Skip to main content

Advertisement

Log in

The Reaction Mass Biped: Geometric Mechanics and Control

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Inverted Pendulum based reduced order models offer many valuable insights into the much harder problem of bipedal locomotion. While they help in understanding leg behavior during walking, they fail to capture the natural balancing ability of humans that stems from the variable rotational inertia on the torso. In an attempt to overcome this limitation, the proposed work introduces a Reaction Mass Biped (RMB). It is a generalization of the previously introduced Reaction Mass Pendulum (RMP), which is a multi-body inverted pendulum model with an extensible leg and a variable rotational inertia torso. The dynamical model for the RMB is hybrid in nature, with the roles of stance leg and swing leg switching after each cycle. It is derived using a variational mechanics approach, and is therefore coordinate-free. The RMB model has thirteen degrees of freedom, all of which are considered to be actuated. A set of desired state trajectories that can enable bipedal walking in straight and curved paths are generated. A control scheme is then designed for asymptotically tracking this set of trajectories with an almost global domain-of-attraction. Numerical simulation results confirm the stability of this tracking control scheme for different walking paths of the RMB. Additionally, a discrete dynamical model is also provided along-with an appropriate Geometric Variational Integrator (GVI). In contrast to non-variational integrators, GVIs can better preserve energy terms for conservative mechanical systems and stability properties (achieved through energy-like lyapunov functions) for actuated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altendorfer, R., Saranli, U., Komsuoglu, H., Koditschek, D., Brown, H. B., Buehler, M., Moore, N., McMordie, D., Full, R.: Evidence for spring loaded inverted pendulum running in a hexapod robot. In: Rus, D., Singh, S. (eds.) Experimental Robotics VII, pp 291–302. Springer (2001)

  2. Chaturvedi, N. A., Sanyal, A. K., McClamroch, N. H.: Rigid-body attitude control: using rotation matrices for continuous, singularity-free control laws. IEEE Control. Syst. Mag. 31(3), 30–51 (2011)

    Article  MathSciNet  Google Scholar 

  3. Dormand, J. R., Prince, P. J.: A family of embedded runge-kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dutta, A., Goswami, A.: Human Postural Model that Captures Rotational Inertia. In: American Society of Biomechanics (2010)

  5. Geyer, H., Seyfarth, A., Blickhan, R.: Compliant leg behaviour explains basic dynamics of walking and running. Proc. R. Soc. Lond. B Biol. Sci. 273(1603), 2861–2867 (2006)

    Article  Google Scholar 

  6. Gregg, R., Tilton, A., Candido, S., Bretl, T., Spong, M.: Control and planning of 3d dynamic walking with asymptotically stable gait primitives. IEEE Trans. Robot. 28(6), 1415–1423 (2012)

    Article  Google Scholar 

  7. Gregg, R. D., Spong, M. W.: Reduction-based control of three-dimensional bipedal walking robots. Int. J. Robot. Res. 29(6), 680–702 (2010)

    Article  Google Scholar 

  8. Grizzle, J. W., Chevallereau, C., Ames, A., Sinnet, R.: 3D bipedal robotic walking models, feedback control, and open problems. In: IFAC Symposium on Nonlinear Control Systems, Bologna, Italy (2010)

  9. Hamed, K. A., Buss, B. G., Grizzle, J. W.: Continous-time controllers for stabilizing periodic orbits of hybrid systems: application to an underactuated 3D bipedal robot. In: IEEE Conference on Decision and Control (December 2014)

  10. Hürmüzlü, Y., Chang, T.: Rigid body collisions of a special class of planar kinematic chains. IEEE Trans. Syst. Man Cybern. 22(5), 964–71 (1992)

    Article  MATH  Google Scholar 

  11. Iserles, A., Munthe-Kaas, H. Z., Nørsett, S. P., Zanna, A.: Lie-group methods. Acta Numerica 2000 9, 215–365 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: IEEE International Conference on Robotics and Automation (ICRA), Taipei, Taiwan, pp 1620–1626 (2003)

  13. Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H.: The 3D linear inverted pendulum model: a simple modeling for a biped walking pattern generator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Maui, Hawaii, pp 239–246 (2001)

  14. Kajita, S., Tani, K.: Study of dynamic biped locomotion on rugged terrain IEEE International Conference on Robotics and Automation (ICRA), pp 1405–1411 (1991)

