Skip to main content
Log in

Search for Smart Evaders with Swarms of Sweeping Agents- a Resource Allocation Perspective

  • Short Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Assume that inside a given planar circular region, there are smart mobile evaders, that we would like to detect using sweeping agents. We assume that the agents total sensing resources are a line sensor of predetermined length, which is divided between the swarm’s agents. We propose procedures for designing cooperative sweeping processes that guarantee the detection of all evaders that were inside the original evader region. The task is accomplished by deriving conditions on the sweeping velocity of the agents and their paths, thus ensuring that evaders with a given limit on their velocity are caught. A simpler task for the swarm is the confinement of evaders to their initial domain. The feasibility of completing these tasks depends on geometric and dynamic constraints that impose a lower bound on the pursuers’ velocities. This lower bound ensures the satisfaction of the confinement task. Increasing the velocity above the lower bound enables the sweeper swarm of agents to complete the search task as well. We present results on the total search time as a function of the velocity of the swarm’s agents given the initial conditions on the size of the search region and the evaders’ maximal velocity under limited sensing capabilities of the swarm. The established results provide insights on the practical tradeoffs in designing a multi-agent system, where the alternatives are to deploy a smaller number of sophisticated and expensive agents, or to deploy a larger number of simple, cost-effective agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

A video attachment is submitted with the manuscript as supplementary material.

References

  1. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Springer Science & Business Media, Berlin (2006)

    MATH  Google Scholar 

  2. Altshuler, Y., Bruckstein, A.M., Wagner, I.A.: Swarm robotics for a dynamic cleaning problem. In: Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005, pp 209–216. IEEE (2005)

    Chapter  Google Scholar 

  3. Altshuler, Y., Yanovsky, V., Wagner, I.A., Bruckstein, A.M.: Efficient cooperative search of smart targets using uav swarms. Robotica 26(4), 551–557 (2008)

    Article  Google Scholar 

  4. Altshuler, Y., Yanovski, V., Wagner, I.A., Bruckstein, A.M.: Multi-agent cooperative cleaning of expanding domains. Int. J. Robot. Res. 30(8), 1037–1071 (2011)

    Article  Google Scholar 

  5. Bressan, A.: Differential inclusions and the control of forest fires. J. Diff. Equ. 243(2), 179–207 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bressan, A.: Dynamic blocking problems for a model of fire propagation. In: Advances in Applied Mathematics Modeling, and Computational Science, pp 11–40. Springer (2013)

    Chapter  Google Scholar 

  7. Bressan, A., Wang, T.: On the optimal strategy for an isotropic blocking problem. Calc. Var. Partial. Differ. Equ. 45(1–2), 125–145 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bressan, A., Burago, M., Friend, A., Jou, J.: Blocking strategies for a fire control problem. Anal. Appl. 6(03), 229–246 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Casbeer, D.W., Beard, R.W., McLain, T.W., Li, S.M., Mehra, R.K.: Forest fire monitoring with multiple small uavs. In: Proceedings of the 2005, American Control Conference, 2005, pp 3530–3535. IEEE (2005)

    Chapter  Google Scholar 

  10. Francos, R.M., Bruckstein, A.M.: Search for smart evaders with swarms of sweeping agents. IEEE Trans. Robot. 38(2), 1080–1100 (2021a)

    Article  Google Scholar 

  11. Francos, R.M., Bruckstein, A.M.: Search for smart evaders with sweeping agents. Robotica 39(12), 2210–2245 (2021b)

    Article  Google Scholar 

  12. Hew, P.C.: Linear and concentric arc patrols against smart evaders. Mil. Oper. Res. 20(3), 39–48 (2015)

    Google Scholar 

  13. Klein, R., Langetepe, E., Schwarzwald, B., Levcopoulos, C., Lingas, A.: On a fire fighter’s problem. Int. J. Found. Comput. Sci. 30(02), 231–246 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Koopman, B.O.: Search and Screening: General Principles with Historical Applications. Pergamon Press, Oxford (1980)

    MATH  Google Scholar 

  15. McGee, T.G., Hedrick, J.K.: Guaranteed strategies to search for mobile evaders in the plane. In: 2006 American Control Conference, pp 6–pp. IEEE (2006)

    Google Scholar 

  16. Passino, K., Polycarpou, M., Jacques, D., Pachter, M., Liu, Y., Yang, Y., Flint, M., Baum, M.: Cooperative control for autonomous air vehicles. In: Cooperative Control and Optimization, pp 233–271. Springer (2002)

    Chapter  Google Scholar 

  17. Rekleitis, I., Lee-Shue, V., New, A.P., Choset, H.: Limited communication, multi-robot team based coverage. In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 4, pp 3462–3468. IEEE (2004)

    Chapter  Google Scholar 

  18. Shishika, D., Kumar, V.: Local-game decomposition for multiplayer perimeter-defense problem. In: 2018 IEEE Conference on Decision and Control (CDC), pp 2093–2100. IEEE (2018)

    Chapter  Google Scholar 

  19. Shishika, D., Paulos, J., Dorothy, M.R., Hsieh, M.A., Kumar, V.: Team composition for perimeter defense with patrollers and defenders. In: 2019 IEEE 58Th Conference on Decision and Control (CDC), pp 7325–7332. IEEE (2019)

    Chapter  Google Scholar 

  20. Shishika, D., Paulos, J., Kumar, V.: Cooperative team strategies for multi-player perimeter-defense games. IEEE Robotics and Automation Letters 5(2), 2738–2745 (2020)

