Skip to main content
Log in

Design and Motion Analysis of a Bio-Inspired Soft Robotic Finger Based on Multi-Sectional Soft Reinforced Actuator

  • Short paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, a finger-like soft robot is proposed and fabricated with a new multi-sectional design. In the previous multi-section soft robots, the position of the bending center of the soft section is changed by changing the internal pressure. This makes them different from the human finger and creates kinematic analysis problems. Here, an efficient joint is proposed for the soft reinforced actuators to act like human fingers such that the joint rotation location does not change much on the robot for different internal pressures. A prototype of multi-sectional soft reinforced actuator with new joint is fabricated to move like a human finger and generate the distal interphalangeal (DIP) and proximal interphalangeal (PIP) joint angles. Finite element method is employed to demonstrate the behavior of the robot and also an analytical model is presented to predict its joints angle in terms of the internal pressure. The effect of a geometric parameter of the joint is investigated on the tip displacement of the robot, the DIP and the PIP joint angles. Due to the fact that the relation between pressure and joint angles is unclear, an equation is proposed for estimation of the DIP and PIP angles as a function of the pressure. Finally, comparing the angles of the robot joints with the angle of the human finger shows that the proposed design can move like a human finger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biechi, A.: Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Trans. Robot. Autom. 16(6), 652–662 (2000)

    Article  Google Scholar 

  2. Rothling, F., Haschke, R., Steil, J.J., Ritter, H.: Platform portable anthropomorphic grasping with the bielefeld 20-dof shadow and 9-dof tum hand. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, California, USA, pp. 2951–2956 (2007)

    Google Scholar 

  3. Grebenstein, M., Albu-Schäffer, A., Bahls, T., Chalon, M., Eiberger, O., Friedl, W., Gruber, R., Haddadin, S., Hagn, U., Haslinger, R.: The DLR hand arm system. In: 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, pp. 3175–3182 (2011)

    Chapter  Google Scholar 

  4. Gazeau, J.-P., Zeghloul, S., Ramirez, G.: Manipulation with a polyarticulated mechanical hand: a new efficient real-time method for computing fingertip forces for a global manipulation strategy. Robotica. 23(4), 479–490 (2005)

    Article  Google Scholar 

  5. Mnyusiwalla, H., Vulliez, P., Gazeau, J.-P., Zeghloul, S.: A new dexterous hand based on bio-inspired finger design for inside-hand manipulation. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 46(6), 809–817 (2016)

    Article  Google Scholar 

  6. Deimel, R., Brock, O.: A novel type of compliant and underactuated robotic hand for dexterous grasping. The International Journal of Robotics Research. 35(1–3), 161–185 (2016)

    Article  Google Scholar 

  7. Connolly, F., Walsh, C.J., Bertoldi, K.: Automatic design of fiber-reinforced soft actuators for trajectory matching. Proc. Natl. Acad. Sci. 114(1), 51–56 (2017)

    Article  Google Scholar 

  8. Polygerinos, P., Wang, Z., Overvelde, J.T., Galloway, K.C., Wood, R.J., Bertoldi, K., Walsh, C.J.: Modeling of soft fiber-reinforced bending actuators. IEEE Trans. Robot. 31(3), 778–789 (2015)

    Article  Google Scholar 

  9. Moseley, P., Florez, J.M., Sonar, H.A., Agarwal, G., Curtin, W., Paik, J.: Modeling, design, and development of soft pneumatic actuators with finite element method. Adv. Eng. Mater. 18(6), 978–988 (2016)

    Article  Google Scholar 

  10. Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., Whitesides, G.M.: Soft robotics for chemists. Angew. Chem. 123(8), 1930–1935 (2011)

    Article  Google Scholar 

  11. Amend, J., Cheng, N., Fakhouri, S., Culley, B.: Soft robotics commercialization: jamming grippers from research to product. Soft Robotics. 3(4), 213–222 (2016)

    Article  Google Scholar 

  12. Jiang, F., Zhang, Z., Wang, X., Cheng, G., Zhang, Z., Ding, J.: Pneumatically Actuated Self-Healing Bionic Crawling Soft Robot. Journal of Intelligent & Robotic Systems. 1–10 (2020)

