Skip to main content
Log in

A Review of Locomotion, Control, and Implementation of Robot Fish

  • Survey Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

A comprehensive review of bio-inspired robot fish is presented in this paper with an emphasis on locomotion, actuation, and control methods. Different swimming modes of biological fish, such as Body and/or Caudal Fin propulsion (BCF) mode and Media and/or Paired Fin propulsion (MPF) mode, with their classification, are discussed in detail. Furthermore, the mechanics’ principles behind the locomotion, both kinematic and dynamic, are also introduced. In addition to dynamic modeling, motion control is also one of the key problems in the research of robot fish. In this paper, in addition to the classic control methodologies used for rigid robot fish, we also summarize the control approaches for soft robot fish, and the intelligent control based on machine learning that emerged in recent years. With basic ideas bear in mind, we will introduce two typical examples illustrating how to utilize these principles in the robot fish design. In the end, the potential research gaps and future research directions are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Code or Data Availability

Not applicable.

References

  1. Beal, D.N., Hover, F.S., Triantafyllou, M.S., Liao, J., Lauder, G.: Passive propulsion in vortex wakes. J. Fluid Mech. 549, 385–402 (2006)

    Article  Google Scholar 

  2. Blake, R.: Fish functional design and swimming performance. Journal of Fish Biology 65(5), 1193–1222 (2004)

    Article  Google Scholar 

  3. Liu, J., Hu, H.: Biological inspiration: From carangiform fish to multi-joint robotic fish. Journal of Bionic Engineering 7(1), 35–48 (2010)

  4. Triantafyllou, M.S., Triantafyllou, G.S.: An efficient swimming machine. Sci. Am. 272(3), 40–48 (1995)

    Article  Google Scholar 

  5. Bar-Cohen, Y., Breazeal, C.: Biologically inspired intelligent robots. In: Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices (EAPAD), vol. 5051, pp 14–20. International Society for Optics and Photonics (2003)

  6. Kopman, V., Porfiri, M.: Design, modeling, and characterization of a miniature robotic fish for research and education in biomimetics and bioinspiration. IEEE/ASME Transactions on Mechatronics 18(2), 471–483 (2012)

    Article  Google Scholar 

  7. Yu, J., Tan, M.: Motion Control of Biomimetic Swimming Robots. Research on Intelligent Manufacturing. Springer, Singapore (2020). https://books.google.ca/books?id=hCeeDwAAQBAJ

  8. Hu, H.: Biologically inspired design of autonomous robotic fish at Essex. In: IEEE SMC UK-RI Chapter Conference on Advances in Cybernetic Systems, pp 3–8. Sheffield, UK (2006)

  9. Wen, L., Liang, J., Wu, G., Li, J., et al.: Hydrodynamic experimental investigation on efficient swimming of robotic fish using self-propelled method. In: The Twentieth International Offshore and Polar Engineering Conference (International Society of Offshore and Polar Engineers (2010)

  10. Fish, F.E.: Limits of nature and advances of technology: What does biomimetics have to offer to aquatic robots? Applied Bionics and Biomechanics 3(1), 49–60 (2006)

    Article  Google Scholar 

  11. Bandyopadhyay, P.R.: Trends in biorobotic autonomous undersea vehicles. IEEE J. Ocean. Eng. 30(1), 109–139 (2005)

    Article  Google Scholar 

  12. Du, R., Li, Z., Youcef-Toumi, K., Valdivia y Alvarado, P.: Robot Fish: Bio-Inspired Fishlike Underwater Robots. Springer, Berlin, Heidelberg (2015)

    Book  MATH  Google Scholar 

  13. Li, Y., Xu, Y., Wu, Z., Ma, M., Guo, L., Li, Z., Li, Y.: A comprehensive review on fish-inspired robots. Int. J. Adv. Robot. Syst. 19(3), 1–20 (2022). https://doi.org/10.1177/17298806221103707

  14. Roper, D., Sharma, S., Sutton, R., Culverhouse, P.: A review of developments towards biologically inspired propulsion systems for autonomous underwater vehicles. Proc. IMeche, Part M: J. Engineering for Maritime Environment 225(2), 77–96 (2010). https://doi.org/10.1177/1475090210397438

  15. Scaradozzi, D., Palmieri, G., Costa, D., Pinelli, A.: BCF Swimming locomotion for autonomous underwater robots: A review and a novel solution to improve control and efficiency. Ocean Eng. 130, 437–453 (2017)

    Article  Google Scholar 

  16. Duraisamy, P., Sidharthan, R.K., Santhanakrishnan, M.N.: Design, modeling, and control of biomimetic fish robot: A review. J. Bionic Eng. 16, 967–993 (2019)

    Article  Google Scholar 

  17.  Sun, B., Li, W., Wang, Z. et al.: Recent progress in modeling and control of bio-inspired fish robots. J. Marine Sci. and Eng. 10(6), 773 (2022)

  18. Chu, W.S., Lee, K.T., Song, S.H., Han, M.W., Lee, J.Y., Kim, H.S., Kim, M.S., Park, Y.J., Cho, K.J., Ahn, S.H.: Review of biomimetic underwater robots using smart actuators. Int. J. Precis. Eng. Manuf. 13, 1281–1292 (2012). https://doi.org/10.1007/s12541-012-0171-7

    Article  Google Scholar 

  19. Sfakiotakis, M., Lane, D., Davies, J.: Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering 24, 237–252 (1999)

    Article  Google Scholar 

  20. Salazar, R., Campos, A., Fuentes, V., Abdelkefi, A.: A review on the modeling, materials, and actuators of aquatic unmanned vehicles. Ocean Eng. 172, 257–285 (2019)

    Article  Google Scholar 

  21. Zhou, Z., Liu, J., Yu, J.: A survey of underwater multi-robot systems. IEEE/CAA Journal of Automatica Sinica 9(1) (2022)

