Skip to main content
Log in

Development and Evaluation of Path and Speed Profile Planning and Tracking Control for an Autonomous Shuttle Using a Realistic, Virtual Simulation Environment

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper is motivated by the autonomous shuttle service that operates in the geo-fenced Linden Residential Area of Columbus, Ohio that links residents to the two nearby locations of opportunity of a community center and a transit hub. This paper focuses on path planning and path tracking of an autonomous shuttle which are its most fundamental autonomous driving functions. Path planning is based on improving efficiency of computation and smoothness of path. Velocity planning is based on obeying speed limits, limiting longitudinal acceleration along straight segments and lateral acceleration during curved segments for improved ride comfort of the passengers. Path tracking control focuses on robust implementation that keeps accuracy of path following in the presence of uncertainties and variations in speed. A realistic, 3D virtual simulation environment of the actual geo-fenced urban area used here is built for evaluating and developing the path planning and path tracking functions of this paper. The same environment can also be used for developing and evaluating other autonomous driving functions with the capability of generating complicated traffic scenarios. The path tacking control results are compared with those of the pure pursuit path tracking algorithm of the open source and publicly available Autoware autonomous driving interface for the Robot Operating System.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

Not Applicable.

References

  1. Li, X., Arul Doss, A.C., Aksun Guvenc, B., Guvenc, L.: Pre-deployment testing of low speed, Urban Road Autonomous Driving in a Simulated Environment. SAE Int. J. Adv. & Curr. Prac. in Mobility. 2(6), 3301–3311 (2020). https://doi.org/10.4271/2020-01-0706

    Article  Google Scholar 

  2. deepdrive: deepdrive. (2020)

  3. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An Open Urban Driving Simulator. arXiv e-prints (2017)

  4. Bohren, J., Foote, T., Keller, J., Kushleyev, A., Lee, D., Stewart, A., Vernaza, P., Derenick, J., Spletzer, J., Satterfield, B.: Little ben: the ben franklin racing team's entry in the 2007 DARPA urban challenge. Journal of Field Robotics. 25(9), 598–614 (2008)

    Article  Google Scholar 

  5. Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M.N., Dolan, J., Duggins, D., Galatali, T., Geyer, C., Gittleman, M., Harbaugh, S., Hebert, M., Howard, T.M., Kolski, S., Kelly, A., Likhachev, M., McNaughton, M., Miller, N., Peterson, K., Pilnick, B., Rajkumar, R., Rybski, P., Salesky, B., Seo, Y.-W., Singh, S., Snider, J., Stentz, A., Whittaker, W.R., Wolkowicki, Z., Ziglar, J., Bae, H., Brown, T., Demitrish, D., Litkouhi, B., Nickolaou, J., Sadekar, V., Zhang, W., Struble, J., Taylor, M., Darms, M., Ferguson, D.: Autonomous driving in urban environments: Boss and the Urban Challenge. 25(8), 425–466 (2008). doi:https://doi.org/10.1002/rob.20255

  6. Rastelli, J.P., Lattarulo, R., Nashashibi, F.: Dynamic trajectory generation using continuous-curvature algorithms for door to door assistance vehicles. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings, 8–11 June 2014 2014, pp. 510–515

  7. Piazzi, A., Bianco, C.G.L., Bertozzi, M., Fascioli, A., Broggi, A.: Quintic G/sup 2/−splines for the iterative steering of vision-based autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 3(1), 27–36 (2002). https://doi.org/10.1109/6979.994793

    Article  Google Scholar 

  8. González, D., Pérez, J., Lattarulo, R., Milanés, V., Nashashibi, F.: Continuous curvature planning with obstacle avoidance capabilities in urban scenarios. In: 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), 8–11 Oct. 2014 2014, pp. 1430–1435

  9. Liu, P., Yu, H., Cang, S.: Geometric analysis-based trajectory planning and control for underactuated capsule systems with viscoelastic property. Trans. Inst. Meas. Control. 40(7), 2416–2427 (2018). https://doi.org/10.1177/0142331217708833

    Article  Google Scholar 

  10. Cremean, L.B., Foote, T.B., Gillula, J.H., Hines, G.H., Kogan, D., Kriechbaum, K.L., Lamb, J.C., Leibs, J., Lindzey, L., Rasmussen, C.E.: Alice: an information-rich autonomous vehicle for high-speed desert navigation. Journal of Field Robotics. 23(9), 777–810 (2006)

    Article  Google Scholar 

  11. Kogan, D., Murray, R.: Optimization-based navigation for the DARPA grand challenge. In: Conference on Decision and Control (CDC) 2006

  12. Shyam, R.A., Lightbody, P., Das, G., Liu, P., Gomez-Gonzalez, S., Neumann, G.: Improving Local Trajectory Optimisation using Probabilistic Movement Primitives. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3–8 Nov. 2019 2019, pp. 2666–2671

