Skip to main content
Log in

A Review on Haptic Bilateral Teleoperation Systems

  • Review Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In the haptic human-robot interaction systems, stability and transparency factors are critical but conflicting with one another. Ensuring safety and accuracy of bilateral haptic teleoperation systems is always an important tradeoff to be carefully balanced. Attaining a reasonable operating point for less painful compensation between stability and transparency has been the main concern when designing haptic human-robot systems. Some important works discussed in the paper include model-based control approaches like wave-variable transformation and scattering, time domain passivity/wave prediction with energy regulation, model mediated teleoperation approaches, along with model-free control approaches like neural networks and fuzzy control approaches. The objective to obtain a better agreement between stability and transparency criteria, along with a comprehensive review of these methods and a newly proposed technique attracted most interests of the paper. Earlier solutions tried to achieve a decent tradeoff but were limited to varying time delay and data loss encountered during transmission in the communication channels. The comparison of these methods demonstrates their performance, by illustrating their respective outlines, viability, and limitations, which can aid in the identification of compensation among the state-of-the-art methods and inspire novel ideas. The hardware platforms developed in literature are also summarized here to show the physical implementation of such systems. The paper concludes by suggesting the need of a hybrid method inclusive of an Active Disturbance Rejection Controller (ADRC), towards an even better operating point for the tradeoff between the transparency and stability of haptic human-robot systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferrell, W.R., Sheridan, T.B.: Supervisory control of remote manipulation. IEEE Spectr. 4(10), 81–88 (1967). https://doi.org/10.1109/MSPEC.1967.5217126

    Article  Google Scholar 

  2. Siciliano, B., Khatib, O., Kröger, T.: Springer handbook of robotics, vol.200. Springer, Berlin (2008)

  3. Steinbach, E., Hirche, S., Ernst, M., Brandi, F., Chaudhari, R., Kammerl, J., Vittorias, I.: Haptic Communications. Proc. IEEE 100(4), 937-956: (2012). https://doi.org/10.1109/jproc.2011.2182100

  4. Nunes, D.S., Zhang, P., Sa Silva, J.: A survey on human-in-the-loop applications towards an internet of all. IEEE Commun. Surv. Tutor. 17(2), 944–965 (2015). https://doi.org/10.1109/comst.2015.2398816

    Article  Google Scholar 

  5. Sheridan, T.B.: Telerobotics, automation, and human supervisory control. MIT Press,Cambridge(1992)

  6. Hirche, S., Buss, M.: Human-oriented control for haptic teleoperation. Proc IEEE 100(3), 623-647 (2012). https://doi.org/10.1109/Jproc.2011.2175150

  7. Kokkonis, G., Psannis, K., Roumeliotis, M., Kontogiannis, S.: A survey of transport protocols for haptic applications. In: 2012 16th Panhellenic Conference on Informatics, pp.192-197. IEEE, Berlin (2012)

  8. Hirche, S., Ferre, M., Barrio, J., Melchiorri, C., Buss, M.: Bilateral Control Architectures for Telerobotics. In: Ferre, M., Buss, M., Aracil, R., Melchiorri, C., Balaguer, C. (eds.) Advances in Telerobotics, pp. 163–176. Springer Berlin Heidelberg, Berlin (2007)

    Chapter  Google Scholar 

  9. Hirche, S., Buss, M.: Human perceived transparency with time delay. In: Advances in Telerobotics, pp.191–209. Springer, Berlin (2007)

  10. RodrIguez-Seda, E.J., Dongjun, L., Spong, M.W.: Experimental comparison study of control architectures for bilateral teleoperators. IEEE Trans. Rob. 25(6), 1304–1318 (2009). https://doi.org/10.1109/tro.2009.2032964

    Article  Google Scholar 

  11. Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: An historical survey. Automatica 42(12), 2035–2057 (2006). https://doi.org/10.1016/j.automatica.2006.06.027

    Article  MathSciNet  MATH  Google Scholar 

  12. Nuño, E., Basañez, L., Ortega, R.: Passivity-based control for bilateral teleoperation: A tutorial. Automatica 47(3), 485–495 (2011). https://doi.org/10.1016/j.automatica.2011.01.004

    Article  MathSciNet  MATH  Google Scholar 

  13. Muradore, R., Fiorini, P.: A review of bilateral teleoperation algorithms. Acta Polytech. Hung. 13(1), 191–208 (2016). https://doi.org/10.12700/APH.13.1.2016.1.13

    Article  Google Scholar 

  14. Aliaga, I., Rubio, A., Sanchez, E.: Experimental quantitative comparison of different control architectures for master-slave teleoperation. IEEE Trans. Control Syst. Technol. 12(1), 2–11 (2004). https://doi.org/10.1109/TCST.2003.819586

    Article  Google Scholar 

  15. Passenberg, C., Peer, A., Buss, M.: A survey of environment-, operator-, and task-adapted controllers for teleoperation systems. Mechatronics 20(7), 787–801 (2010). https://doi.org/10.1016/j.mechatronics.2010.04.005

    Article  Google Scholar 

  16. Arcara, P., Melchiorri, C.: Control schemes for teleoperation with time delay: A comparative study. Rob. Autonom. Syst. 38(1), 49–64 (2002). https://doi.org/10.1016/S0921-8890(01)00164-6