  22. Porez, M., Boyer, F., Ijspeert, A.: Improved lighthill fish swimming model for bio-inspired robots: modeling, computational aspects and experimental comparisons. Int. J. Robot. Res. 33(10), 1322–1341 (2014). https://doi.org/10.1177/0278364914525811

    Article  Google Scholar 

  23. Colgate, J., Lynch, K.: Mechanics and control of swimming: A review. IEEE J. Ocean. Eng. 29(3), 660–673 (2004). https://doi.org/10.1109/JOE.2004.833208

  24. Xie, F., Zuo, Q., Chen, Q., Fang, H., He, K., Du, R., Zhong, Y., Li, Z.: Designs of the biomimetic robotic fishes performing body and/or caudal fin (BCF) swimming locomotion: A review. Journal of Intelligent & Robotic Systems 102 (2021. https://doi.org/10.1007/s10846-021-01379-1

  25. Neira, J., Sequeiros, C., Huamani, R., Machaca, E., Fonseca, P., Nina, W.: Review on unmanned underwater robotics, structure designs, materials, sensors, actuators, and navigation control. J. Robot. 2021. https://doi.org/10.1155/2021/5542920 (2021)

  26. Fish, F.: Bio-inspired aquatic drones: Overview. Bioinspiration and Biomimetics 15(6), 060401 (2020). https://doi.org/10.1088/1748-3190/abb002

    Article  Google Scholar 

  27. Rus, D., Tolley, M.: Design, fabrication and control of soft robots. Nature 521, 467–475 (2015). https://doi.org/10.1038/nature14543

    Article  Google Scholar 

  28. Ren, K., Yu, J.: Research status of bionic amphibious robots: A review. Ocean Eng. 227 (106), 862 (2021)

    Google Scholar 

  29. Bogue, R.: Underwater robots: A review of technologies and applications. Industrial Robot 42(3), 186–191 (2015). https://doi.org/10.1108/IR-01-2015-0010

    Article  Google Scholar 

  30. Youssef, S., Soliman, M., Saleh, M.A., Mousa, M.A., Elsamantay, M., Radwan, A.G.: Underwater soft robotics: A review of bioinspiration in design, actuation, modeling, and control Micromachines 13(1), 110 (2022). https://doi.org/10.3390/mi13010110

  31. Md Nor, M., Aliff, M., Sani, N.: A review of a biomimicry swimming robot using smart actuator. Int. J. Adv. Comput. Sci. Appl. 12(11), 395–405 (2021)

  32. Chen, Z.: A review on robotic fish enabled by ionic polymer-metal composite artificial muscles. Robotics and Biomimetics 4(24), 1–13 (2017)

  33. Li, H., Fan, M., Yue, Y., Hu, G., He, Q., Yu, M.: Motion control of capsule-like underwater robot utilizing the swing properties of ionic polymer metal composite actuators. J. Bionic Eng. 17, 281–289 (2020)

    Article  Google Scholar 

  34. Liu, G., Wang, A., Wang, X., Liu, P.: A review of artificial lateral line in sensor fabrication and bionic applications for robot fish. Applied Bionics and Biomechanics 2016. https://doi.org/10.1155/2016/4732703 (2016)

  35. Connor, J., Champion, B., Joordens, A.: Current algorithms, communication methods and designs for underwater swarm robotics: A review. IEEE Sensors J. 21 (1), 163–169 (2021). https://doi.org/10.1109/JSEN.2020.3013265

    Article  Google Scholar 

  36. Raj, A., Thakur, A.: Fish-inspired robots: Design, sensing, actuation, and autonomy—a review of research. Bioinspiration and Biomimetics 11(3), 031001 (2016). https://doi.org/10.1088/1748-3190/11/3/031001

    Article  Google Scholar 

  37. Castillon, M., Palomer, A., Forest, J., Ridao, P.: State of the art of underwater active optical 3D scanners. Sensors 19(23), 5161 (2019). https://doi.org/10.3390/s19235161

  38. Cong, Y., Gu, C., Zhang, T., Gao, Y.: Underwater robot sensing technology: A survey. Fundamental Research 1(3), 337–345 (2021). https://doi.org/10.1016/j.fmre.2021.03.002

    Article  Google Scholar 

  39. Li, S., Li, C., Xu, L., Yang, W., Chen, X.: Numerical simulation and analysis of fish-like robots swarm. Applied Sciences 9(8), 1652 (2019)

  40. Breder, C.M.: The locomotion of fishes. Zoologica: scientific contributions of the New York Zoological Society 4, 159–297 (1926). https://www.biodiversitylibrary.org/part/203769

    Google Scholar 

  41. Lindsey, C.C.: Form, function, and locomotory habits in fish (volume 7). In: Hoar, W., Randall, D. (eds.) Fish Physiology, pp 1–100. Academic Press, New York (1978)

  42. Webb, P.W.: Chap. 4: The biology of fish swimming. In: Maddock, L., Bone, Q., Rayner, J.M.V. (eds.) The Mechanics and Physiology of Animal Swimming, pp 45–62. Cambridge University Press, Cambridge, UK (1994)

  43. Videler, J.J.: Fish Swimming, vol. 10. Springer, Dordrecht, London (1993)

    Book  Google Scholar 

  44. Siahmansouri, M., Ghanbari, A., Fakhrabadi, M.: Design, implementation and control of a fish robot with undulating fins. Int. J. Adv. Robot. Syst. 8(5), 61–69 (2011)

    Article  Google Scholar 

  45. Raj, A., Thakur, A.: Hydrodynamic parameter estimation for an anguilliform-inspired robot. J. Intell. Robot. Syst. 99(3), 837–857 (2020). https://doi.org/10.1007/s10846-020-01154-8

    Article  Google Scholar 

  46. Costa, D.: Development of Biomimetic Propulsiv Systems in a Multiphysics Environment. Ph.D. thesis, Università Politecnica delle Marche (2019)