    Article  Google Scholar 

  21. Stone, L.D., Royset, J.O., Washburn, A.R.: Optimal Search for Moving Targets (International Series in Operations Research & Management Science 237). Springer, Cham (2016)

    Book  Google Scholar 

  22. Susca, S., Bullo, F., Martinez, S.: Monitoring environmental boundaries with a robotic sensor network. IEEE Trans. Control Syst. Technol. 16(2), 288–296 (2008)

    Article  Google Scholar 

  23. Tang, Z., Ozguner, U.: On non-escape search for a moving target by multiple mobile sensor agents. In: 2006 American Control Conference, pp 6–pp. IEEE (2006)

    Google Scholar 

  24. Tisue, S., Wilensky, U.: Netlogo: A simple environment for modeling complexity. In: International Conference on Complex Systems, Boston, MA, vol. 21, pp 16–21 (2004)

    Google Scholar 

  25. Vincent, P., Rubin, I.: A framework and analysis for cooperative search using uav swarms. In: Proceedings of the 2004 ACM Symposium on Applied computing (ACM), pp 79–86 (2004)

    Chapter  Google Scholar 

  26. Wagner, I.A., Bruckstein, A.M.: Cooperative cleaners: A case of distributed ant-robotics. communications, Computation, Control, and Signal Processing: A Tribute to Thomas Kailath 289–308 (1997)

Download references

Acknowledgements

We thank the editors and the anonymous reviewers for their constructive and useful comments that contributed to the improved presentation of our results.

Funding

This work was partially supported by ADRI (Advanced Defense Research Institute) Technion, and by the Technion Autonomous Systems Program (TASP).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Analysis and development of methodology were performed by Roee M. Francos and Alfred M. Bruckstein. The first draft of the manuscript was written by Roee M. Francos and all authors commented on previous versions of the manuscript. Visualization of the results and the creation of software simulations were performed by Roee M. Francos. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Roee M. Francos.

Ethics declarations

Consent for Publication

not applicable.

Conflict of Interests

not applicable.

Additional information

Consent to Participate

not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by ADRI (Advanced Defense Research Institute) Technion, and by the Technion Autonomous Systems Program (TASP).

Appendices

Appendix A

In this appendix the time of inward advancements until the evader region is bounded by a circle with a radius that is smaller or equal to \(\frac {r}{n}\) is computed for a swarm that performs the circular sweep process. This time is denoted by \(\widetilde {T}_{in}(n)= \sum \limits _{i = 0}^{{N_{n}} - 2} {{T_{i{n_{i}}}}}\). This proof continues the derivation from Section 4. The expression for the term \({\sum \limits _{i = 0}^{{N_{n}} - 2} {{R_{i}}} }\) is derived in Appendix E of [10]. It is given by,

$$ \sum\limits_{i = 0}^{{N_{n}} - 2} {{R_{i}}} = \frac{{{R_{0}} - {c_{2}}{R_{{N_{n}} - 2}} + ({N_{n}} - 2){c_{1}}}}{{1 - {c_{2}}}} $$
(118)

\({R_{{N_{n}} - 2}}\) is calculated in Appendix B of [10]. It is given by,

$$ {R_{{N_{n}} - 2}} = \frac{{{c_{1}}}}{{1 - {c_{2}}}} + {c_{2}}^{{N_{n}} - 2}\left( {{R_{0}} - \frac{{{c_{1}}}}{{1 - {c_{2}}}}} \right) $$
(119)

Substituting the coefficients in Eq. 119 yields,

$$ \begin{array}{l} {R_{{N_{n}} - 2}} = \frac{{r{V_{s}}}}{{2\pi {V_{T}}}} + {\left( {1 + \frac{{2\pi {V_{T}}}}{{n\left( {{V_{s}} + {V_{T}}} \right)}}} \right)^{{N_{n}} - 2}}\left( {{R_{0}} - \frac{{r{V_{s}}}}{{2\pi {V_{T}}}}} \right) \end{array} $$
(120)

Substituting the coefficients Eq. 11818 yields,

$$ \begin{array}{@{}rcl@{}} \sum\limits_{i = 0}^{{N_{n}} - 2} {{R_{i}}} &=& \frac{{r{V_{s}}n\left( {{V_{s}} + {V_{T}}} \right)}}{{{{\left( {2\pi {V_{T}}} \right)}^{2}}}}\left( {1 + \frac{{2\pi {V_{T}}}}{{n\left( {{V_{s}} + {V_{T}}} \right)}}} \right)\\ &&+ {\left( {1 + \frac{{2\pi {V_{T}}}}{{n\left( {{V_{s}} + {V_{T}}} \right)}}} \right)^{{N_{n}} - 1}}\left( {{R_{0}} - \frac{{r{V_{s}}}}{{2\pi {V_{T}}}}} \right) \\&&\times\frac{{n\left( {{V_{s}} + {V_{T}}} \right)}}{{2\pi {V_{T}}}}+ \frac{{({N_{n}} - 2)r{V_{s}}}}{{2\pi {V_{T}}}} \\ &&- \frac{{{R_{0}}n\left( {{V_{s}} + {V_{T}}} \right)}}{{2\pi {V_{T}}}} \end{array} $$
(121)

Plugging the expression for \({\sum \limits _{i = 0}^{{N_{n}} - 2} {{R_{i}}} }\) from Eqs. 118 into 27 results in,

$$ \begin{array}{l} \sum\limits_{i = 0}^{{N_{n}} - 2} {{T_{i{n_{i}}}} = } \frac{{\left( {{N_{n}} - 1} \right)r}}{{n\left( {{V_{s}} + {V_{T}}} \right)}} - \frac{{2\pi {V_{T}}}}{{n{V_{s}}\left( {{V_{s}} + {V_{T}}} \right)}}\left( {\frac{{{R_{0}} - {c_{2}}{R_{{N_{n}} - 2}} + ({N_{n}} - 2){c_{1}}}}{{1 - {c_{2}}}}} \right) \end{array} $$
(122)