    Article  MATH  Google Scholar 

  17. Sun, D., Naghdy, F., Du, H.: Application of wave-variable control to bilateral teleoperation systems: A survey. Annu. Rev. Control. 38(1), 12–31 (2014). https://doi.org/10.1016/j.arcontrol.2014.03.002

    Article  Google Scholar 

  18. Chan, L., Naghdy, F., Stirling, D.: Application of adaptive controllers in teleoperation systems: A survey. IEEE Transactions on Human-Machine Systems 44(3), 337–352 (2014). https://doi.org/10.1109/THMS.2014.2303983

    Article  Google Scholar 

  19. Uddin, R., Ryu, J.: Predictive control approaches for bilateral teleoperation. Annu. Rev. Control. 42, 82–99 (2016). https://doi.org/10.1016/j.arcontrol.2016.09.003

    Article  Google Scholar 

  20. Varkonyi, T.A., Rudas, I.J., Pausits, P., Haidegger, T.: Survey on the control of time delay teleoperation systems. In: IEEE 18th International Conference on Intelligent Engineering Systems INES: 2014, pp. 89-94. IEEE (2014)

  21. Shahbazi, M., Atashzar, S.F., Patel, R.: A systematic review of multilateral teleoperation systems. IEEE Trans. Haptics 11(3), 338–356 (2018). https://doi.org/10.1109/TOH.2018.2818134

    Article  Google Scholar 

  22. Bolopion, A., Régnier, S.: A review of haptic feedback teleoperation systems for micromanipulation and microassembly. IEEE Trans. Autom. Sci. Eng. 10(3), 496–502 (2013). https://doi.org/10.1109/TASE.2013.2245122

    Article  Google Scholar 

  23. Kebria, P.M., Abdi, H., Dalvand, M.M., Khosravi, A., Nahavandi, S.: Control methods for Internet-based teleoperation systems: A review. IEEE Trans. Hum.-Mach. Syst. 49(1), 32–46 (2018). https://doi.org/10.1109/THMS.2018.2878815

    Article  Google Scholar 

  24. Etemad-Sajadi, R.: The impact of online real-time interactivity on patronage intention: The use of avatars. Comput. Hum. Behav. 61, 227–232 (2016). https://doi.org/10.1016/j.chb.2016.03.045

    Article  Google Scholar 

  25. Nahri, S.N.F., Du, S., Van Wyk, B.: Haptic system interface design and modelling for bilateral teleoperation systems. In: 2020 International SAUPEC/RobMech/PRASA Conference, pp. 1-6. IEEE, Cape Town, South Africa. (2020). https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041010

  26. Hannaford, B.: Stability and performance tradeoffs in bi-lateral telemanipulation. In: Proceedings, 1989 International Conference on Robotics and Automation, pp. 1764-1767. IEEE (1989)

  27. Hannaford, B.: A design framework for teleoperators with kinesthetic feedback. IEEE Trans. Robot. Autom. 5(4), 426–434 (1989). https://doi.org/10.1109/70.88057

    Article  Google Scholar 

  28. Hannaford, B., Fiorini, P.: A detailed model of bi-lateral teleoperation. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp. 331-336 (1988)

  29. Hashtrudi-Zaad, K., Salcudean, S.E.: Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators. Int. J. Rob. Res. 20(6), 419–445 (2001). https://doi.org/10.1177/02783640122067471

    Article  Google Scholar 

  30. Raju, G.J., Verghese, G.C., Sheridan, T.B.: Design issues in 2-port network models of bilateral remote manipulation. In: Proceedings, 1989 International Conference on Robotics and Automation, pp. 1316-1321. IEEE (1989)

  31. Salcudean, S.E., Zhu, M., Zhu, W.-H., Hashtrudi-Zaad, K.: Transparent bilateral teleoperation under position and rate control. Int. J. Rob. Res. 19(12), 1185–1202 (2000). https://doi.org/10.1177/02783640022068020

    Article  Google Scholar 

  32. Colgate, J.E., Brown, J.M.: Factors affecting the z-width of a haptic display. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 3205-3210. IEEE (1994)

  33. Yokokohji, Y., Yoshikawa, T.: Bilateral control of master-slave manipulators for ideal kinesthetic coupling - formulation and experiment. IEEE Trans. Robot. Autom. 10(5), 605–620 (1994). https://doi.org/10.1109/70.326566

    Article  Google Scholar 

  34. Anderson, R.J., Spong, M.W.: Bilateral control of teleoperators with time delay. IEEE Trans. Autom. Control 34(5), 494–501 (1989). https://doi.org/10.1109/9.24201

    Article  MathSciNet  Google Scholar 

  35. Lawrence, D.A.: Stability and transparency in bilateral teleoperation. IEEE Trans. Robot. Autom. 9(5), 624–637 (1993). https://doi.org/10.1109/70.258054

    Article  Google Scholar 

  36. Adams, R.J., Hannaford, B.: Stable haptic interaction with virtual environments. IEEE Trans. Robot. Autom. 15(3), 465–474 (1999). https://doi.org/10.1109/70.768179

    Article  Google Scholar 

  37. Hashtrudi-Zaad, K., Salcudean, S.: Analysis and evaluation of stability and performance robustness for teleoperation control architectures. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), pp. 3107-3113. IEEE (2000)