  47. Costa, D., Palmieri, G., Palpacelli, M.C., Panebianco, L., Scaradozzi, D.: Design of a bio-inspired autonomous underwater robot. J. Intell. Robot. Syst. 91(2), 181–192 (2018). https://doi.org/10.1007/s10846-017-0678-3

    Article  Google Scholar 

  48. Naser, F.A., Rashid, M.T.: Labriform swimming robot with steering and diving capabilities. J. Intell. Robot. Syst. 103(1), 14 (2021). https://doi.org/10.1007/s10846-021-01454-7

    Article  Google Scholar 

  49. Barrett, D.: The Design of a Flexible Hull Undersea Vehicle Propelled by an Oscillating Foil. Massachusetts Institute of Technology, Department of Ocean Engineering, Boston, MA (1994). https://books.google.ca/books?id=s4rTtgAACAAJ

    Google Scholar 

  50. Taylor, G.I.: Electrically driven jets. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 313, 453–475 (1969)

    Google Scholar 

  51. Lighthill, M.J.: Note on the swimming of slender fish. J. Fluid Mech. 9(2), 305–317 (1960). https://doi.org/10.1017/S0022112060001110

    Article  MathSciNet  Google Scholar 

  52. Valdivia y Alvarado, P.: Design of biomimetic compliant devices for locomotion in liquid environments, Ph.d. thesis Massachusetts Institute of Technology (2007)

  53. Wu, T.: Mathematical biofluiddynamics and mechanophysiology of fish locomotion. Mathematical Methods in the Applied Sciences 24, 1541 (2001). https://doi.org/10.1002/mma.218.abs

    Article  MathSciNet  MATH  Google Scholar 

  54. Wu, T.Y.T.: Swimming of a waving plate. J. Fluid Mech. 10(3), 321–344 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  55. Cheng, J.Y., Zhuang, L.X., Tong, B.G.: Analysis of swimming three-dimensional waving plates. J. Fluid Mech. 232, 341–355 (1991). https://doi.org/10.1017/S0022112091003713

    Article  MathSciNet  MATH  Google Scholar 

  56. Schaffarczyk, A.P., Conway, J.T.: Comparison of a nonlinear actuator disk theory with numerical integration including viscous effects. Canadian Aeronautics and Space Journal 46(4), 209 (2000)

    Google Scholar 

  57. ED, T.: Median fin function in bluegill sunfish Lepomis macrochius: streamwise vortex structure during steady swimming. J. Exp. Biol. 209, 1516–1534 (2006)

    Article  Google Scholar 

  58. Cui, Z., Yang, Z., Shen, L., Jiang, H.: Complex modal analysis of the movements of swimming fish propelled by body and/or caudal fin. Wave Motion 78, 83–97 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  59. Xiong, G., Lauder, G.: Center of mass motion in swimming fish: effects of speed and locomotor mode during undulatory propulsion. Zoology 117, 269–281 (2014)

    Article  Google Scholar 

  60. Dong, H., Bozkurttas, M., Mittal, P., Madden, P., Lauder, G.: Computational modeling and analysis of the hydrodynamics of a highly deformable fish pectoral fin. J Fluid Mech 645, 345–373 (2010)

    Article  MATH  Google Scholar 

  61. Triantafyllou, M., Triantafyllou, G., Yue, D.: Hydrodynamics of fishlike swimming. Annu. Rev. Fluid Mech 32, 33–53 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  62. Drucker, D., Lauder, G.: Wake dynamics and fluid forces of turning maneuvers in sunfish. J Exp Biol 204, 431–442 (2001)

    Article  Google Scholar 

  63. Videler, J.: Fish locomotion. Encyclopedia of Ocean Sciences 2, 193–204 (2019)

    Article  Google Scholar 

  64. Stander, E., Lauder, G.: Hydrodynamic function of dorsal and anal fins in brook trout (Salvelinus fontinalis). J Exp Biol 210, 325–329 (2008)

    Article  Google Scholar 

  65. Stander, E.: Pelvic fin locomotor funcion in fishes: Three-dimensional kinematics in rainbow trout (Oncorhynchus mykiss). J Exp Biol 211, 2931–2942 (2008)

    Article  Google Scholar 

  66. Stander, E., Lauder, G.: Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: Three-dimensional kinematics during propulsion and maneuvering. J Exp Biol 208, 2753–2763 (2005)

    Article  Google Scholar 

  67. Wang, J., Tan, X.: A dynamic model for tail-actuated robotic fish with drag coefficient adaption. Mechatronics 23, 659–668 (2013)

    Article  Google Scholar 

  68. Lauder, G., Madden, P.: Fish locomotion: Kinematics and hydrodynamics of flexible foil-like fins. Exp Fluids 43(5), 641–653 (2007)

    Article  Google Scholar 

  69. Boyer, F., Porez, M., Leroyer, A., Visonneau, M.: Fast dynamics of an eel-like robot-comparisons with navier-stokes simulations. IEEE Trans. Robot. 24, 1274–1288 (2008)

    Article  Google Scholar 

  70. Lauder, G., Tytell, E.: Hydrodynamics of undulatory propulsion. Fish Physiol 23, 425–468 (2005)

    Article  Google Scholar 

  71. Lighthill, M.: Hydrodynamics of Aquatic Animal Propulsion, Collected Papers of Sir James Lighthill. Oxford University Press, Oxford, UK (1997)

    Google Scholar 

  72. Lamas, M., Rodriguez, J.: CFD analysis of biologically-inspired marine propulsors. Brodogradnja 63, 125–133 (2012)

    Google Scholar 

  73. Khan, A., Hussmann, K., Powalla, D., Hoerner, S., Kruusmaa, M., Tuhtan, J.: An open 3D CFD model for the investigation of flow environments experienced by freshwater fish. Ecological Informatics 63 (2022)