And substituting the developed coefficients into Eq. 5 yields,

$$ \begin{array}{@{}rcl@{}} \widetilde{T}_{in}(n)&=& \frac{{\left( {{N_{n}} - 1} \right)r}}{{n\left( {{V_{s}} + {V_{T}}} \right)}} - \frac{r}{{2\pi {V_{T}}}}\left( {1 + \frac{{2\pi {V_{T}}}}{{n\left( {{V_{s}} + {V_{T}}} \right)}}} \right) \\ &&-{\left( {1 + \frac{{2\pi {V_{T}}}}{{n\left( {{V_{s}} + {V_{T}}} \right)}}} \right)^{{N_{n}} - 1}}\left( {\frac{{{R_{0}}}}{{{V_{s}}}} - \frac{r}{{2\pi {V_{T}}}}} \right)\\ && - \frac{{({N_{n}} - 2)r}}{{n\left( {{V_{s}} + {V_{T}}} \right)}} + \frac{{{R_{0}}}}{{{V_{s}}}} \end{array} $$
(123)

Appendix B

In this appendix the time of inward advancements until the evader region is reduced to a circle with a radius that is smaller or equal to \(\frac {2r}{n}\) is computed for a swarm that performs the spiral sweep process. This time is denoted by \(\widetilde {T}_{in}(n) = \sum \limits _{i = 0}^{{N_{n}} - 2} {{T_{i{n_{i}}}}}\). This proof continues the derivation from section 5. After rearranging terms (87) resolves to,

$$ \begin{array}{l} \sum\limits_{i = 0}^{{N_{n}} - 2} {{T_{i{n_{i}}}}} = \frac{{2r\left( {{N_{n}} - 1} \right) - n\left( {{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}} - 1} \right)\sum\limits_{i = 0}^{{N_{n}} - 2} {\widetilde{R}_{i}} }}{{n\left( {{V_{s}} + {V_{T}}} \right)}} \end{array} $$
(124)

The term \(\sum \limits _{i = 0}^{{N_{n}} - 2} {\widetilde {R}_{i}}\) is calculated in appendix E of [10]. It is given by,

$$ \sum\limits_{i = 0}^{{N_{n}} - 2} {\widetilde{R}_{i}} = \frac{{\widetilde{R}_{0} - {c_{2}}\widetilde{R}_{{N_{n}} - 2} + ({N_{n}} - 2){c_{1}}}}{{1 - {c_{2}}}} $$
(125)

Where the term \(\widetilde {R}_{{N_{n}} - 2}\) is calculated in Appendix B of [10]. It is given by,

$$ \widetilde{R}_{{N_{n}} - 2} = \frac{{{c_{1}}}}{{1 - {c_{2}}}} + {c_{2}}^{{N_{n}} - 2}\left( {\widetilde{R}_{0} - \frac{{{c_{1}}}}{{1 - {c_{2}}}}} \right) $$
(126)

Substituting the coefficients in Eq. 126 yields,

$$ \begin{array}{l} \widetilde{R}_{{N_{n}} - 2} = - \frac{{2r}}{{n\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}} \\ +{\left( {\frac{{{V_{T}} + {V_{s}}{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}}}{{{V_{s}} + {V_{T}}}}} \right)^{{N_{n}} - 2}} \left( {\frac{{\widetilde{{R_{0}}}n\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right) + 2r}}{{n\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}}} \right) \end{array} $$
(127)

Substituting the coefficients in Eq. 125 yields,

$$ \begin{array}{l} \sum\limits_{i = 0}^{{N_{n}} - 2} {{R_{i}}} = \frac{{{R_{0}}\left( {{V_{s}} + {V_{T}}} \right)}}{{{V_{s}}\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}} - \frac{{r\left( {{V_{s}} + {V_{T}}} \right)}}{{n{V_{s}}\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}} \\+ \frac{{2r\left( {{V_{T}} + {V_{s}}{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}}{{n{V_{s}}{{\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}^{2}}}}- \left( {{V_{s}} + {V_{T}}} \right){c_{2}}^{{N_{n}} - 1} \\ \times\left( {\frac{{{R_{0}}n\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right) + r\left( {1 + {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}}{{n{V_{s}}{{\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}^{2}}}}} \right)\\ { - \frac{{r\left( {{V_{s}} + {V_{T}}} \right)\left( {\frac{{{V_{T}} + {V_{s}}{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}}}{{{V_{s}} + {V_{T}}}}} \right)}}{{n{V_{s}}\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}} - \frac{{2r({N_{n}} - 2)}}{{n\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}}} \end{array} $$
(128)

Plugging the expression for \({\sum \limits _{i = 0}^{{N_{n}} - 2} {{R_{i}}} }\) from Eqs. 128 into 124 results in,

$$ \begin{array}{*{20}{l}} {\widetilde{T}_{in}}(n) = \sum\limits_{i = 0}^{{N_{n}} - 2} {{T_{i{n_{i}}}}} = \frac{{2r\left( {{V_{T}} + {V_{s}}{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}}{{n{V_{s}}\left( {{V_{s}} + {V_{T}}} \right)\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}} \\+ \frac{{{R_{0}}}}{{{V_{s}}}} - \frac{r}{{n{V_{s}}}} -{\left( {\frac{{{V_{T}} + {V_{s}}{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}}}{{{V_{s}} + {V_{T}}}}} \right)^{{N_{n}} - 1}} \\ \times\left( {\frac{{{R_{0}}n\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right) + r\left( {1 + {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}}{{n{V_{s}}\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}}} \right) \\ -{\frac{{r\left( {{V_{T}} + {V_{s}}{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}}{{n{V_{s}}\left( {{V_{s}} + {V_{T}}} \right)}} + \frac{{2r}}{{n\left( {{V_{s}} + {V_{T}}} \right)}}} \end{array} $$
(129)