  38. Chang, P.H., Kim, J.: Telepresence index for bilateral teleoperations. IEEE Trans Syst Man Cybern B Cybern 42(1), 81–92 (2012). https://doi.org/10.1109/TSMCB.2011.2160849

    Article  Google Scholar 

  39. Chopra, N., Spong, M.W., Hirche, S., Buss, M.: Bilateral Teleoperation over the Internet: the Time Varying Delay. In: Proceedings of the American Control Conference (ACC) (2003)

  40. Niemeyer, G., Slotine, J.-J.: Using wave variables for system analysis and robot control. In: Proceedings of International Conference on Robotics and Automation, pp. 1619-1625. IEEE (1997)

  41. Niemeyer, G., Slotine, J.-J.: Towards force-reflecting teleoperation over the internet. In: Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference on, pp. 1909-1915. IEEE (1998)

  42. Chopra, N., Spong, M.W., Lozano, R.: Synchronization of bilateral teleoperators with time delay. Automatica 44(8), 2142–2148 (2008). https://doi.org/10.1016/j.automatica.2007.12.002

    Article  MathSciNet  MATH  Google Scholar 

  43. Niemeyer, G., Slotine, J.J.E.: Stable adaptive teleoperation. IEEE J. Ocean. Eng. 16(1), 152–162 (1991). https://doi.org/10.1109/48.64895

    Article  Google Scholar 

  44. Chen, Z., Huang, F., Sun, W., Song, W.: An improved wave-variable based four-channel control design in bilateral teleoperation system for time-delay compensation. IEEE Access 6, 12848–12857 (2018). https://doi.org/10.1109/access.2018.2805782

    Article  Google Scholar 

  45. Aziminejad, A., Tavakoli, M., Patel, R.V., Moallem, M.: Transparent time-delayed bilateral teleoperation using wave variables. IEEE Trans. Control Syst. Technol. 16(3), 548–555 (2008). https://doi.org/10.1109/Tcst.2007.908222

    Article  Google Scholar 

  46. Hashtrudi-Zaad, K., Salcudean, S.E.: Transparency in time-delayed systems and the effect of local force feedback for transparent teleoperation. IEEE Trans. Robot. Autom. 18(1), 108–114 (2002). https://doi.org/10.1109/70.988981

    Article  Google Scholar 

  47. Kim, J., Chang, P.H., Park, H.-S.: Two-channel transparency-optimized control architectures in bilateral teleoperation with time delay. IEEE Trans. Control Syst. Technol. 21(1), 40–51 (2013). https://doi.org/10.1109/TCST.2011.2172945

    Article  Google Scholar 

  48. Hannaford, B., Ryu, J.H.: Time-domain passivity control of haptic interfaces. IEEE Trans. Robot. Autom. 18(1), 1–10 (2002). https://doi.org/10.1109/70.988969

    Article  Google Scholar 

  49. Ryu, J.H., Artigas, J., Preusche, C.: A passive bilateral control scheme for a teleoperator with time-varying communication delay. Mechatronics 20(7), 812–823 (2010). https://doi.org/10.1016/j.mechatronics.2010.07.006

    Article  Google Scholar 

  50. Mitra, P., Niemeyer, G.N.: Model mediated telemanipulation. In: ASME 2006 International Mechanical Engineering Congress and Exposition, pp. 1393–1401. American Society of Mechanical Engineers (2006)

  51. Xu, X., Cizmeci, B., Schuwerk, C., Steinbach, E.: Model-mediated teleoperation: toward stable and transparent teleoperation systems. IEEE Access 4, 425–449 (2016). https://doi.org/10.1109/Access.2016.2517926

    Article  Google Scholar 

  52. Kim, J.-P., Ryu, J.: Robustly stable haptic interaction control using an energy-bounding algorithm. Int. J. Rob. Res. 29(6), 666–679 (2010). https://doi.org/10.1177/0278364909338770

    Article  Google Scholar 

  53. Franken, M., Stramigioli, S., Misra, S., Secchi, C., Macchelli, A.: Bilateral telemanipulation with time delays: A two-layer approach combining passivity and transparency. IEEE Trans. Robot. 27(4), 741–756 (2011). https://doi.org/10.1109/TRO.2011.2142430

    Article  Google Scholar 

  54. Ganjefar, S., Sarajchi, M.H., Beheshti, M.H.: Adaptive sliding mode controller design for nonlinear teleoperation systems using singular perturbation method. Nonlinear Dyn. 81(3), 1435–1452 (2015). https://doi.org/10.1007/s11071-015-2078-1

    Article  MathSciNet  MATH  Google Scholar 

  55. Salimifar, M., Taghirad, H., Fallahi, B.: Formulation of transparency in bilateral teleoperation systems: A robust approach. In: The 3rd International Conference on Control, Instrumentation, and Automation, pp. 22-27. IEEE (2013)

  56. Lewis, F.L., Jagannathan, S., Yesildirek, A.: Neural network control of robot manipulators and nonlinear systems. Taylor and Francis, London (1999)

    Google Scholar 

  57. Prokopowicz, P., Czerniak, J., Mikołajewski, D., Apiecionek, Ł, Ślȩzak, D.: Theory and Applications of Ordered Fuzzy Numbers: A Tribute to Professor Witold Kosiński. Springer Nature (2017)