  74. Zhou, H., Hu, T., Low, K., Shen, L., Ma, Z., Wang, G., Xu, H.: Bio-inspired flow sensing and prediction for fish-like undulating locomotion: A CFD-aided approach. J. Bio. Eng. 12, 406–417 (2015)

    Article  Google Scholar 

  75. Wen, L., Wang, T., Wu, G., Liang, J.: Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method. Bioinspiration and Biomimetics 7(3) (2012)

  76. Muller, U., Stamhuis, E., Videler, J.: Hydrodynamics of unsteady fish swimming an the effects of body size: Comparing the flow fields of fish larvae and adults. J. Exp. Biol. 203(2), 193–206 (2000)

    Article  Google Scholar 

  77. Su, Z., Yu, J., Tan, M., Zhang, J.: Implementing flexible and fast turning maneuvers of a multijoint robotic fish. IEEE/ASME Trans. Mechatronics 19(1), 329–338 (2014)

    Article  Google Scholar 

  78. Hu, Y., Zhao, W., Xie, G., Wang, L.: Development and target following of vision-based autonomous robotic fish. Robotica 27(7), 1075–1089 (2009)

    Article  Google Scholar 

  79. Sachinis, M.: The design and testing of a biologically inspired underwater robotic mechanism. Ph.D. thesis Massachusetts Institute of Technology (2000)

  80. Kumph, J.M.: Maneuvering of a robotic pike. Ph.D. thesis Massachusetts Institute of Technology (2000)

  81. Liang, J., Zou, D., Wang, S., Wang, Y.: Trial voyage of SPC-II fish robot. Journal of Beijing University of Aeronautics and Astronautics 31(7), 709–713 (2005)

  82. Hirata, K.: “Dry Land” fish robot, prototype PPF-01. (2003). https://www.nmri.go.jp/archives/eng/khirata/fish/model/ppf01/ppf01e.htm

  83. van den Berg, S.: Design of a High Speed Soft Robotic Fish. Master’s thesis, Delft University of Technology (2019)

  84. Clapham, R.J., Hu, H.: iSplash-OPTIMIZE: Optimized linear carangiform swimming motion. In: Menegatti, E., Michael, N., Berns, K., Yamaguchi, H. (eds.) Intelligent Autonomous Systems 13, Advances in Intelligent Systems and Computing, vol. 302, pp 1257–1270. Springer, Cham (2016)

  85. Lachat, D., Crespi, A., Ijspeert, A.J.: BoxyBot: a swimming and crawling fish robot controlled by a central pattern generator. In: The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006, pp 643–648 (2006)

  86. Kato, N.: Control performance in the horizontal plane of a fish robot with mechanical pectoral fins. IEEE J. Ocean. Eng. 25(1), 121–129 (2000). https://doi.org/10.1109/48.820744

    Article  Google Scholar 

  87. Wang, T., Hao, Y., Yang, X., Wen, L.: Soft robotics: Structure, actuation, sensing and control. Journal of Mechanical Engineering 53(13) (2017)

  88. Katzschmann, R.K., Marchese, A.D., Rus, D.: Hydraulic Autonomous Soft Robotic Fish for 3D Swimming. In: Hsieh, M., Khatib, O., Kumar, V. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 109. Springer, Cham (2016)

  89. Brower. T.P.L.: Design of a manta ray inspired underwater propulsive mechanism for long range, low power operation. Master’s thesis, Tufts University (2006)

  90. Suzumori, K., Endo, S., Kanda, T., Kato, N., Suzuki, H.: A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp 4975–4980 (2007)

  91. Manta ray robot can loop-the-loop. New Scientist 195(2622), 27 (2007)

  92. Festo. Airacuda. https://www.festo.com/net/SupportPortal/Files/42056/Airacuda_en.pdf

  93. Cho, J.L.: Electronic subsystems of a free-swimming robotic fish. Ph.D. thesis Massachusetts Institute of Technology (1997)

  94. Marchese, A.D., Onal, C.D., Rus, D.: Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot. 1(1), 75–87 (2014)

    Article  Google Scholar 

  95. Katzschmann, R.K., de Maille, A., Dorhout, D.L., Rus, D.: Cyclic hydraulic actuation for soft robotic devices. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 3048–3055. IEEE (2016)

  96. Katzschmann, R.K., DelPreto, J., MacCurdy, R., Rus, D.: Exploration of underwater life with an acoustically controlled soft robotic fish. Science Robotics 3(16) (2018)

  97. Cho, K.-J., Hawkes, E., Quinn, C., Wood, R.J.: Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish. In: 2008 IEEE International Conference on Robotics and Automation, pp 706–711 (2008)

  98. Cho, K.J., Koh, J.S., Kim, S., Chu, W.S., Hong, Y., Ahn, S.H.: Review of manufacturing processes for soft biomimetic robots. Int. J. Precis. Eng. Manuf. 10, 171–181 (2009)

  99. Shahinpoor, M., Bar-Cohen, Y., Simpson, J., Smith, J.: Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles: A review. Smart Mater. Struct. 7. https://doi.org/10.1088/0964-1726/7/6/001 (1998)

  100. Ye, X., Su, Y., Guo, S., Wang, L.: Design and realization of a remote control centimeter-scale robotic fish. In: 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp 25–30. IEEE (2008)

  101. Chen, Z., Um, T., Zhu, J., Bart-Smith, H.: Bio-inspired robotic cownose ray propelled by electroactive polymer pectoral fin. In: ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 2. https://doi.org/10.1115/IMECE2011-64174 (2011)

  102. Huang, W., Ding, Z.: Shape memory materials. Materials Today 13(7), 54–61 (2010). https://doi.org/10.1016/S1369-7021(10)70128-0

    Article  Google Scholar 

  103. Rossi, C., Colorado, J., Coral, W., Barrientos, A.: Bending continuous structures with SMAs: A novel robotic fish design. Bioinspiration and Biomimetics 6(4), 045,005 (2011)