Appendix C

Lemma 1

For a swarm of n agents, where n is even, that performs the circular pincer sweep process, the limit on the time it takes the swarm to clean the entire evader region as \({n \to \infty }\), is given by,

$$ \begin{array}{@{}rcl@{}} \lim\limits_{n \to \infty } T(n) &=& \lim\limits_{n \to \infty } {T_{circular}}(n) + \lim\limits_{n \to \infty } {T_{in}}(n) \\ &=&\frac{{r\left( {{V_{s}} + {V_{T}}} \right)\ln \left( {\frac{{r{V_{s}}}}{{r{V_{s}} - 2\pi {R_{0}}{V_{T}}}}} \right)}}{{2\pi {V_{T}}^{2}}} - \frac{{{R_{0}}}}{{{V_{T}}}} \end{array} $$
(130)

Proof

We have that,

$$ \lim\limits_{n \to \infty } T(n) = \lim\limits_{n \to \infty } {T_{circular}}(n) + \lim\limits_{n \to \infty } {T_{in}}(n) $$
(131)

The circular sweep times, Tcircular(n) are given by,

$$ \begin{array}{l} {T_{circular}}(n) = \frac{{r\left( {{V_{s}} + {V_{T}}} \right)}}{{2\pi {V_{T}}^{2}}}\left( {1 + \frac{{2\pi {V_{T}}}}{{n\left( {{V_{s}} + {V_{T}}} \right)}}} \right) + \frac{r}{{n{V_{T}}}}\left( {{N_{n}} - 1} \right) \\ - \frac{{{R_{0}}\left( {{V_{s}} + {V_{T}}} \right)}}{{{V_{s}}{V_{T}}}} + \frac{{2\pi r}}{{{n^{2}}{V_{s}}}} \\ +\frac{{n\left( {{V_{s}} + {V_{T}}} \right)}}{{2\pi {V_{T}}}}{\left( {1 + \frac{{2\pi {V_{T}}}}{{n\left( {{V_{s}} + {V_{T}}} \right)}}} \right)^{{N_{n}}}}\left( {\frac{{2\pi {R_{0}}}}{{n{V_{s}}}} - \frac{r}{{n{V_{T}}}}} \right) \end{array} $$
(132)

The number of sweeps it takes the sweepers to reduce the evader region to be bounded by a circle with a radius that is less than or equal to \(\frac {r}{n}\), Nn, is given by,

$$ {N_{n}} = \left\lceil {\frac{{\ln \left( {\frac{{2\pi {V_{T}}r - r{V_{s}}n}}{{n\left( {2\pi {R_{0}}{V_{T}} - r{V_{s}}} \right)}}} \right)}}{{\ln \left( {1 + \frac{{2\pi {V_{T}}}}{{n\left( {{V_{s}} + {V_{T}}} \right)}}} \right)}}} \right\rceil $$
(133)

The limit on Nn as \({n \to \infty }\) yields,

$$ \lim\limits_{n \to \infty } {N_{n}} = \frac{{\ln \left( {\frac{{r{V_{s}}}}{{r{V_{s}} - 2\pi {R_{0}}{V_{T}}}}} \right)}}{{\lim\limits_{n \to \infty } \ln \left( {1 + \frac{{2\pi {V_{T}}}}{{n\left( {{V_{s}} + {V_{T}}} \right)}}} \right)}} $$
(134)

We denote by cup,

$$ {c_{up}} = \ln \left( {\frac{{r{V_{s}}}}{{r{V_{s}} - 2\pi {R_{0}}{V_{T}}}}} \right) $$
(135)

And by cdown,

$$ {c_{down}} = \frac{{2\pi {V_{T}}}}{{{V_{s}} + {V_{T}}}} $$
(136)

The inward advancement times toward the center of the evader region are given by,

$$ \begin{array}{l} {T_{in}}(n) = \frac{{2\pi {V_{T}}}}{{n\left( {{V_{s}} + {V_{T}}} \right)}}{\left( {1 + \frac{{2\pi {V_{T}}}}{{n\left( {{V_{s}} + {V_{T}}} \right)}}} \right)^{{N_{n}} - 1}}\left( {\frac{{{R_{0}}}}{{{V_{s}}}} - \frac{r}{{2\pi {V_{T}}}}} \right) + \frac{{{R_{0}}}}{{{V_{s}}}} \end{array} $$
(137)

The limit on the first term in (137) can be written as,

$$ \begin{array}{l} \lim\limits_{n \to \infty } {\left( {1 + \frac{{{c_{down}}}}{n}} \right)^{{N_{n}} - 1}} = {\left( {1 + \frac{{{c_{down}}}}{n}} \right)^{\frac{{{c_{up}}}}{{\ln \left( {1 + \frac{{{c_{down}}}}{n}} \right)}}}} = {e^{{c_{up}}}} \end{array} $$
(138)