  58. Niemeyer, G., Slotine, J.-J.E.: Telemanipulation with time delays. The International Journal of Robotics Research 23(9), 873–890 (2004). https://doi.org/10.1177/0278364904045563

    Article  Google Scholar 

  59. Pitakwatchara, P.: Control of time-varying delayed teleoperation system using corrective wave variables. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4550-4555. IEEE (2015)

  60. Sun, D., Naghdy, F., Du, H.: Transparent four-channel bilateral control architecture using modified wave variable controllers under time delays. Robotica 34(4), 859–875 (2016). https://doi.org/10.1017/S026357471400191X

    Article  Google Scholar 

  61. Sun, D., Naghdy, F., Du, H.: A novel approach for stability and transparency control of nonlinear bilateral teleoperation system with time delays. Control. Eng. Pract. 47, 15–27 (2016). https://doi.org/10.1016/J.CONENGPRAC.2015.11.003

    Article  Google Scholar 

  62. Sun, D., Naghdy, F., Du, H.: Wave-variable-based passivity control of four-channel nonlinear bilateral teleoperation system under time delays. IEEE/ASME Trans. Mechatron. 21(1), 238–253 (2016). https://doi.org/10.1109/tmech.2015.2442586

    Article  Google Scholar 

  63. D’Amore, N., Akin, D.L.: Transparency and tuning of wave-based bilateral teleoperation systems. IEEE Rob. Autom. Lett. 2(1), 321–328 (2016). https://doi.org/10.1109/LRA.2016.2606659

    Article  Google Scholar 

  64. Yang, C., Wang, X., Li, Z., Li, Y., Su, C.-Y.: Teleoperation control based on combination of wave variable and neural networks. IEEE Trans. Syst. Man Cybern.: Syst 47(8), 2125–2136 (2017). https://doi.org/10.1109/TSMC.2016.2615061

    Article  Google Scholar 

  65. Guo, J., Liu, C., Poignet, P.: A scaled bilateral teleoperation system for robotic-assisted surgery with time delay. J. Intell. Robot. Syst. 1–28 (2018). https://doi.org/10.1007/s10846-018-0918-1

  66. Yuan, Y., Wang, Y., Guo, L.: Force reflecting control for bilateral teleoperation system under time-varying delays. IEEE Trans. Industr. Inf. 15(2), 1162–1172 (2019). https://doi.org/10.1109/tii.2018.2822670

    Article  Google Scholar 

  67. Ferraguti, F., Bonfè, M., Fantuzzi, C., Secchi, C.: Optimized power modulation in wave-based bilateral teleoperation. IEEE/ASME Trans. Mechatron. 26(1), 276–287 (2020). https://doi.org/10.1109/TMECH.2020.3013978

    Article  Google Scholar 

  68. Ryu, J.-H., Kwon, D.-S., Hannaford, B.: Stable teleoperation with time-domain passivity control. IEEE Trans. Robot. Autom. 20(2), 365–373 (2004). https://doi.org/10.1109/TRA.2004.824689

    Article  Google Scholar 

  69. Ryu, J.-H., Preusche, C.: Stable bilateral control of teleoperators under time-varying communication delay: Time domain passivity approach. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 3508-3513. IEEE (2007)

  70. Ye, Y., Pan, Y.-J., Hilliard, T.: Bilateral teleoperation with time-varying delay: A communication channel passification approach. IEEE/ASME Trans. Mechatron. 18(4), 1431–1434 (2013). https://doi.org/10.1109/TMECH.2013.2255882

    Article  Google Scholar 

  71. Chawda, V., Van Quang, H., O’Malley, M.K., Ryu, J.-H.: Compensating position drift in time domain passivity approach based teleoperation. In: 2014 IEEE Haptics Symposium (HAPTICS), pp. 195-202. IEEE (2014)

  72. Xu, X., Cizmeci, B., Schuwerk, C., Steinbach, E.: Haptic data reduction for time-delayed teleoperation using the time domain passivity approach. In: 2015 IEEE World Haptics Conference (WHC), pp. 512-518. IEEE (2015)

  73. Sun, D., Naghdy, F., Du, H.: Time domain passivity control of time-delayed bilateral telerobotics with prescribed performance. Nonlinear Dyn. 87(2), 1253–1270 (2017). https://doi.org/10.1007/s11071-016-3113-6

    Article  MATH  Google Scholar 

  74. Jafari, B.H., Spong, M.W.: Passivity-based switching control in teleoperation systems with time-varying communication delay. In: 2017 American Control Conference (ACC), pp. 5469-5475. IEEE (2017)

  75. Coelho, A., Singh, H., Muskardin, T., Balachandran, R., Kondak, K.: Smoother position-drift compensation for time domain passivity approach based teleoperation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5525-5532. IEEE (2018)

  76. Panzirsch, M., Ryu, J.-H., Ferre, M.: Reducing the conservatism of the time domain passivity approach through consideration of energy reflection in delayed coupled network systems. Mechatronics 58, 58–69 (2019). https://doi.org/10.1016/j.mechatronics.2018.12.001