    Article  Google Scholar 

  104. Chen, Z., Shatara, S., Tan, X.: Modeling of biomimetic robotic fish propelled by an ionic polymer–metal composite caudal fin. IEEE/ASME Trans. Mechatronics 15(3), 448–459 (2010)

    Article  Google Scholar 

  105. Heo, S., Wiguna, T., Park, H.C., Goo, N.S.: Effect of an artificial caudal fin on the performance of a biomimetic fish robot propelled by piezoelectric actuators. J. Bionic Eng. 4(3), 151–158 (2007)

    Article  Google Scholar 

  106. Ahn, S.H., Lee, K.T., Kim, H., Wu, R., Kim, J.S., Song, S.H.: Smart soft composite: An integrated 3D soft morphing structure using bend-twist coupling of anisotropic materials. Int. J. Precis. Eng. Manuf. 13. https://doi.org/10.1007/s12541-012-0081-8 (2012)

  107. Rossi, C., Coral, W., Colorado, J., Barrientos, A.: A motor-less and gear-less bio-mimetic robotic fish design. In: 2011 IEEE International Conference on Robotics and Automation. https://doi.org/10.1109/ICRA.2011.5979611, pp 3646–3651 (2011)

  108. Wang, Z., Hang, G., Wang, Y., Li, J., Du, W.: Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion. Smart Mater. Struct. 17(025), 039 (2008). https://doi.org/10.1088/0964-1726/17/2/025039

    Article  Google Scholar 

  109. Wang, Z., Wang, Y., Li, J., Hang, G.: A micro biomimetic manta ray robot fish actuated by SMA. In: 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp 1809–1813 (2009)

  110. Low, K.H., Yang, J., Pattathil, A.P., Zhang, Y.: Initial prototype design and investigation of an undulating body by SMA. In: 2006 IEEE International Conference on Automation Science and Engineering, pp 472–477 (2006)

  111. Ayers, J., Davis, J.L., Rudolph, A.: Neurotechnology for Biomimetic Robots. MIT Press, Cambridge, MA (2002)

    Book  Google Scholar 

  112. Aureli, M., Kopman, V., Porfiri, M.: Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME Transactions on Mechatronics 15(4), 603–614 (2010)

    Article  Google Scholar 

  113. Anderson, J., Chhabra, N.: Maneuvering and stability performance of a robotic tuna. Integrative and Comparative Biology 42, 118–26 (2002)

    Article  Google Scholar 

  114. Liao, P., Zhang, S., Sun, D.: A dual caudal-fin miniature robotic fish with an integrated oscillation and jet propulsive mechanism. Bioinspiration and Biomimetics 13 (2018)

  115. Aubin, C., Choudhury, S., Jerch, R., Archer, L., Pikul, J., Shepherd, R.: Electrolytic vascular systems for energy-dense robots. Nature 571 (2019)

  116. Li, G., Chen, X., Zhou, F., et al.: Self-powered soft robot in the mariana trench. Nature 591, 66–71 (2021). https://doi.org/10.1038/s41586-020-03153-z

  117. Ilievski, F., Mazzeo, A., Shepherd, R., Chen, X., Whitesides, G.: Soft robotics for chemists. Angewandte Chemie (International ed. in English) 50, 1890–5 (2011). https://doi.org/10.1002/anie.201006464

    Article  Google Scholar 

  118. Neppalli, S., Jones, B., McMahan, W., Chitrakaran, V., Walker, I., Pritts, M., Csencsits, M., Rahn, C., Grissom, M.: Octarm - a soft robotic manipulator. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. https://doi.org/10.1109/IROS.2007.4399146, pp 2569–2569 (2007)

  119. Suebsaiprom, P., Lin, C., Engkaninan, A.: Undulatory locomotion and effective propulsion for fish-inspired robot. Control. Eng. Pract. 58, 66–77 (2017)

    Article  Google Scholar 

  120. Nguyen, P., Lee, B., Ahn, K.: Thrust and swimming speed analysis of fish robot with non-uniform flexible tail. J. Bionic Eng 13, 73–83 (2016)

    Article  Google Scholar 

  121. Yan, Q., Han, Z., Zhang, S., Yang, J.: Parametric research of experiments on a carangiform robotic fish. J. Bionic Eng 5, 95–101 (2008)

    Article  Google Scholar 

  122. Wu, Z., Yu, J., Su, Z., Tan, M.: Implementing 3-D high maneuvers with a novel biomimetic robotic fish. IFAC Proceedings Volumes. 47(3), 4861–4866 (2014)

  123. Yang, S., Qiu, J., Han, X.: Kinematics modeling and experiments of pectoral oscillating propulsion robotic fish. J. Bionic. Eng. 6, 174–179 (2009)

    Article  Google Scholar 

  124. Russo, R.: Biomechanical Modeling of Ray Pectoral Fins to Inform the Design of AUV Propulsion Systems. University of Virginia, Charlottesville (2012)

    Book  Google Scholar 

  125. Cai, Y., Bi, S., Zheng, L.: Design optimization of a bionic fish with multi-joint fin rays. Adv. Robot. 26, 177–196 (2012)

    Article  Google Scholar 

  126. Elizabeth, P.: Bio-inspired engineering: Manta machines. Science 232, 1028–1029 (2011)

    Google Scholar 

  127. Clapham, R., Hu, H.: iSplash-II: Realizing fast carangiform swimming to outperform a real fish, vol. 2014. IEEE International Workshop on Intelligent Robots and Systems (IROS), pp 1080–1086. Chicago, IL, USA (2014)

  128. Chen, G., Lu, Y., Yang, X., Hu, H.: Reinforcement learning control for the swimming motions of a beaver-like, single-legged robot based on biological inspiration. Robot. Auton. Syst. 154, 104–116 (2021)