We therefore have that,

$$ \lim\limits_{n \to \infty } {\left( {1 + \frac{{{c_{down}}}}{n}} \right)^{{N_{n}} - 1}} = \frac{{r{V_{s}}}}{{r{V_{s}} - 2\pi {R_{0}}{V_{T}}}} $$
(139)

And therefore the limit as \({n \to \infty }\) of the first term in Tin(n) yields,

$$ \lim\limits_{n \to \infty } \frac{{\frac{{r{V_{s}}}}{{r{V_{s}} - 2\pi {R_{0}}{V_{T}}}}}}{n} = 0 $$
(140)

Therefore, the limit as \({n \to \infty }\) on the inward advancement times is given by,

$$ \lim\limits_{n \to \infty } {T_{in}}(n) = \frac{{{R_{0}}}}{{{V_{s}}}} $$
(141)

The limit on the numerator of \(\frac {{{N_{n}}}}{n}\) yields,

$$ \lim\limits_{n \to \infty } \ln \left( {\frac{{2\pi {V_{T}}r - r{V_{s}}n}}{{n\left( {2\pi {R_{0}}{V_{T}} - r{V_{s}}} \right)}}} \right) = \ln \left( {\frac{{r{V_{s}}}}{{r{V_{s}} - 2\pi {R_{0}}{V_{T}}}}} \right) $$
(142)

The limit on the denominator of \(\frac {{{N_{n}}}}{n}\) yields,

$$ \begin{array}{l} \lim\limits_{n \to \infty } n\ln \left( {1 + \frac{{2\pi {V_{T}}}}{{n\left( {{V_{s}} + {V_{T}}} \right)}}} \right) \\ =\ln \left( {\lim\limits_{n \to \infty } {{\left( {1 + \frac{{2\pi {V_{T}}}}{{n\left( {{V_{s}} + {V_{T}}} \right)}}} \right)}^{n}}} \right) = \ln {e^{\frac{{2\pi {V_{T}}}}{{{V_{s}} + {V_{T}}}}}} = \frac{{2\pi {V_{T}}}}{{{V_{s}} + {V_{T}}}} \end{array} $$
(143)

Therefore, the limit on \(\frac {{{N_{n}}}}{n}\) yields,

$$ \lim\limits_{n \to \infty } \left( {\frac{{{N_{n}}}}{n}} \right) = \frac{{\left( {{V_{s}} + {V_{T}}} \right)\ln \left( {\frac{{r{V_{s}}}}{{r{V_{s}} - 2\pi {R_{0}}{V_{T}}}}} \right)}}{{2\pi {V_{T}}}} $$
(144)

Substituting the expressions for the limits that are present in the circular sweep times expression we obtain that,

$$ \begin{array}{@{}rcl@{}} \lim\limits_{n \to \infty } {T_{circular}}(n) &=& \frac{{r\left( {{V_{s}} + {V_{T}}} \right)}}{{2\pi {V_{T}}^{2}}}+ \frac{{\left( {{V_{s}} + {V_{T}}} \right)}}{{2\pi {V_{T}}}} \\&&\times\frac{{r{V_{s}}}}{{r{V_{s}} - 2\pi {R_{0}}{V_{T}}}} \left( {\frac{{2\pi {R_{0}}}}{{{V_{s}}}} - \frac{r}{{{V_{T}}}}} \right) \\ &&+ \frac{{r\left( {{V_{s}} + {V_{T}}} \right)\ln \left( {\frac{{r{V_{s}}}}{{r{V_{s}} - 2\pi {R_{0}}{V_{T}}}}} \right)}}{{2\pi {V_{T}}^{2}}}\\ && - \frac{{{R_{0}}\left( {{V_{s}} + {V_{T}}} \right)}}{{{V_{s}}{V_{T}}}} \end{array} $$
(145)

Rearranging terms yields,

$$ \begin{array}{l} \lim\limits_{n \to \infty } {T_{circular}}(n) = \frac{{r\left( {{V_{s}} + {V_{T}}} \right)\ln \left( {\frac{{r{V_{s}}}}{{r{V_{s}} - 2\pi {R_{0}}{V_{T}}}}} \right)}}{{2\pi {V_{T}}^{2}}} - \frac{{{R_{0}}\left( {{V_{s}} + {V_{T}}} \right)}}{{{V_{s}}{V_{T}}}} \end{array} $$
(146)

Therefore, the limit on the time it takes the swarm to clean the entire evader region as \({n \to \infty }\), is calculated by the addition of the terms in Eqs. 141 and 145 and is given by,

$$ \begin{array}{@{}rcl@{}} \lim\limits_{n \to \infty } T(n) &=& \lim\limits_{n \to \infty } {T_{circular}}(n) + \lim\limits_{n \to \infty } {T_{in}}(n) \\ &=& \frac{{r\left( {{V_{s}} + {V_{T}}} \right)\ln \left( {\frac{{r{V_{s}}}}{{r{V_{s}} - 2\pi {R_{0}}{V_{T}}}}} \right)}}{{2\pi {V_{T}}^{2}}} - \frac{{{R_{0}}}}{{{V_{T}}}} \end{array} $$
(147)

Appendix D

Lemma 2

For the spiral pincer sweep process employed by n sweepers, the limit on the critical velocity for the confinement task as \({n \to \infty }\), is given by,

$$ \lim\limits_{n \to \infty } {V_{S}} = {V_{T}}\sqrt {{{\left( {\frac{{\pi {R_{0}}}}{r}} \right)}^{2}} + 1} $$
(148)