    Article  Google Scholar 

  77. Sheng, L., Ahmad, U., Ye, Y., Pan, Y.-J.: A time domain passivity control scheme for bilateral teleoperation. Electronics 8(3), 325 (2019). https://doi.org/10.3390/electronics8030325

    Article  Google Scholar 

  78. Coelho, A., Ott, C., Singh, H., Lizarralde, F., Kondak, K.: Multi-dof time domain passivity approach based drift compensation for telemanipulation. In: 2019 19th International Conference on Advanced Robotics (ICAR), pp. 695-701. IEEE (2019)

  79. Xu, X., Chen, S., Steinbach, E.: Model-mediated teleoperation for movable objects: dynamics modeling and packet rate reduction. In: Haptic, Audio and Visual Environments and Games (HAVE), 2015 IEEE International Symposium on, pp. 1-6. Citeseer (2015)

  80. Willaert, B., Van Brussel, H., Niemeyer, G.: Stability of model-mediated teleoperation: Discussion and experiments. In: International conference on human haptic sensing and touch enabled computer applications, pp. 625-636. Springer, Berlin (2012)

  81. Xu, X., Cizmeci, B., Al-Nuaimi, A., Steinbach, E.: Point cloud-based model-mediated teleoperation with dynamic and perception-based model updating. IEEE Trans. Instrum. Meas. 63(11), 2558–2569 (2014). https://doi.org/10.1109/TIM.2014.2323139

    Article  Google Scholar 

  82. Smisek, J., van Paassen, R.M., Schiele, A.: Naturally-transitioningrate-to-force controller robust to time delay by model-mediated teleoperation. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp. 3066-3071. IEEE (2015)

  83. Xu, X., Schuwerk, C., Steinbach, E.: Passivity-based model updating for model-mediated teleoperation. In: 2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1-6. IEEE (2015)

  84. Wang, L., Chen, Z., Chalasani, P., Yasin, R.M., Kazanzides, P., Taylor, R.H., Simaan, N.: Force-controlled exploration for updating virtual fixture geometry in model-mediated telemanipulation. J. Mech. Robot. 9(2), 021010 (2017). https://doi.org/10.1115/1.4035684

    Article  Google Scholar 

  85. Uzunoğlu, E., Dede, M.İC.: Extending model-mediation method to multi-degree-of-freedom teleoperation systems experiencing time delays in communication. Robotica 35(5), 1121–1136 (2017). https://doi.org/10.1017/S0263574715001010

    Article  Google Scholar 

  86. Pecly, L.S., Souza, M.L., Hashtrudi-Zaad, K.: Model-reference model-mediated control for time-delayed teleoperation systems. In: 2018 IEEE Haptics Symposium (HAPTICS), pp. 72-77. IEEE (2018)

  87. Song, J., Ding, Y., Shang, Z., Liang, J.: Model-mediated teleoperation with improved stability. Int. J. Adv. Rob. Syst. 15(2), 1729881418761136 (2018). https://doi.org/10.1177/1729881418761136

    Article  Google Scholar 

  88. Yazdankhoo, B., Beigzadeh, B.: Increasing stability in model-mediated teleoperation approach by reducing model jump effect. Sci. Iran. 26(1), 3–14 (2019). https://doi.org/10.24200/SCI.2017.20007

    Article  Google Scholar 

  89. Lammers, B.: VR-based visual model mediated telepresence using a SLAM generated virtual model. University of Twente, Enschede (2020)

  90. Franken, M., Misra, S., Stramigioli, S.: Stability of position-based bilateral telemanipulation systems by damping injection. In: 2012 IEEE International Conference on Robotics and Automation, pp .4300-4306. IEEE (2012)

  91. Delgado, E., Barreiro, A., Falcón, P., Díaz-Cacho, M.: Robust stability of scaled-four-channel teleoperation with internet time-varying delays. Sensors 16(5), 593 (2016). https://doi.org/10.3390/s16050593

    Article  Google Scholar 

  92. Kubo, R., Iiyama, N., Natori, K., Ohnishi, K., Furukawa, H.: Performance analysis of a three-channel control architecture for bilateral teleoperation with time delay. IEEJ Trans. Ind. Appl. 127(12), 1224–1230 (2007). https://doi.org/10.1541/ieejias.127.1224

    Article  Google Scholar 

  93. Fite, K.B., Speich, J.E., Goldfarb, M.: Transparency and stability robustness in two-channel bilateral telemanipulation. J. Dyn. Syst. Meas. Contr. 123(3), 400–407 (2001). https://doi.org/10.1115/1.1387018

    Article  Google Scholar 

  94. Li, H., Kawashima, K.: Achieving stable tracking in wave-variable-based teleoperation. IEEE/ASME Trans. Mechatron. 19(5), 1574–1582 (2013). https://doi.org/10.1109/TMECH.2013.2289076

    Article  Google Scholar 

  95. Tanner, N.A., Niemeyer, G.: High-frequency acceleration feedback in wave variable telerobotics. IEEE/ASME Trans. Mechatron. 11(2), 119–127 (2006). https://doi.org/10.1109/TMECH.2006.871086

    Article  Google Scholar 

  96. Kim, J.-P., Ryu, J.: Energy bounding algorithm based on passivity theorem for stable haptic interaction control. In: 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004. HAPTICS’04. Proceedings, pp. 351-357. IEEE (2004)