    Google Scholar 

  129. Niu, X., Xu, J., Ren, Q., Wang, Q.: Locomotion generation and motion library design for an anguilliform robotic fish. J Bio Eng 10, 251–264 (2013)

    Article  Google Scholar 

  130. Valdivia y Alvarado, P., Youcef-Toumi, K.: Design of machines with compliant bodies for biomimetic locomotion in liquid environments. ASME J Dynamic Systems, Measurements and Control 128(1), 3–13 (2006)

  131. Li, Z., Du, R., Zhang, Y., Li, H.: Robot fish with novel wire-driven continuum flapping propulsor. Appl. Mech. Mater. 300, 510–514 (2013)

    Article  Google Scholar 

  132. Cianchetti, M., Arienti, A., Follador, M., Mazzolai, B., Dario, P., Laschi, C.: Design concept and validation of a robotic arm inspired by the octopus. Mater. Sci. Eng. 31, 1230–1239 (2011)

    Article  Google Scholar 

  133. Zhao, Q., Liu, S., Chen, J., He, G., Di, J., Zhao, L., Su, T., Zhang, M., Hou, Z.: Fast-moving piezoelectric micro-robotic fish with double caudal fins. Robot. Auton. Syst. 140 (2021)

  134. Gupta, A., Mukherjee, S.: Actuation characteristics and experimental identification of IPMC actuator for underwater biomimetic robotic application. Materials Today: Proceedings 62, 7461–7466 (2022)

    Google Scholar 

  135. Chen, Z., Um, T., Bart-Smith, H.: Bio-inspired robotic manta ray powered by ionic ploymer-metal composite artificial muscles. Int. J. Soc. Netw. Min. 3(4), 296–308 (2012)

    Google Scholar 

  136. Yeom, S., Oh, I.: A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Mater. Struct 18(8) (2009)

  137. Basta, E., Ghommem, M., Romdhane, L., Hajj, M.R.: Hybrid tail excitation for robotic fish: Modeling and performance analysis. Ocean Eng 234, 251–261 (2021)

    Article  Google Scholar 

  138. Ravalli, A., Rossi, C., Marrazza, G.: Bio-inspired fish robot based on chemical sensors. Sensors and Actuators B: Chemical 239, 325–329 (2017)

    Article  Google Scholar 

  139. Coral, W., Rossi, C., Curet, O., Castro, D.: Design and assessment of a flexible fish robot actuated by shape memory alloys. Bioinspir. Biomim. 13 (2018)

  140. Zhu, J., White, C., Wainwright, D., Di Santo, V., Lauder, G., Bart-Smith, H.: Tuna robotics: A high-frequency experimental platform exploring the performance space of swimming fishes. Science Robotics 4 (2019)

  141. Yuk, H., Lin, S., Ma, C., Takaffoli, M., Fang, N., Zhao, X.: Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 8 (2017)

  142. Wang, Y., Yang, X., et al.: A biorobotic adhesive disck for underwater hitchhiking inspired by the remora suckerfish. Science Robotics 2 (2017)

  143. Li, T., Li, E., et al.: Fast-moving soft electronic fish. Science Advances (2017)

  144. Christianson, C., Goldberg, N., Deheyn, D., Cai, S., Tolley, M.: Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Science Robotics 3 (2018)

  145. Howe, N.: Robo-fish powered by battery ‘blood’ Nature (2019)

  146. Suebsaiprom, P., Lin, C.L.: Maneuverability modeling and trajectory tracking for fish robot. Control. Eng. Pract. 45, 22–36 (2015). https://doi.org/10.1016/j.conengprac.2015.08.010

    Article  Google Scholar 

  147. Suebsaiprom, P., Lin, C.L., Engkaninan, A.: Undulatory locomotion and effective propulsion for fish-inspired robot. Control. Eng. Pract. 58, 66–77 (2017)

    Article  Google Scholar 

  148. Verma, S., Xu, J.: Data-assisted modeling and speed control of a robotic fish. IEEE Trans. Ind. Electron. 64(5), 4150–4157 (2017)

    Article  Google Scholar 

  149. Hoang, K.A., Vo, T.Q.: A study on fuzzy based controllers design for depth control of a 3-joint carangiform fish robot. In: 2013 International Conference on Control, Automation and Information Sciences (ICCAIS), pp 289–294 (2013)

  150. Yu, J., Sun, F., Xu, D., Tan, M.: Embedded vision-guided 3-D tracking control for robotic fish. IEEE Trans. Ind. Electron. 63(1), 355–363 (2016)

    Article  Google Scholar 

  151. Chen, Z., Tan, X.: A control-oriented and physics-based model for ionic polymer–metal composite actuators. IEEE/ASME Transactions on Mechatronics 13(5), 519–529 (2008)

    Article  Google Scholar 

  152. Yu, J., Liu, L., Wang, L., Tan, M., Xu, D.: Turning control of a multilink biomimetic robotic fish. IEEE Trans. Robot. 24, 201–206 (2008). https://doi.org/10.1109/TRO.2007.914850

    Article  Google Scholar 

  153. Chen, J., Yin, B., Wang, C., Xie, F., Du, R., Zhong, Y.: Bioinspired closed-loop CPG-based control of a robot fish for obstacle avoidance and direction tracking. J. Bionic Eng. 18, 171–183 (2021)

    Article  Google Scholar 

  154. Yu, J., Wu, Z., Wang, M., Tan, M.: CPG network optimization for a biomimetic robotic fish via PSO. IEEE Trans. Neural Netw. Learn. Syst. 27(9), 1962–1968 (2015)

    Article  MathSciNet  Google Scholar 

  155. Ding, R., Yu, J., Yang, Q., Tan, M.: Dynamic modelling of a CPG-controlled amphibious biomimetic swimming robot. Int. J. Adv. Robot. Syst. 10(4) (2013). https://doi.org/10.5772/56059 