  13. Inoue, K., Kuniyoshi, Y., Kagaya, K., Nakajima, K.: Skeletonizing the dynamics of soft continuum body from video. Soft Robotics. (2021)

  14. Buffinton, K.W., Wheatley, B.B., Habibian, S., Shin, J., Cenci, B.H., Christy, A.E.: Investigating the mechanics of human-centered soft robotic actuators with finite element analysis. In: 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), pp. 489–496 (2020)

    Chapter  Google Scholar 

  15. Bruder, D.: Towards a Universal Modeling and Control Framework for Soft Robots. (2020)

  16. Marchese, A.D., Tedrake, R., Rus, D. : Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator. Int. J. Rob. Res. 35(8), 1000–1019 (2016)

  17. Satheeshbabu, S., Uppalapati, N.K., Chowdhary, G., Krishnan, G.: Open loop position control of soft continuum arm using deep reinforcement learning. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 5133–5139 (2019)

    Chapter  Google Scholar 

  18. Shiga, T., Kurauchi, T.: Deformation of polyelectrolyte gels under the influence of electric field. J. Appl. Polym. Sci. 39(11–12), 2305–2320 (1990)

    Article  Google Scholar 

  19. Osada, Y., Okuzaki, H., Hori, H.: A polymer gel with electrically driven motility. Nature. 355(6357), 242–244 (1992)

    Article  Google Scholar 

  20. Hamlen, R., Kent, C., Shafer, S.: Electrolytically activated contractile polymer. Nature. 206(4989), 1149–1150 (1965)

    Article  Google Scholar 

  21. Otake, M., Kagami, Y., Inaba, M., Inoue, H.: Motion design of a starfish-shaped gel robot made of electro-active polymer gel. Robot. Auton. Syst. 40(2–3), 185–191 (2002)

    Article  Google Scholar 

  22. Chikhaoui, M.T., Rabenorosoa, K., Andreff, N.: Kinematics and performance analysis of a novel concentric tube robotic structure with embedded soft micro-actuation. Mech. Mach. Theory. 104, 234–254 (2016)

    Article  Google Scholar 

  23. Mutlu, R., Alici, G., Li, W.: An effective methodology to solve inverse kinematics of electroactive polymer actuators modelled as active and soft robotic structures. Mech. Mach. Theory. 67, 94–110 (2013)

    Article  Google Scholar 

  24. Mazzolai, B., Margheri, L., Cianchetti, M., Dario, P., Laschi, C.: Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspiration & Biomimetics. 7(2), 025005 (2012)

    Article  Google Scholar 

  25. Lin, H.-T., Leisk, G.G., Trimmer, B.: GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspiration & Biomimetics. 6(2), 026007 (2011)

    Article  Google Scholar 

  26. Yang, Y., Chen, Y., Li, Y., Chen, M.Z., Wei, Y.: Bioinspired robotic fingers based on pneumatic actuator and 3D printing of smart material. Soft Robotics. 4(2), 147–162 (2017)

    Article  Google Scholar 

  27. Copaci, D.-S., Blanco, D., Martin-Clemente, A., Moreno, L.: Flexible shape memory alloy actuators for soft robotics: modelling and control. Int. J. Adv. Robot. Syst. 17(1), 1729881419886747 (2020)

    Article  Google Scholar 

  28. Scalet, G.: Two-way and multiple-way shape memory polymers for soft robotics: An overview. In: Actuators, vol. 1, p. 10. Multidisciplinary Digital Publishing Institute (2020)

    Google Scholar 

  29. Tan, N., Gu, X., Ren, H.: Design, characterization and applications of a novel soft actuator driven by flexible shafts. Mech. Mach. Theory. 122, 197–218 (2018)

    Article  Google Scholar 

  30. Kellaris, N., Venkata, V.G., Smith, G.M., Mitchell, S.K., Keplinger, C.: Peano-HASEL actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Science Robotics. 3(14), eaar3276 (2018)

    Article  Google Scholar 

  31. Deimel, R., Brock, O.: A compliant hand based on a novel pneumatic actuator. In: 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, pp. 2047–2053 (2013)