  97. Seo, C., Kim, J.-P., Kim, J., Ahn, H.-S., Ryu, J.: Robustly stable bilateral teleoperation under time-varying delays and data losses: an energy-bounding approach. J. Mech. Sci. Technol. 25(8), 2089 (2011). https://doi.org/10.1007/s12206-011-0523-8

    Article  Google Scholar 

  98. Kim, S., Kim, J.-P., Ryu, J.: Adaptive energy-bounding approach for robustly stable interaction control of impedance-controlled industrial robot with uncertain environments. IEEE/ASME Trans. Mechatron. 19(4), 1195–1205 (2013). https://doi.org/10.1109/TMECH.2013.2276935

    Article  Google Scholar 

  99. Heck, D., Saccon, A., Beerens, R., Nijmeijer, H.: Direct force-reflecting two-layer approach for passive bilateral teleoperation with time delays. IEEE Trans. Rob. 34(1), 194–206 (2018). https://doi.org/10.1109/TRO.2017.2769123

    Article  Google Scholar 

  100. Leung, G.M., Francis, B.A., Apkarian, J.: Bilateral controller for teleoperators with time delay via/spl mu/-synthesis. IEEE Trans. Robot. Autom. 11(1), 105–116 (1995). https://doi.org/10.1109/70.345941

    Article  Google Scholar 

  101. Kim, K., Cavusoglu, M.C., Chung, W.K.: Quantitative comparison of bilateral teleoperation systems using -synthesis. IEEE Trans. Rob. 23(4), 776–789 (2007). https://doi.org/10.1109/TRO.2007.900625

    Article  Google Scholar 

  102. Buttolo, P., Braathen, P., Hannaford, B.: Sliding control of force reflecting teleoperation: Preliminary studies. Presence 3(2), 158–172 (1994). https://doi.org/10.1162/pres.1994.3.2.158

    Article  Google Scholar 

  103. Park, J.H., Cho, H.C.: Sliding-mode controller for bilateral teleoperation with varying time delay. In: 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No. 99TH8399), pp. 311-316. IEEE (1999)

  104. Cho, H.C., Park, J.H., Kim, K., Park, J.-O.: Sliding-mode-based impedance controller for bilateral teleoperation under varying time-delay. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), pp. 1025-1030. IEEE (2001)

  105. Yang, Y., Hua, C., Guan, X.: Finite time control design for bilateral teleoperation system with position synchronization error constrained. IEEE Trans. Cybern. 46(3), 609–619 (2015). https://doi.org/10.1109/TCYB.2015.2410785

    Article  Google Scholar 

  106. Sheng, J., Spong, M.: Model predictive control for bilateral teleoperation systems with time delays. In: Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No. 04CH37513), pp. 1877-1880. IEEE (2004)

  107. Grüne, L., Pannek, J.: Nonlinear model predictive control. In: Nonlinear model predictive control, pp. 45–69. Springer, Berlin (2017)

  108. Piccinelli, N., Muradore, R.: A Passivity-Based Bilateral Teleoperation Architecture using Distributed Nonlinear Model Predictive Control. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 11466-11472. IEEE (2020)

  109. Lee, D., Huang, K.: Passive-set-position-modulation framework for interactive robotic systems. IEEE Trans. Rob. 26(2), 354–369 (2010). https://doi.org/10.1109/TRO.2010.2041877

    Article  Google Scholar 

  110. Natori, K., Tsuji, T., Ohnishi, K., Hace, A., Jezernik, K.: Time-delay compensation by communication disturbance observer for bilateral teleoperation under time-varying delay. IEEE Trans. Industr. Electron. 57(3), 1050–1062 (2010). https://doi.org/10.1109/TIE.2009.2028337

    Article  Google Scholar 

  111. Li, Z., Xia, Y., Su, C.-Y.: Intelligent networked teleoperation control. (2015)

  112. Michael, A.K.J., Valla, E., Neggatu, N.S., Moore, A.W.: Network traffic classification via neural networks. University of Cambridge, Computer Laboratory (2017)

    Google Scholar 

  113. Sun, D., Naghdy, F., Du, H.: Neural network-based passivity control of teleoperation system under time-varying delays. IEEE Trans. Cybern. 47(7), 1666–1680 (2016). https://doi.org/10.1109/TCYB.2016.2554630

    Article  Google Scholar 

  114. Yang, Y., Ge, C., Wang, H., Li, X., Hua, C.: Adaptive neural network based prescribed performance control for teleoperation system under input saturation. J. Franklin Inst. 352(5), 1850–1866 (2015). https://doi.org/10.1016/j.jfranklin.2015.01.032

    Article  MathSciNet  MATH  Google Scholar 

  115. Yang, Y., Hua, C., Li, J., Guan, X.: Finite-time output-feedback synchronization control for bilateral teleoperation system via neural networks. Inf. Sci. 406, 216–233 (2017)

    Article  Google Scholar 

  116. Wang, H., Liu, P.X., Liu, S.: Adaptive neural synchronization control for bilateral teleoperation systems with time delay and backlash-like hysteresis. IEEE Trans. Cybern. 47(10), 3018–3026 (2017). https://doi.org/10.1109/TCYB.2016.2644656