  156. Hu, Y., Liang, J., Wang, T.: Parameter synthesis of coupled nonlinear oscillators for CPG-based robotic locomotion. IEEE Trans. Ind. Electron. 61(11), 6183–6191 (2014)

    Article  Google Scholar 

  157. Yu, J., Tan, M., Wang, S., Chen, E.: Development of a biomimetic robotic fish and its control algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 34(4), 1798–1810 (2004)

    Article  Google Scholar 

  158. Liu, J., Hu, H.: A 3D simulator for autonomous robotic fish. International Journal of automation and computing 1(1), 42–50 (2004)

    Article  Google Scholar 

  159. Korkmaz, D., Budak, U., Bal, C., Koca, G.O., Akpolat, Z.: Modeling and implementation of a biomimetic robotic fish. In: International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion, pp 1187–1192. IEEE (2012)

  160. Yu, J., Wang, L., Tan, M.: A framework for biomimetic robot fish's design and its realization. In: Proceedings of the 2005, American Control Conference 2005, pp 1593–1598. IEEE (2005)

  161. Low, K.: Mechatronics and buoyancy implementation of robotic fish swimming with modular fin mechanisms. Proceedings of the Institution of Mechanical Engineers Part I:, Journal of Systems and Control Engineering 221(3), 295–309 (2007)

    Google Scholar 

  162. Tsakiris, D.P., Sfakiotakis, M., Menciassi, A., La Spina, G., Dario, P.: Polychaete-like undulatory robotic locomotion. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp 3018–3023. IEEE (2005)

  163. Delcomyn, F.: Neural basis of rhythmic behavior in animals. Science 210(4469), 492–498 (1980)

    Article  Google Scholar 

  164. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: A review. Neural Netw. 21(4), 642–653 (2008)

    Article  Google Scholar 

  165. Wang, W., Xie, G.: CPG-Based locomotion controller design for a boxfish-like robot. Int. J. Adv. Robot. Syst. 11(6), 87 (2014)

    Article  Google Scholar 

  166. Yu, J., Tan, M., Chen, J., Zhang, J.: A survey on CPG-inspired control models and system implementation. IEEE Trans. Neural Netw. Learn. Syst. 25(3), 441–456 (2013)

    Article  Google Scholar 

  167. Amari, S.I.: Characteristics of random nets of analog neuron-like elements. IEEE Trans. Syst. Man Cybern. SMC-2(5), 643–657 (1972)

    Article  MATH  Google Scholar 

  168. Zhao, W., Hu, Y., Zhang, L., Wang, L.: Design and CPG-based control of biomimetic robotic fish. IET Control Theory & Applications 3(3), 281–293 (2009)

    Article  Google Scholar 

  169. Wang, M., Yu, J., Tan, M.: Modeling neural control of robotic fish with pectoral fins using a CPG-based network. In: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, pp 6502–6507. IEEE (2009)

  170. Wu, Z., Liu, J., Yu, J., Fang, H.: Development of a novel robotic dolphin and its application to water quality monitoring. IEEE/ASME Transactions on Mechatronics 22(5), 2130–2140 (2017)

    Article  Google Scholar 

  171. Wu, Z., Yu, J., Yuan, J., Tan, M.: Towards a gliding robotic dolphin: design, modeling, and experiments. IEEE/ASME Transactions on Mechatronics 24(1), 260–270 (2019)

    Article  Google Scholar 

  172. Fukuoka, Y., Kimura, H., Cohen, A.H.: Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. Int. J. Robot. Res. 22(3-4), 187–202 (2003)

    Article  Google Scholar 

  173. Matsuoka, K.: Mechanisms of frequency and pattern control in the neural rhythm generators. Biological Cybernetics 56(5-6), 345–353 (1987)

    Article  Google Scholar 

  174. Wang, L., Tan, M., Cao, Z., Wang, S., Shen, Z.: CPG based motion control of biomimetic robotic fish. Control Theory and Applications 24 (2007)

  175. Bliss, T., Lwasaki, T., Bart-smith, H.: Central pattern generator control fo a tensegrity swimmer. IEEE/ASME Trans Mechatronics 18, 586–597 (2013)

    Article  Google Scholar 

  176. Yu, J., Wnag, K., Tan, M., Zhang, J.: Design and control of an embedded vision guided robotic fish with multiple control surfaces. Sci. World J., pp. 1–13 (2014)

  177. Zhou, C., Low, K.: Design and locomotion control of a biomimetic underwater vehicle with fin propulsion. IEEE/ASME Trans Mechatronics 17, 25–35 (2012)

    Article  Google Scholar 

  178. Hu, Y., Zhao, W., Wang, L., Jia, Y.: Neural-based control of modular robotic fish with multiple propulsors. In: 2008 47th IEEE Conference on Decision and Control, pp 5232–5237. IEEE (2008)

  179. Verma, S., Shen, D., Xu, J.: Motion control of robotic fish under dynamic environmental conditions using adaptive control approach. IEEE J. Ocean. Eng. 43, 381–390 (2018)

    Article  Google Scholar 

  180. Thuruthel, G., Ansari, Y., Falotico, E., Laschi, C.: Control strategies for soft robotic manipulators: A survey. Soft Robot 5(2), 149–163 (2018)

    Article  Google Scholar 

  181. Santina, D., Duriez, C., Rus, D.: Model based control of soft robots: A survey of the state of the art and open challenges. arXiv (2021)

  182. Santina, C., Katzschmann, R., Bicchi, A., Rus, D.: Model-based dynamic feedback control of a planar robot: trajectory tracking and interaction with the environment. Int. J. Robot. Res. 39(4), 490–513 (2020)

    Article  Google Scholar 

  183. Wang, X., Li, Y., Kwok, K.: A survey of machine learning-based control of continuum robots. Front. Robot. AI. 280 (2021)