    Chapter  Google Scholar 

  32. Hošovský, A., Piteľ, J., Židek, K., Tóthová, M., Sárosi, J., Cveticanin, L.: Dynamic characterization and simulation of two-link soft robot arm with pneumatic muscles. Mech. Mach. Theory. 103, 98–116 (2016)

    Article  Google Scholar 

  33. Suzumori, K., Endo, S., Kanda, T., Kato, N., Suzuki, H.: A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 4975–4980 (2007)

    Chapter  Google Scholar 

  34. Kim, Y., Parada, G.A., Liu, S., Zhao, X.: Ferromagnetic soft continuum robots. Science Robotics. 4(33), (2019)

  35. Polygerinos, P., Galloway, K.C., Savage, E., Herman, M., O'Donnell, K., Walsh, C.J.: Soft robotic glove for hand rehabilitation and task specific training. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, Washington, USA, pp. 2913–2919 (2015)

    Chapter  Google Scholar 

  36. Daerden, F., Lefeber, D.: Pneumatic artificial muscles: actuators for robotics and automation. Eur. J. Mech. Environ. Eng. 47(1), 11–21 (2002)

    Google Scholar 

  37. Polygerinos, P., Lyne, S., Wang, Z., Nicolini, L.F., Mosadegh, B., Whitesides, G.M., Walsh, C.J.: Towards a soft pneumatic glove for hand rehabilitation. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, pp. 1512–1517 (2013)

    Chapter  Google Scholar 

  38. Marchese, A.D., Onal, C.D., Rus, D.: Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robotics. 1(1), 75–87 (2014)

    Article  Google Scholar 

  39. Mosadegh, B., Polygerinos, P., Keplinger, C., Wennstedt, S., Shepherd, R.F., Gupta, U., Shim, J., Bertoldi, K., Walsh, C.J., Whitesides, G.M.: Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24(15), 2163–2170 (2014)

    Article  Google Scholar 

  40. Truby, R.L., Katzschmann, R.K., Lewis, J.A., Rus, D.: Soft robotic fingers with embedded ionogel sensors and discrete actuation modes for somatosensitive manipulation. In: 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), pp. 322–329 (2019)

    Chapter  Google Scholar 

  41. Homberg, B.S., Katzschmann, R.K., Dogar, M.R., Rus, D.: Haptic identification of objects using a modular soft robotic gripper. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, pp. 1698–1705 (2015)

    Google Scholar 

  42. Xie, Z., Domel, A.G., An, N., Green, C., Gong, Z., Wang, T., Knubben, E.M., Weaver, J.C., Bertoldi, K., Wen, L.: Octopus arm-inspired tapered soft actuators with suckers for improved grasping. Soft Robotics. 7(5), 639–648 (2020)

    Article  Google Scholar 

  43. Wang, J., Fei, Y.: Design and modelling of flex-rigid soft robot for flipping locomotion. Journal of Intelligent & Robotic Systems. 95(2), 379–388 (2019)

    Article  Google Scholar 

  44. Katzschmann, R.K., DelPreto, J., MacCurdy, R., Rus, D.: Exploration of underwater life with an acoustically controlled soft robotic fish. Science Robotics. 3(16), (2018)

  45. Polygerinos, P., Galloway, K.C., Sanan, S., Herman, M., Walsh, C.J.: EMG controlled soft robotic glove for assistance during activities of daily living. In: 2015 IEEE international conference on rehabilitation robotics (ICORR), Singapore, pp. 55–60 (2015)

    Chapter  Google Scholar 

  46. Low, F.-Z., Tan, H.H., Lim, J.H., Yeow, C.-H.: Development of a soft pneumatic sock for robot-assisted ankle exercise. Journal of Medical Devices. 10(1), 014503 (2016)

    Article  Google Scholar 

  47. Ang, B.W., Yeow, C.-H.: 3D printed soft pneumatic actuators with intent sensing for hand rehabilitative exoskeletons. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 841–846 (2019)