    Article  Google Scholar 

  117. Su, H., Qi, W., Yang, C., Sandoval, J., Ferrigno, G., De Momi, E.: Deep neural network approach in robot tool dynamics identification for bilateral teleoperation. IEEE Rob. Autom. Lett. 5(2), 2943–2949 (2020). https://doi.org/10.1109/LRA.2020.2974445

    Article  Google Scholar 

  118. Chen, Z., Huang, F., Sun, W., Gu, J., Yao, B.: RBF-neural-network-based adaptive robust control for nonlinear bilateral teleoperation manipulators with uncertainty and time delay. IEEE/ASME Trans. Mechatron. 25(2), 906–918 (2019). https://doi.org/10.1109/TMECH.2019.2962081

    Article  Google Scholar 

  119. Zhang, S., Yuan, S., Yu, X., Kong, L., Li, Q., Li, G.: Adaptive neural network fixed-time control design for bilateral teleoperation with time delay. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3063729

    Article  Google Scholar 

  120. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Set. Syst. 1(1), 3–28 (1978). https://doi.org/10.1016/0165-0114(78)90029-5

    Article  MathSciNet  MATH  Google Scholar 

  121. Sim, K.-B., Byun, K.-S., Harashima, F.: Internet-based teleoperation of an intelligent robot with optimal two-layer fuzzy controller. IEEE Trans. Industr. Electron. 53(4), 1362–1372 (2006). https://doi.org/10.1109/TIE.2006.878295

    Article  Google Scholar 

  122. Li, Z., Xia, Y., Sun, F.: Adaptive fuzzy control for multilateral cooperative teleoperation of multiple robotic manipulators under random network-induced delays. IEEE Trans. Fuzzy Syst. 22(2), 437–450 (2013). https://doi.org/10.1109/TFUZZ.2013.2260550

    Article  Google Scholar 

  123. Zhai, D.-H., Xia, Y.: Adaptive fuzzy control of multilateral asymmetric teleoperation for coordinated multiple mobile manipulators. IEEE Trans. Fuzzy Syst. 24(1), 57–70 (2015). https://doi.org/10.1109/TFUZZ.2015.2426215

    Article  Google Scholar 

  124. Yang, Y., Hua, C., Guan, X.: Adaptive fuzzy finite-time coordination control for networked nonlinear bilateral teleoperation system. IEEE Trans. Fuzzy Syst. 22(3), 631–641 (2013). https://doi.org/10.1109/TFUZZ.2013.2269694

    Article  Google Scholar 

  125. Farooq, U., Gu, J., El-Hawary, M., Asad, M.U., Abbas, G.: Fuzzy model based bilateral control design of nonlinear tele-operation system using method of state convergence. IEEE Access 4, 4119–4135 (2016). https://doi.org/10.1109/ACCESS.2016.2558524

    Article  Google Scholar 

  126. Nasirian, A., Khanesar, M.A.: Sliding mode fuzzy rule base bilateral teleoperation control of 2-DOF SCARA system. In: 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), pp. 7-12. IEEE (2016)

  127. Sun, D., Liao, Q., Ren, H.: Type-2 fuzzy modeling and control for bilateral teleoperation system with dynamic uncertainties and time-varying delays. IEEE Trans. Industr. Electron. 65(1), 447–459 (2017). https://doi.org/10.1109/TIE.2017.2719604

    Article  Google Scholar 

  128. Yang, L., Chen, Y., Liu, Z., Chen, K., Zhang, Z.: Adaptive fuzzy control for teleoperation system with uncertain kinematics and dynamics. Int. J. Control Autom. Syst. 17(5), 1158–1166 (2019). https://doi.org/10.1007/s12555-017-0631-z

    Article  Google Scholar 

  129. Chen, Z., Huang, F., Yang, C., Yao, B.: Adaptive fuzzy backstepping control for stable nonlinear bilateral teleoperation manipulators with enhanced transparency performance. IEEE Trans. Ind. Electron. 67(1), 746–756 (2019). https://doi.org/10.1109/TIE.2019.2898587

    Article  Google Scholar 

  130. Han, J.: From PID to Active Disturbance Rejection Control. IEEE Trans. Industr. Electron. 56(3), 900–906 (2009). https://doi.org/10.1109/tie.2008.2011621

    Article  Google Scholar 

  131. Hayward, V., Astley, O.R., Cruz-Hernandez, M., Grant, D., Robles‐De‐La‐Torre, G.: Haptic interfaces and devices. Sens. Rev. (2004). https://doi.org/10.1108/02602280410515770

    Article  Google Scholar 

  132. Giri, G.S., Maddahi, Y., Zareinia, K.: An application-based review of haptics technology. Robotics 10(1), 29 (2021). https://doi.org/10.3390/robotics10010029

    Article  Google Scholar 

  133. Hamza-Lup, F.G., Bergeron, K., Newton, D.: Haptic systems in user interfaces: state of the art survey. In: Proceedings of the 2019 ACM Southeast Conference, pp. 141-148 (2019)

  134. Silva, A.J., Ramirez, O.A.D., Vega, V.P., Oliver, J.P.O.: Phantom omni haptic device: Kinematic and manipulability. In: 2009 Electronics, Robotics and Automotive Mechanics Conference (CERMA), pp. 193-198. IEEE (2009)