  13. Poggenhans, F., Pauls, J.-H., Janosovits, J., Orf, S., Naumann, M., Kuhnt, F., Mayr, M.: Lanelet2: a high-definition map framework for the future of automated driving. In: 2018 21st international conference on intelligent transportation systems (ITSC) 2018, pp. 1672-1679. IEEE

  14. Bae, I., Moon, J., Seo, J.: Toward a comfortable driving experience for a self-driving shuttle bus. Electronics. 8, 943 (2019)

    Article  Google Scholar 

  15. Bianco, C.G.L., Piazzi, A., Romano, M.: Velocity planning for autonomous vehicles. In: IEEE Intelligent Vehicles Symposium, 2004, 14–17 June 2004 2004, pp. 413–418

  16. Lynch, K.M., Park, F.C.: Modern Robotics. Cambridge University Press (2017)

  17. Apkarian, P., Adams, R.J.: 11. Advanced Gain-Scheduling Techniques for Uncertain Systems. In: Advances in Linear Matrix Inequality Methods in Control. pp. 209–228

  18. Tóth, R.: Modeling and identification of linear parameter-varying systems, vol. 403. Springer, (2010)

  19. Guvenc, L., Guvenc, B.A., Demirel, B., Emirler, M.T.: Control of mechatronic systems. Institution of Engineering and Technology, (2017)

  20. Schrödel, F., Essam, M., Abel, D.: Parameter space approach based state feedback control of LTV systems. In: 22nd Mediterranean conference on control and automation 2014, pp. 1559-1565. IEEE

  21. Gelbal, S.Y., Chandramouli, N., Wang, H., Aksun-Guvenc, B., Guvenc, L.: A unified architecture for scalable and replicable autonomous shuttles in a smart city. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 5–8 Oct. 2017 2017, pp. 3391–3396

  22. Liu, P., Yu, H., Cang, S.: Optimized adaptive tracking control for an underactuated vibro-driven capsule system. Nonlinear Dynamics. 94(3), 1803–1817 (2018). https://doi.org/10.1007/s11071-018-4458-9

    Article  Google Scholar 

  23. Liu, P., Yu, H., Cang, S.: Adaptive neural network tracking control for underactuated systems with matched and mismatched disturbances. Nonlinear Dynamics. 98(2), 1447–1464 (2019). https://doi.org/10.1007/s11071-019-05170-8

    Article  Google Scholar 

  24. Lopez, P.A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y., Hilbrich, R., Lücken, L., Rummel, J., Wagner, P., Wiessner, E.: Microscopic Traffic Simulation using SUMO. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), 4–7 Nov. 2018 2018, pp. 2575–2582

  25. Guvenc, L., Aksun-Guvenc, B., Li, X., Arul Doss, A.C., Meneses-Cime, K.M., Gelbal, S.Y.: Simulation Environment for Safety Assessment of CEAV Deployment in Linden, Final Research Report, Smart Columbus Demonstration Program – Smart City Challenge Project (to support Contract No. DTFH6116H00013).(2019)

  26. Rong, G., Shin, B.H., Tabatabaee, H., Lu, Q., Lemke, S., Možeiko, M., Boise, E., Uhm, G., Gerow, M., Mehta, S., Agafonov, E., Kim, T.H., Sterner, E., Ushiroda, K., Reyes, M., Zelenkovsky, D., Kim, S.: LGSVL Simulator: A High Fidelity Simulator for Autonomous Driving. arXiv e-prints (2020)

  27. Haklay, M., Weber, P.: OpenStreetMap: user-generated street maps. IEEE Pervasive Computing. 7(4), 12–18 (2008). https://doi.org/10.1109/MPRV.2008.80

    Article  Google Scholar 

  28. Wang, H., Tota, A., Aksun-Guvenc, B., Guvenc, L.: Real time implementation of socially acceptable collision avoidance of a low speed autonomous shuttle using the elastic band method. Mechatronics. 50, 341–355 (2018). https://doi.org/10.1016/j.mechatronics.2017.11.009

    Article  Google Scholar 

  29. Savitzky, A., Golay, M.J.J.A.C.: Smoothing and differentiation of data by simplified least squares procedures. 36(8), 1627–1639 (1964)

  30. Kant, K., Zucker, S.W.: Toward efficient trajectory planning: the path-velocity decomposition. The International Journal of Robotics Research. 5(3), 72–89 (1986). https://doi.org/10.1177/027836498600500304

    Article  Google Scholar 

  31. Hoberock, L.L.: A Survey of Longitudinal Acceleration Comfort Studies in Ground Transportation Vehicles. In. Council for Advanced Transportation Studies, (1976)

