the care of the elderly in an Ambient Assisted Living Environment. Robotics 8(3). https://doi.org/10.3390/robotics8030076 (2019)

  34. Masabanda, C., Oña, A.: Diseño Y Construcci ón de Una Cabeza Robótica Antropomórfica Con Proyección gestual. http://repositorio.espe.edu.ec/jspui/handle/21000/21894

  35. Espinoza, I., Zúñiga, C.: Implementación de Un Sistema de Navegación Reactiva-social Y Telepresencia en el Prototipo de Un Robot Móvil diferencial. http://repositorio.espe.edu.ec/jspui/handle/21000/23723

  36. Almeida, P., Sánchez, S.: Diseño Y Construcción de Un Sistema de Monitoreo de Signos Vitales, Ubicación, Identificación Y Detector de Caídas para adultos mayores. http://repositorio.espe.edu.ec/jspui/handle/21000/21971

  37. Agnieszka, K., Sebastian, S., Carla, A., Natalia, T., Joan, H.-F., Carles, R.J., Urszula, S., Katarzyna, G.-A., Dorota, S.-S., Konrad, R.: Challenges for service robots-requirements of elderly adults with cognitive impairments. Frontiers in Neurology 8. https://www.frontiersin.org/articles/10.3389/fneur.2017.00228. (2007)

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript

The authors have no relevant financial or non-financial interests to disclose.

The research leading to these results has received funding from projects ROSOGAR PID2021-123020OB-I00 funded by MCIN/ AEI /10.13039/501100011033 / FEDER, UE, and EIAROB funded by Consejería de Familia of the Junta de Castilla y León - Next Generation EU.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Analysis and interpretation performed by all authors. The first draft of the manuscript was written by David Loza-Matovelle and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to David Loza-Matovelle.

Ethics declarations

Ethics approval

There are no human subjects in this article and informed consent is not applicable.

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

David Loza-Matovelle, Christian Zuñiga, Eduardo Zalama and Jaime Gómez-García-Bermejo contributed equally to this work.

Appendix A: System Architecture

Appendix A: System Architecture

Fig. 14
figure 14

System architecture

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loza-Matovelle, D., Zuñiga, C., Zalama, E. et al. Task Planning System with Priority for AAL Environments. J Intell Robot Syst 107, 19 (2023). https://doi.org/10.1007/s10846-023-01806-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-01806-5

Keywords

Navigation