Proof

We have that,

$$ \lim\limits_{n \to \infty } {V_{S}} = {V_{T}}\sqrt {\frac{{4{\pi^{2}}}}{{{{\left( {\lim\limits_{n \to \infty } n\ln \left( {\frac{{{R_{0}} + \frac{r}{n}}}{{{R_{0}} - \frac{r}{n}}}} \right)} \right)}^{2}}}} + 1} $$
(149)

The limit in the denominator of Eq. 149 is,

$$ \lim\limits_{n \to \infty } \frac{{\ln \left( {\frac{{{R_{0}} + \frac{r}{n}}}{{{R_{0}} - \frac{r}{n}}}} \right)}}{{\frac{1}{n}}} $$
(150)

In order to calculate the limit in Eq. 150 we apply l’hospital’s rule and obtain,

$$ \begin{array}{l} \lim\limits_{n \to \infty } \left( {\frac{{{R_{0}} - \frac{r}{n}}}{{{R_{0}} + \frac{r}{n}}}} \right)\left( {\frac{{\frac{{ - r}}{{{n^{2}}}}\left( {{R_{0}} - \frac{r}{n}} \right) - \left( {{R_{0}} + \frac{r}{n}} \right)\frac{r}{{{n^{2}}}}}}{{{{\left( {{R_{0}} - \frac{r}{n}} \right)}^{2}}}}} \right)\left( { - {n^{2}}} \right) \end{array} $$
(151)

Applying the limit \(n \to \infty \) to Eq. 151 yields,

$$ \frac{{r{R_{0}} + r{R_{0}}}}{{{R_{0}}^{2}}} = \frac{{2r}}{{{R_{0}}}} $$
(152)

Plugging the obtained expression for the limit in Eqs. 152 into 149 yields,

$$ \lim\limits_{n \to \infty } {V_{S}} = {V_{T}}\sqrt {\frac{{4{\pi^{2}}{R_{0}}^{2}}}{{4{r^{2}}}} + 1} $$
(153)

And after simplifying terms we have that,

$$ \lim\limits_{n \to \infty } {V_{S}} = {V_{T}}\sqrt {{{\left( {\frac{{\pi {R_{0}}}}{r}} \right)}^{2}} + 1} $$
(154)

Appendix E

Lemma 3

For a swarm of n agents, where n is even, that performs the spiral pincer sweep process, the limit on the time it takes the swarm to clean the entire evader region as \({n \to \infty }\), is given by,

$$ \begin{array}{@{}rcl@{}} \lim\limits_{n \to \infty } T(n) &=& \lim\limits_{n \to \infty } {{T_{in}(n)} +\lim\limits_{n \to \infty } {T_{spiral}}(n)} \\ &=& - \frac{{{R_{0}}}}{{{V_{T}}}} + \frac{{r\left( {{V_{s}} + {V_{T}}} \right)\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}{{\pi {V_{T}}^{2}{V_{s}}}}\\ &&\times\ln \left( {\frac{{r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}{{r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} - \pi {R_{0}}{V_{T}}}}} \right) \end{array} $$
(155)

Proof

We have that,

$$ \lim\limits_{n \to \infty } T(n) = \lim\limits_{n \to \infty } {T_{spiral}}(n) + \lim\limits_{n \to \infty } {T_{in}}(n) $$
(156)

The limit on the inward advancement times is given by,

$$ \lim\limits_{n \to \infty } {T_{in}}(n) = \lim\limits_{n \to \infty } \left( {\widetilde{T}_{in}(n) + {T_{_{in}last}}(n) + \eta {T_{i{n_{f}}}}}(n) \right) $$
(157)

We have that,

$$ \begin{array}{l} {T_{_{in}last}}(n)= - \frac{{2r}}{{n{V_{s}}\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}} + \frac{r}{{n{V_{s}}}} \\ +\frac{{{c_{2}}^{{N_{n}}}}}{{{V_{s}}}}\left( {\frac{{{R_{0}}n\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right) + r\left( {1 + {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}}{{n\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}}} \right) \end{array} $$
(158)

We denote by y the following limit,

$$ y = \lim\limits_{n \to \infty } {\left( {\frac{{{V_{T}} + {V_{s}}{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}}}{{{V_{s}} + {V_{T}}}}} \right)^{{N_{n}}}} $$
(159)

We have that,

$$ \lim\limits_{n \to \infty } {N_{n}} = \lim\limits_{n \to \infty } \frac{{\ln \left( {\frac{{2r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}{{2r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} - 2\pi {R_{0}}{V_{T}}}}} \right)}}{{\ln \left( {\frac{{{V_{T}} + {V_{s}}{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}}}{{{V_{s}} + {V_{T}}}}} \right)}} = \frac{{{c_{up}}}}{{\ln {c_{2}}}} $$
(160)

Where cup is given by,

$$ {c_{up}} = \ln \left( {\frac{{2r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}{{2r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} - 2\pi {R_{0}}{V_{T}}}}} \right) $$
(161)

and c2 is given by,

$$ c_{2}={\frac{{{V_{T}} + {V_{s}}{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}}}{{{V_{s}} + {V_{T}}}}} $$
(162)

Therefore, Eq. 159 takes the form of,

$$ y = \lim\limits_{n \to \infty } {c_{2}}^{\frac{{{c_{up}}}}{{\ln {c_{2}}}}} $$
(163)

applying the natural logarithm function to both sides of the equation yields,

$$ \ln y = \ln {c_{2}}^{\frac{{{c_{up}}}}{{\ln {c_{2}}}}} = {c_{up}} $$
(164)

raising both sides of the equation by an exponent and plugging the value for cup yields,

$$ \begin{array}{l} y = \lim\limits_{n \to \infty } {\left( {\frac{{{V_{T}} + {V_{s}}{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}}}{{{V_{s}} + {V_{T}}}}} \right)^{{N_{n}}}} = \frac{{2r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}{{2r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} - 2\pi {R_{0}}{V_{T}}}} \end{array} $$
(165)