  32. Solea, R., Nunes, U.: Trajectory Planning with Velocity Planner for Fully-Automated Passenger Vehicles. In: 2006 IEEE Intelligent Transportation Systems Conference, 17–20 Sept. 2006 2006, pp. 474–480

  33. Hermas, D.: Helper for Bézier curves, triangles, and higher order objects. J. Open Source Software. 2, 267 (2017)

    Article  Google Scholar 

  34. Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S., Haehnel, D., Hilden, T., Hoffmann, G., Huhnke, B., Johnston, D., Klumpp, S., Langer, D., Levandowski, A., Levinson, J., Marcil, J., Orenstein, D., Paefgen, J., Penny, I., Petrovskaya, A., Pflueger, M., Stanek, G., Stavens, D., Vogt, A., Thrun, S.: Junior: the Stanford entry in the urban challenge. Journal of Field Robotics. 25(9), 569–597 (2008). https://doi.org/10.1002/rob.20258

    Article  Google Scholar 

  35. Schwarting, W., Alonso-Mora, J., Rus, D.: Planning and decision-making for autonomous vehicles. Annual Review of Control, Robotics, and Autonomous Systems. 1(1), 187–210 (2018). https://doi.org/10.1146/annurev-control-060117-105157

    Article  Google Scholar 

  36. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K.: End to End Learning for Self-Driving Cars. arXiv e-prints (2016)

  37. Zhu, S., Gelbal, S.Y., Li, X., Cantas, M.R., Aksun-Guvenc, B., Guvenc, L.: Parameter Space and Model Regulation Based Robust, Scalable and Replicable Lateral Control Design for Autonomous Vehicles. In: 2018 IEEE Conference on Decision and Control (CDC), 17–19 Dec. 2018 2018, pp. 6963–6969

  38. Zhu, S., Gelbal, S.Y., Aksun-Guvenc, B., Guvenc, L.: Parameter-space based robust gain-scheduling Design of Automated Vehicle Lateral Control. IEEE Trans. Veh. Technol. 68(10), 9660–9671 (2019). https://doi.org/10.1109/TVT.2019.2937562

    Article  Google Scholar 

  39. Kato, S., Tokunaga, S., Maruyama, Y., Maeda, S., Hirabayashi, M., Kitsukawa, Y., Monrroy, A., Ando, T., Fujii, Y., Azumi, T.: Autoware on board: enabling autonomous vehicles with embedded systems. Paper presented at the proceedings of the 9th ACM/IEEE international conference on cyber-physical systems, Porto, Portugal

  40. Coulter, R.C.: Implementation of the Pure Pursuit Path Tracking Algorithm. In. Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, (1992)

  41. Tong, S., Sun, K., Sui, S.: Observer-based adaptive fuzzy decentralized optimal control design for strict-feedback nonlinear large-scale systems. IEEE Trans. Fuzzy Syst. 26(2), 569–584 (2017)

    Article  Google Scholar 

  42. Li, Y., Sun, K., Tong, S.: Observer-based adaptive fuzzy fault-tolerant optimal control for SISO nonlinear systems. IEEE transactions on cybernetics. 49(2), 649–661 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Smart Campus organization of the Ohio State University and Smart Columbus for partial support of the work presented here. The authors would also want to thank Nvidia for donating Nvidia Drive and Nvidia Titan Pascal GPUs to our lab.

Funding

The authors would like to thank the Smart Campus organization of the Ohio State University and Smart Columbus for partial support of the work presented here through the Ohio State University cost share part of the Smart Columbus project (DOT Smart City Challenge). The authors would also want to thank Nvidia for donating Nvidia Drive and Nvidia Titan Pascal GPUs to our lab.

Author information

Authors and Affiliations

Authors

Contributions

This paper has four authors and their names and contributions to the paper are: Xinchen Li (modeling of the simulation environment, path smoothing, path and velocity profiling, simulations and conclusions), Dr. Sheng Zhu (robust parameter space path tracking controller design, simulations, contribution to modeling, conclusions), Prof. Bilin Aksun-Guvenc (planning and directing the research on robust parameter space path tracking control, simulation modeling, simulation study and reviewing and editing the whole paper; editing and helping with the revisions) and Prof. Levent Guvenc (planning and directing the research on simulation environment modeling, path smoothing, path and velocity planning, simulations and reviewing and editing the whole paper; editing and helping with the revisions).

Corresponding author

Correspondence to Xinchen Li.

Ethics declarations

Ethical Approval

This paper does not report research that requires ethical approval. Consent to participate or consent to publish statements are accordingly also not required.

Competing Interests

Not Applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhu, S., Aksun-Guvenc, B. et al. Development and Evaluation of Path and Speed Profile Planning and Tracking Control for an Autonomous Shuttle Using a Realistic, Virtual Simulation Environment. J Intell Robot Syst 101, 42 (2021). https://doi.org/10.1007/s10846-021-01316-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01316-2

Keywords

Navigation