  135. Van der Linde, R.Q., Lammertse, P., Frederiksen, E., Ruiter, B.: The HapticMaster, a new high-performance haptic interface. In: Proc. Eurohaptics, pp. 1-5 (2002)

  136. Martin, S., Hillier, N.: Characterisation of the Novint Falcon haptic device for application as a robot manipulator. In: Australasian Conference on Robotics and Automation (ACRA), pp. 291-292. Citeseer (2009)

  137. Massie, T.H., Salisbury, J.K.: The phantom haptic interface: A device for probing virtual objects. In: Proceedings of the ASME winter annual meeting, symposium on haptic interfaces for virtual environment and teleoperator systems, vol.1, pp. 295-300. Chicago, IL (1994)

  138. Taati, B., Tahmasebi, A.M., Hashtrudi-Zaad, K.: Experimental identification and analysis of the dynamics of a PHANToM premium 1.5 A haptic device. Presence 17(4), 327–343 (2008). https://doi.org/10.1162/pres.17.4.327

    Article  Google Scholar 

  139. Bischoff, R., Kurth, J., Schreiber, G., Koeppe, R., Albu-Schäffer, A., Beyer, A., Eiberger, O., Haddadin, S., Stemmer, A., Grunwald, G.: The KUKA-DLR Lightweight Robot arm-a new reference platform for robotics research and manufacturing. In: ISR 2010 (41st international symposium on robotics) and ROBOTIK 2010 (6th German conference on robotics), pp. 1-8. VDE ( 2010)

  140. Pacchierotti, C., Abayazid, M., Misra, S., Prattichizzo, D.: Teleoperation of steerable flexible needles by combining kinesthetic and vibratory feedback. IEEE Trans. Haptics 7(4), 551–556 (2014). https://doi.org/10.1109/TOH.2014.2360185

    Article  Google Scholar 

  141. Unterhinninghofen, U., Schauß, T., Buss, M.: Control of a mobile haptic interface. In: 2008 IEEE International Conference on Robotics and Automation, pp. 2085-2090. IEEE (2008)

  142. Hastrudi-Zaad, K., Salcudean, S.: On the use of local force feedback for transparent teleoperation. In: Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on, pp. 1863-1869. IEEE (1999)

  143. Sakai, H., Ohnishi, K.: Transparency-optimized bilateral teleoperation based on acceleration control in the presence of time delay. In: Advanced Motion Control (AMC), 2016 IEEE 14th International Workshop on, pp. 147-152. IEEE (1999)

  144. van der Schaft, A.J., Van Der Schaft, A.: L2-gain and passivity techniques in nonlinear control, vol. 2. Springer, Berlin (2000)

  145. Munir, S., Book, W.J.: Internet-based teleoperation using wave variables with prediction. IEEE/ASME Trans. Mechatron. 7(2), 124–133 (2002). https://doi.org/10.1109/TMECH.2002.1011249

    Article  Google Scholar 

  146. Lee, D., Spong, M.W.: Passive bilateral teleoperation with constant time delay. IEEE Trans. Robot. 22(2), 269–281 (2006). https://doi.org/10.1109/TRO.2005.862037

    Article  Google Scholar 

  147. Lozano, R., Chopra, N., Spong, M.W.: Passivation of force reflecting bilateral teleoperators with time varying delay. In: Proceedings of the 8. Mechatronics Forum, pp. 954-962 (2002)

  148. Han, J.: A class of extended state observers for uncertain systems. Control Decis. 10(1), 85–88 (1995)

    Google Scholar 

  149. Gao, Z., Huang, Y., Han, J.: An alternative paradigm for control system design. In: Proceedings of the 40th IEEE conference on decision and control (Cat. No. 01CH37228), pp. 4578-4585. IEEE (2001)

  150. Nahri, S.N.F., Du, S., van Wyk, B.J.: Active disturbance rejection control design for a haptic machine interface platform. Adv. Sci. Technol. Eng. Syst. J. 6(1), 898–911 (2021). https://doi.org/10.25046/aj060199

    Article  Google Scholar 

  151. Jiang, P., Hao, J.-Y., Zong, X.-P., Wang, P.-G.: Modeling and simulation of active-disturbance-rejection controller with simulink. In: 2010 International Conference on Machine Learning and Cybernetics, pp. 927-931. IEEE (2010)

  152. Culbertson, H., Schorr, S.B., Okamura, A.M.: Haptics: the present and future of artificial touch sensation. Annu. Rev. Control Rob. Auton. Syst. 1, 385–409 (2018). https://doi.org/10.1146/annurev-control-060117-105043

    Article  Google Scholar 

Download references

Acknowledgements

The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptual idea for the article. Literature search and data analysis were performed by Syeda Nadiah Fatima Nahri and Shengzhi Du. The first draft of the manuscript was written by Syeda Nadiah Fatima Nahri and edited and reviewed by Shengzhi Du and BJ van Wyk. The work was critically revised by Syeda Nadiah Fatima Nahri and Shengzhi Du. All authors have approved the final manuscript.

Corresponding author

Correspondence to Shengzhi Du.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nahri, S.N.F., Du, S. & Van Wyk, B.J. A Review on Haptic Bilateral Teleoperation Systems. J Intell Robot Syst 104, 13 (2022). https://doi.org/10.1007/s10846-021-01523-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01523-x

Keywords

Navigation