    Google Scholar 

  15. Khalil, H. K.: Nonlinear Systems, 3rd edn. Prentice Hall, Englewood Cliffs, NJ (2002)

    Google Scholar 

  16. Kobilarov, M., Crane, K., Desbrun, M.: Lie group integrators for animation and control of vehicles. ACM Trans. Graph. (TOG) 28(2), 16 (2009)

    Article  Google Scholar 

  17. Komura, T., Leung, H., Kudoh, S., Kuffner, J.: A feedback controller for biped humanoids that can counteract large perturbations during gait. In: IEEE International Conference on Robotics and Automation (ICRA), Barcelona, Spain, pp 2001–2007 (2005)

  18. Komura, T., Nagano, A., Leung, H., Shinagawa, Y.: Simulating pathological gait using the enhanced linear inverted pendulum model. IEEE Trans. Biomed. Eng. 52(9), 1502–1513 (2005)

    Article  Google Scholar 

  19. Lee, S. -H., Goswami, A.: Reaction mass pendulum (RMP): an explicit model for centroidal angular momentum of humanoid robots (2007)

  20. Lee, T.: Computational geometric mechanics and control of rigid bodies. ProQuest (2008)

  21. Lee, T., McClamroch, N. H., Leok, M.: A lie group variational integrator for the attitude dynamics of a rigid body with applications to the 3d pendulum IEEE Conference on control applications (CCA). IEEE, pp 962–967 (2005)

    Google Scholar 

  22. Marsden, J. E., West, M.: Discrete mechanics and variational integrators. Acta Numerica 2001 10, 357–514 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Pekarek, D N, Marsden, J E: Variational collision integrators and optimal control (2008)

  24. Sanyal, A. K., Chaturvedi, N. A.: Almost global robust attitude tracking control of spacecraft in gravity. In: AIAA Guidance, Navigation and Control Conference, Honolulu, pp AIAA–2008–6979 (2008)

  25. Sanyal, A. K., Fosbury, A., Chaturvedi, N. A., Bernstein, D. S.: Inertia-free spacecraft attitude trajectory tracking with disturbance rejection and almost global stabilization. AIAA J. Guid. Control. Dyn. 32(2), 1167–1178 (2009)

    Article  Google Scholar 

  26. Sanyal, A. K., Goswami, A.: Dynamics and balance control of the reaction mass pendulum (RMP): a 3D multibody pendulum with variable body inertia. ASME J. Dyn. Syst. Meas. Control. 136(2), 021002 (2014)

    Article  Google Scholar 

  27. Shampine, L. F., Reichelt, M. W.: The matlab ode suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shih, C. -L., Grizzle, J. W., Chevallereau, C.: From stable walking to steering of a 3D bipedal robot with passive point feet. Robotica 30(7), 1119–1130 (2012)

    Article  Google Scholar 

  29. Sinnet, R., Ames, A. D.: 3D bipedal walking with knees and feet: a hybrid geometric approach. In: IEEE Conference on Decision and Control, pp 3208–3213 (2009)

  30. Sreenath, K., Sanyal, A. K.: The reaction mass biped: equations of motion, hybrid model for walking and trajectory tracking control. In: IEEE International Conference on Robotics and Automation (ICRA) (2015)

  31. Sugihara, T., Nakamura, Y.: Variable impedance inverted pendulum model control for a seamless contact phase transition on humanoid robot. In: IEEE International Conference on Humanoid Robots (Humanoids2003), Germany, pp 0–0 (2003)

  32. Viswanathan, S. P., Sanyal, A. K., Leve, F., McClamroch, N. H.: Dynamics and control of spacecraft with a generalized model of variable speed control moment gyroscopes. J. Dyn. Syst. Meas. Control. 137(7), 071003 (2015)

    Article  Google Scholar 

  33. West, M.: Variational Integrators. Ph.D. Dissertation, California Institute of Technology (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Avinash Siravuru or Koushil Sreenath.

Additional information

Preliminary results of this work were reported in [30]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siravuru, A., Viswanathan, S.P., Sreenath, K. et al. The Reaction Mass Biped: Geometric Mechanics and Control. J Intell Robot Syst 89, 155–173 (2018). https://doi.org/10.1007/s10846-017-0508-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0508-7

Keywords

Navigation