    Chapter  Google Scholar 

  48. Majidi Fard Vatan, H., Nefti-Meziani, S., Davis, S., Saffari, Z., El-Hussieny, H.: A review: a comprehensive review of soft and rigid wearable rehabilitation and assistive devices with a focus on the shoulder joint. Journal of Intelligent & Robotic Systems. 102(1), 9 (2021)

    Article  Google Scholar 

  49. Aguilar-Pereyra, J.F., Castillo-Castaneda, E.: Design of a reconfigurable robotic system for flexoextension fitted to hand fingers size. Applied Bionics and Biomechanics. 2016, 1–10 (2016)

    Article  Google Scholar 

  50. Clarkson, H.M.: Musculoskeletal Assessment: Joint Range of Motion and Manual Muscle Strength. Lippincott Williams & Wilkins, Philadelphia, Pennsylvania, USA (2000)

    Google Scholar 

  51. Nordin, M., Frankel, V.H.: Basic Biomechanics of the Musculoskeletal System. Lippincott Williams & Wilkins, Philadelphia, Pennsylvania, USA (2001)

    Google Scholar 

  52. Chen, C.-H., Naidu, D.S.: Fusion of Hard and Soft Control Strategies for the Robotic Hand. John Wiley & Sons, NJ, USA (2017)

    Book  Google Scholar 

  53. Lee, G., Choi, Y.J.I.A.: Bio-inspired tendon-driven finger design with isomorphic ligamentous joint. 8, 18240–18251 (2020)

  54. Galloway, K.C., Polygerinos, P., Walsh, C.J., Wood, R.J.: Mechanically programmable bend radius for fiber-reinforced soft actuators. In: 2013 16th International Conference on Advanced Robotics (ICAR), Montevideo, Uruguay, pp. 1–6 (2013)

    Google Scholar 

  55. Yeoh, O.H.: Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66(5), 754–771 (1993)

    Article  Google Scholar 

  56. Gent, A.N.: On the relation between indentation hardness and Young's modulus. Rubber Chem. Technol. 31(4), 896–906 (1958)

    Article  Google Scholar 

  57. Kohnke, P.: Theory Reference for the Mechanical APDL and Mechanical Applications. ANSYS, Inc, Canonsburg PA, USA (2009)

    Google Scholar 

  58. Jiang, M., Ren, B., Wang, G.: Laboratory study on the hydrodynamic and structural characteristic of violent sloshing in elastic tanks. Ships and Offshore Structures. 10(5), 533–544 (2015)

    Google Scholar 

  59. Wang, Z., Polygerinos, P., Overvelde, J.T., Galloway, K.C., Bertoldi, K., Walsh, C.J.: Interaction forces of soft fiber reinforced bending actuators. IEEE/ASME Transactions on Mechatronics. 22(2), 717–727 (2016)

    Article  Google Scholar 

  60. Lewis, E., Fors, L., Tharion, W.J.: Interrater and intrarater reliability of finger goniometric measurements. Am. J. Occup. Ther. 64(4), 555–561 (2010)

    Article  Google Scholar 

  61. Rijpkema, H., Girard, M.: Computer animation of knowledge-based human grasping. In: ACM Siggraph computer graphics, Providence, RI, USA, vol. 4, pp. 339–348. ACM (1991)

    Google Scholar 

  62. Fahn, C.-S., Sun, H.: Development of a fingertip glove equipped with magnetic tracking sensors. Sensors. 10(2), 1119–1140 (2010)

    Article  Google Scholar 

Download references

Code Availability

The FEM analysis and the analytical study were performed by the commercial package ABAQUS and MATLAB, respectively.

Author information

Authors and Affiliations

Authors

Contributions

This study was based on the continuation of Amir Janghorban's master's thesis under the supervision of Dr. Reza Dehghani.

Corresponding author

Correspondence to Reza Dehghani.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest/Competing Interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(WMV 3849 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janghorban, A., Dehghani, R. Design and Motion Analysis of a Bio-Inspired Soft Robotic Finger Based on Multi-Sectional Soft Reinforced Actuator. J Intell Robot Syst 104, 74 (2022). https://doi.org/10.1007/s10846-022-01579-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01579-3

Keywords

Navigation