Substituting the result from Eqs. 165 to 158 yields,

$$ \begin{array}{@{}rcl@{}} \lim\limits_{n \to \infty } {T_{_{in}last}}(n) &=& \frac{{r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}{{\pi {V_{s}}{V_{T}}}} \\ &&+ \frac{{2r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}{{2r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} - 2\pi {R_{0}}{V_{T}}}}\\ &&\times\frac{{\pi {R_{0}}{V_{T}} - r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}{{\pi {V_{s}}{V_{T}}}} \end{array} $$
(166)

And after rearranging terms yields that,

$$ \lim\limits_{n \to \infty } {T_{_{in}last}}(n) = 0 $$
(167)

We have that,

$$ \lim\limits_{n \to \infty } {T_{i{n_{f}}}}(n) = \lim\limits_{n \to \infty } \frac{r}{{n{V_{s}}}}\left( {{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}} - 1} \right) = 0 $$
(168)

\(\widetilde {T}_{in}(n)\) is given by,

$$ \begin{array}{*{20}{l}} \widetilde{T}_{in}(n) = \sum\limits_{i = 0}^{{N_{n}} - 2} {{T_{i{n_{i}}}}} = \frac{{{R_{0}}}}{{{V_{s}}}} - \frac{r}{{n{V_{s}}}} + \frac{{2r{c_{2}}}}{{n{V_{s}}\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}} \\- { {c_{2}}^{{N_{n}} - 1}\left( {\frac{{{R_{0}}n\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right) + r\left( {1 + {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}}{{n{V_{s}}\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}}} \right)}\\ { - \frac{{r\left( {{V_{T}} + {V_{s}}{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}}{{n{V_{s}}\left( {{V_{s}} + {V_{T}}} \right)}} + \frac{{2r}}{{n\left( {{V_{s}} + {V_{T}}} \right)}}} \end{array} $$
(169)

Taking the limit as \({n \to \infty }\) on \(\widetilde {T}_{in}(n)\) yields,

$$ \begin{array}{@{}rcl@{}} \lim\limits_{n \to \infty } \widetilde{T}_{in}(n) &=& \sum\limits_{i = 0}^{{N_{n}} - 2} {{T_{i{n_{i}}}}} = \frac{{{R_{0}}}}{{{V_{s}}}} - \frac{{r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}{{\pi {V_{s}}{V_{T}}}} \\ &&- \frac{{2r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}{{2r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} - 2\pi {R_{0}}{V_{T}}}}\\ &&\times\frac{{\pi {R_{0}}{V_{T}} - r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}{{\pi {V_{s}}{V_{T}}}} \end{array} $$
(170)

Therefore we have that,

$$ \lim\limits_{n \to \infty } \widetilde{T}_{in}(n) = \frac{{{R_{0}}}}{{{V_{s}}}} $$
(171)

Combining the results from Eqs. 167, 168 and 171 the total time of inward advancements is given by,

$$ \lim\limits_{n \to \infty } {T_{in}}(n) = \frac{{{R_{0}}}}{{{V_{s}}}} $$
(172)

The limit on the spiral sweep times is calculated by,

$$ \begin{array}{l} \lim\limits_{n \to \infty } {T_{spiral}}(n) = \lim\limits_{n \to \infty } \left( {\widetilde{T}_{spiral}(n) + {T_{last}}(n) + \eta {T_{l}}}(n) \right) \end{array} $$
(173)

We have that,

$$ \begin{array}{l} \lim\limits_{n \to \infty } \widetilde{T}_{spiral}(n) \\= - \frac{{\left( {{R_{0}} - \frac{r}{n}} \right)\left( {{V_{s}} + {V_{T}}} \right)}}{{{V_{s}}{V_{T}}}} - \frac{{2r\left( {{V_{T}} + {V_{s}}{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}}{{n{V_{T}}{V_{s}}\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}} \\- {c_{4}}\frac{{\left( {{R_{0}}n\left( {{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}} - 1} \right) - r\left( {{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}} + 1} \right)} \right)}}{{n\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}} + \frac{{2r\left( {{N_{n}} - 1} \right)}}{{n{V_{T}}}} \end{array} $$
(174)

Where c4 is given by,

$$ {c_{4}} = \frac{{{V_{s}} + {V_{T}}}}{{{V_{T}}{V_{s}}}}{\left( {\frac{{{V_{T}} + {V_{s}}{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}}}{{{V_{s}} + {V_{T}}}}} \right)^{{N_{n}}}} $$
(175)

The limit on \(\frac {{{N_{n}}}}{n}\) is,

$$ \begin{array}{l} \lim\limits_{n \to \infty } \frac{{{N_{n}}}}{n} = \lim\limits_{n \to \infty } \frac{{\ln \left( {\frac{{r\left( {3 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}}{{{R_{0}}n\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right) + r\left( {1 + {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}}} \right)}}{{n\ln \left( {\frac{{{V_{T}} + {V_{s}}{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}}}{{{V_{s}} + {V_{T}}}}} \right)}} \end{array} $$
(176)

We have that the following limit that is present in the numerator of \(\frac {{{N_{n}}}}{n}\) yields,

$$ \lim\limits_{n \to \infty } n\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right) = - \frac{{2\pi {V_{T}}}}{{\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }} $$
(177)

