Skip to main content
Log in

Quadrotor Sensor Fault Diagnosis with Experimental Results

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a fault detection, isolation, and estimation scheme for sensor bias faults in accelerometer and gyroscope measurements of quadrotor unmanned air vehicles (UAVs). Based on sliding-mode observer techniques, a robust estimation of the quadrotor roll and pitch angles is obtained by using only accelerometer measurements. Then, a diagnostic scheme is developed for detecting, isolating, and estimating sensor bias faults in the gyroscope and accelerometer measurements. Structured residuals are generated, allowing the detection and isolation of multiple simultaneous sensor faults under consideration. After the faults are detected and isolated, two nonlinear estimators are employed to provide an estimate of the unknown fault magnitude. The stability and estimation performance properties of the nonlinear estimators are established. The sensor fault diagnosis algorithm is implemented and evaluated through experimental results using a real-time indoor quadrotor test environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, B., Bitmead, R., Johnson, C.R., Kokotovic, P.V., Kosut, R.L., Mareels, I.M.Y., Praly, L., Riedle, B.D.: Stability of Adaptive Systems: Passivity and Averaging Analysis. The MIT Press, Cambridge (1986)

    MATH  Google Scholar 

  2. Ascorti, L.: An application of the extended Kalman filter to the attitude control of a quadrotor. Tech. rep., Politecnico di Milano (2013)

    Google Scholar 

  3. Avram, R., Zhang, X., Campbell, J.: Sensor fault diagnosis in quadrotors using nonlinear adaptive estimators. In: Annual Conference of the Prognostics and Health Management Society, vol. 7, pp. 217–224. Fort Worth, Texas (2014)

  4. Avram, R., Zhang, X., Muse, J.: Quadrotor accelerometer and gyroscope sensor fault diagnosis with experimental results. In: Annual Conference of the Prognostics and Health Management Society, vol. 8, pp. 625–623, San Diego (2015)

  5. Barbour, N.M.: Inertial Navigation Sensors. NATO report. Tech. rep., Draper Laboratory (2013)

    Google Scholar 

  6. Bastin, G., Gevers, M.: Stable adaptive observers for nonlinear time-varying systems. IEEE Trans. Autom. Control 33(7), 650–658 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control. Springer, Berlin (2006)

    MATH  Google Scholar 

  8. Edwards, C., Yan, X.G.: Nonlinear robust fault reconstruction and estimation using a sliding mode observer. Automatica 43(9), 1605–1614 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Freddi, A., Longhi, S., Monteriu, A.: A diagnostic Thau observer for a class of unmanned vehicles. J. Intell. Robot. Syst., 61–73 (2012)

  10. Ioannou, P.A., Sun, J.: Robust Adaptive Control. Dover Publications, Inc., Mineola (1996)

    MATH  Google Scholar 

  11. Klein, V., Morelli, E.A.: Aircraft System Identification: Theory and Practice, 1st edn. Reston, American Institute of Aeronautics & Astronautics (2006)

  12. Li, T., Zhang, Y., Gordon, B.W.: Passive and active nonlinear fault-tolerant control of a quadrotor unmanned aerial vehicle based on the sliding mode control technique. In: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering (2012)

  13. López-Estrada, F., Ponsart, J.C., Theilliol, D., Zhang, Y., Astorga-Zaragoza, C.M.: LPV model-based tracking control and robust sensor fault diagnosis for a quadrotor UAV. J. Intell. Robot. Syst., 1–15 (2015)

  14. Lu, P., Van Eykeren, L., van Kampen, E.J., Chu, Q., Drouin, A.: Sensor fault detection and estimation for quadrotors using kinematic equations. In: Bordeneuve-Guib, J., Roos, C. (eds.) Advances in Aerospace Guidance, Navigation and Control, pp. 363–379. Springer International Publishing (2015)

  15. Macdonald, J., Leishman, R., Beard, R., McLain, T.: Analysis of an improved IMU-based observer for multirotor helicopters. J. Intell. Robot. Syst. 64, 1049–1061 (2014)

    Article  Google Scholar 

  16. Nguyen, H., Berbra, C., Lesecq, S., Gentil, S., Barraud, A., Godin, C.: Diagnosis of an inertial measurement unit based on set membership estimation. In: the 17th Mediterranean Conference on Control and Automtation, pp. 211–216. Thessaloniki, Greece (2009)

  17. Rafaralahy, H., Richard, E., Boutayeb, M., Zasadzinski, M.: Simultaneous observer based sensor diagnosis and speed estimation of unmanned aerial vehicle. In: IEEE Conference on Decision and Control, pp. 2938–2943. Cancun (2008)

  18. Reppa, V., Tzes, A.: Application of set memebership identification for fault detection of MEMS. In: IEEE International Conference on Robots and Automation. Orlando (2006)

  19. Sharifi, F., Mirzaei, M., Gordon, B.W., Zhang, Y.: Fault tolerant control of a quadrotor UAV using sliding mode control. In: 2010 Conference on Control and Fault Tolerant Systems, pp. 239–244, Nice (2010)

  20. U.S. Dept of Defense: Unmanned systems integrated roadmap FY2011-2036. Tech. rep., Secretary of Defense, Washington. D.C (2012)

  21. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer Verlag (1992)

  22. Vachtsevanos, G., Tang, L., Drozeski, G., Gutierrez, L.: From mission planning to flight ocntrol of unmanned aerial vehicles: Strategies and implementation tools. Anual Rev. Control 29, 101–115 (2005)

    Article  Google Scholar 

  23. Younes, Y., Noura, H., Rabhi, A., H., A.E., Hussien, N.: Sensor fault detection and isolation in the quadrotor vehicle using nonlinear identity observer approach. In: 2013 Conference on Control and Fault-Tolerant Systems, pp. 486–491, NiceFrance (2013)

  24. Zhang, X., Polycarpou, M., Parsini, T.: Robust fault isolation for a class of non-linear input-output systems. Int. J. Control 74(13) (2001)

  25. Zhang, X., Polycarpou, M.M., Parisini, T.: A robust detection and isolation scheme for abrupt and incipient faults in nonlinear systems. IEEE Trans. Autom. Control, 576–593 (2002)

  26. Zhang, Y., Chamseddine, A., Rabbath, C., Gordon, B., Su, C., Rakheja, S., Fulford, C., Apkaraian, J., Gosselin, P.: Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed. J. Franklin Inst. 350(9) (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remus C. Avram.

Additional information

Distribution Statement A, Approved for Public Release; Distribution Unlimited. Cleared by 88 ABW/PA, 22 JUL 2015 (88ABW-2015-3703)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avram, R.C., Zhang, X. & Muse, J. Quadrotor Sensor Fault Diagnosis with Experimental Results. J Intell Robot Syst 86, 115–137 (2017). https://doi.org/10.1007/s10846-016-0425-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0425-1

Keywords

Navigation