  184. Ji, G., Yan, J., Du, J., Yan, W., Chen, J., Lu, Y., Rojas, J., Cheng, S.: Towards safe control of continuum manipulator using shielded multiagent reinforcement learning. IEEE Robot. Autom. Lett. 6, 7461–7468 (2021)

    Article  Google Scholar 

  185. Li, G., Shintake, J., Hayashibe, M.: Deep reinforcement learning framework for underwater locomotion of soft robot. The 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, May 30 - June 5, 2021 (2021)

  186. Wiese, M., Runge, G., Cao, B., Raatz, A.: Transfer learning for accurate modeling and control of soft actuators. IEEE International Conference on Soft Robotics (RoboSoft), 2021 (2021)

  187. Jiang, H., Wang, Z., Jin, Y., Chen, X., Li, P., Gan, Y., Lin, S., Chen, X.: Design, control, and applications of a soft robotic arm. arXiv (2019). https://doi.org/10.48550/arXiv.2007.04047

  188. Satheeshbabu, S., Uppalapati, N., Chowdhary, G., Krishnan, G.: Open loop position control of soft continuum arm using deep reinforcement learning. The 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, May 30 - June 5, 2021 (2019)

  189. Zhang, T., Tian, R., Wang, C., Xie, G.: Path-following control of fish-like robots: a deep reinforcement learning approach. IFAC Papers Online 53(2), 8163–8168 (2020)

    Article  Google Scholar 

  190. Hyatt, P., Wingate, D., Killpack, M.: Model-based control of soft actuators using learned non-linear discrete-time models. Frontiers in Robotics and AI 6(22) (2019)

  191. Fang, G., Tian, Y., Yang, Z., Geraedts, M., Wang, C.: Efficient Jacobian-based inverse kinematics with sim-to-real transfer of soft robots by learning. arXiv (2022). https://doi.org/10.48550/arXiv.2012.13965

  192. Yu, J., Tan, M.: Motion Control of Self-propelled Robotic Jellyfish. In: Motion Control of Biomimetic Swimming Robots. Research on Intelligent Manufacturing. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-8771-5_8

  193. Habib, M.K.: Mechatronics - a unifying interdisciplinary and intelligent engineering science paradigm. IEEE Ind. Electron. Mag. 1(2), 12–24 (2007)

    Article  Google Scholar 

  194. Masoomi, S.F., Gutschmidt, S., Chen, X.: Chap. 6: State of the art in biomimetic swimming robots: Design principles and case study. In: Handbook of Research on Advancements in Robotics and Mechatronics, pp 118–152. IGI Global, Pennsylvania, USA (2015)

  195. Masoomi, S., Gutschmidt, S., Chen, X., Sellier, M.: The kinematics and dynamics of undulatory motion of a tuna-mimetic robot. Int. J. Adv. Robot. Syst. 12. https://doi.org/10.5772/60059 (2015)

  196. Barrett, D., Grosenbaugh, M., Triantafyllou, M.: The optimal control of a flexible hull robotic undersea vehicle propelled by an oscillating foil. In: Proceedings of Symposium on Autonomous Underwater Vehicle Technology, pp 1–9. IEEE (1996)

  197. Masoomi, S., Gutschmidt, S., Gaume, N., Guillaume, T., Eatwel, C., Chen, X., Sellier, M.: Design and construction of a specialised biomimetic robot in multiple swimming gaits. Int. J. Adv. Robot. Syst. 12, 1 (2015). https://doi.org/10.5772/60547

    Article  Google Scholar 

  198. Wöhl, S., Schuster, S.: The predictive start of hunting archer fish: a flexible and precise motor pattern performed with the kinematics of an escape c-start. Journal of Experimental Biology 210(2), 311–324 (2007)

    Article  Google Scholar 

  199. Zheng, X., Wang, C., Fan, R., Xie, G.: Artificial lateral line based local sensing between two adjacent robotic fish. Bioinspiration and Biomimetics 13. https://doi.org/10.1088/1748-3190/aa8f2e (2017)

  200. Xu, Y., Mohseni, K.: A pressure sensory system inspired by the fish lateral line: Hydrodynamic force estimation and wall detection. IEEE J. Ocean. Eng. 42(3), 532–543 (2017). https://doi.org/10.1109/JOE.2016.2613440

    Article  Google Scholar 

  201. Yu, J., Wang, T., Wu, Z., Tan, M.: Design of a miniature underwater angle-of-attack sensor and its application to a self-propelled robotic fish. IEEE J. Ocean. Eng. 45(4), 1295–1307 (2020). https://doi.org/10.1109/JOE.2019.2940800

    Article  Google Scholar 

  202. Yen, W.K., Sierra, D.M., Guo, J.: Controlling a robotic fish to swim along a wall using hydrodynamic pressure feedback. IEEE J. Ocean. Eng. 43(2), 369–380 (2018). https://doi.org/10.1109/JOE.2017.2785698

    Article  Google Scholar 

Download references

Acknowledgements

The support from the Natural Sciences and Engineering Research Council of Canada (NSERC) through a Discovery Grant (No. 213541) and the VP Startup Fund from Memorial University (No. 212948) is dutifully acknowledged.

Funding

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) through a Discovery Grant (No. 213541) and in part by VP Startup Fund from Memorial University under Grant 212948.

Author information

Authors and Affiliations

Authors

Contributions

Xinyu Jian performed the literature survey, drafted the manuscript and revised it critically for the key content. Ting Zou is the corresponding author, responsible for organizing the manuscript sequence alignment, proofreading and revising the manuscript, and giving the final approval of the version to be published. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ting Zou.

Ethics declarations

Ethics approval

Not applicable.

Consent for Publication

Not applicable.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Consent to participate

Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, X., Zou, T. A Review of Locomotion, Control, and Implementation of Robot Fish. J Intell Robot Syst 106, 37 (2022). https://doi.org/10.1007/s10846-022-01726-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01726-w

Keywords

Navigation