Therefore, the limit on the numerator of \(\frac {{{N_{n}}}}{n}\) yields,

$$ \ln \left( {\frac{{2r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}{{2r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} - 2\pi {R_{0}}{V_{T}}}}} \right) $$
(178)

The limit on the denominator of \(\frac {{{N_{n}}}}{n}\) is given by,

$$ {\lim\limits_{n \to \infty } \frac{{\ln \left( {\frac{{{V_{T}} + {V_{s}}{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}}}{{{V_{s}} + {V_{T}}}}} \right)}}{{\frac{1}{n}}}} $$
(179)

In order to calculate the limit in Eq. 179 we apply l’hospital’s rule and obtain,

$$ {\lim\limits_{n \to \infty } \frac{{ - \frac{{2\pi {V_{s}}{V_{T}}{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}}}{{{n^{2}}\left( {{V_{T}} + {V_{s}}{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}{{ - \frac{1}{{{n^{2}}}}}}} $$
(180)

Simplifying the expression in Eq. 180 yields,

$$ {\frac{{2\pi {V_{s}}{V_{T}}}}{{\left( {{V_{s}} + {V_{T}}} \right)\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}} $$
(181)

We therefore have that the limit on \(\frac {{{N_{n}}}}{n}\) as \({n \to \infty }\), is given by,

$$ \begin{array}{l} \lim\limits_{n \to \infty } \frac{{{N_{n}}}}{n} = \frac{{\left( {{V_{s}} + {V_{T}}} \right)\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}{{2\pi {V_{s}}{V_{T}}}}\ln \left( {\frac{{2r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}{{2r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} - 2\pi {R_{0}}{V_{T}}}}} \right) \end{array} $$
(182)

Using the result of the limit from (60) we have that,

$$ \begin{array}{l} \lim\limits_{n \to \infty } \frac{{\left( {{R_{0}}n\left( {{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}} - 1} \right) - r\left( {{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}} + 1} \right)} \right)}}{{n\left( {1 - {e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}}} \right)}} \\=\frac{{2r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} - 2\pi {R_{0}}{V_{T}}}}{{2\pi {V_{T}}}} \end{array} $$
(183)

And therefore \(\lim \limits _{n \to \infty } \widetilde {T}_{spiral}(n)\) is given by,

$$ \begin{array}{@{}rcl@{}} \lim\limits_{n \to \infty } \widetilde{T}_{spiral}(n) &=& - \frac{{{R_{0}}\left( {{V_{s}} + {V_{T}}} \right)}}{{{V_{s}}{V_{T}}}}\\ && + \frac{{r\left( {{V_{T}} + {V_{s}}} \right)\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}{{\pi {V_{T}}^{2}{V_{s}}}} \\ &&- \frac{{r\left( {{V_{s}} + {V_{T}}} \right)\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}{{\pi {V_{T}}^{2}{V_{s}}}} \\&&+ \frac{{2r}}{{{V_{T}}}}\frac{{\left( {{V_{s}} + {V_{T}}} \right)\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}{{2\pi {V_{s}}{V_{T}}}}\\ &&\times\ln\! \left( {\frac{{2r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}{{2r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} - 2\pi {R_{0}}{V_{T}}}}} \right) \end{array} $$
(184)

Simplifying expressions yields,

$$ \begin{array}{@{}rcl@{}} \lim\limits_{n \to \infty } \widetilde{T}_{spiral}(n) &=& - \frac{{{R_{0}}\left( {{V_{s}} + {V_{T}}} \right)}}{{{V_{s}}{V_{T}}}} \\ &&+\frac{{r\left( {{V_{s}} + {V_{T}}} \right)\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}{{\pi {V_{T}}^{2}{V_{s}}}}\\ &&\times\ln\! \left( {\frac{{2r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}{{2r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} - 2\pi {R_{0}}{V_{T}}}}} \right) \end{array} $$
(185)

We have that,

$$ \lim\limits_{n \to \infty } {T_{last}}(n) = \lim\limits_{n \to \infty } \frac{{2\pi r}}{{{n^{2}}{V_{s}}}} = 0 $$
(186)

and that,

$$ \lim\limits_{n \to \infty } {T_{l}}(n) = \lim\limits_{n \to \infty } \frac{{r\left( {{e^{\frac{{2\pi {V_{T}}}}{{n\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}}} - 1} \right)}}{{n{V_{T}}}} = 0 $$
(187)

and therefore,

$$ \lim\limits_{n \to \infty } {T_{spiral}}(n)=\lim\limits_{n \to \infty } \widetilde{T}_{spiral}(n) $$
(188)

Therefore, the limit on the time it takes the swarm to clean the entire evader region as \({n \to \infty }\), is given by,

$$ \begin{array}{@{}rcl@{}} \lim\limits_{n \to \infty } T(n) &=& \lim\limits_{n \to \infty } \left( {{T_{in}(n)} + {T_{spiral}}(n)} \right) \\ &=&- \frac{{{R_{0}}}}{{{V_{T}}}} + \frac{{r\left( {{V_{s}} + {V_{T}}} \right)\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}{{\pi {V_{T}}^{2}{V_{s}}}}\\ &&\times\ln \left( {\frac{{r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} }}{{r\sqrt {{V_{s}}^{2} - {V_{T}}^{2}} - \pi {R_{0}}{V_{T}}}}} \right) \end{array} $$
(189)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francos, R.M., Bruckstein, A.M. Search for Smart Evaders with Swarms of Sweeping Agents- a Resource Allocation Perspective. J Intell Robot Syst 106, 76 (2022). https://doi.org/10.1007/s10846-022-01783-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01783-1

Keywords

Navigation