Skip to main content
Log in

Two-Step System Identification and Trajectory Tracking Control of a Small Fixed-Wing UAV

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

An approach for obtaining dynamically feasible reference trajectories and feedback controllers for a small unmanned aerial vehicle (UAV) based on an aerodynamic model derived from flight tests is presented. The modeling method utilizes stepwise multiple regression to determine relevant explanatory terms for the aerodynamic coefficients. A dynamically feasible trajectory is then obtained through the solution of an optimal control problem using pseudospectral optimal control software. Discrete-time feedback controllers are further designed to regulate the vehicle along the desired reference trajectory. Simulations in a realistic operational environment as well as flight testing of the feedback controllers on the aircraft platform demonstrate the capabilities of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arifianto, O., Farhood, M.: Development and modeling of a low-cost unmanned aerial vehicle research platform. J. Intell. Robot. Syst. 80(1), 139–164 (2015). doi:10.1007/s10846-014-0145-3

  2. Arifianto, O., Farhood, M.: Optimal control of a small fixed-wing UAV about concatenated trajectories. Control Eng. Pract. 40, 113–132 (2015)

    Article  Google Scholar 

  3. Beal, T.R.: Digital simulation of atmospheric turbulence for Dryden and von Karmáń models. J. Guid. Control Dyn. 16(1), 132–138 (1993)

    Article  Google Scholar 

  4. Bittner, M., Bruhs, P., Richter, M., Holzapfel, F.: An automatic mesh refinement method for aircraft trajectory optimization problems. In: AIAA Guidance, Navigation, and Control Conference. AIAA 2013-4555, Boston, Massachusetts (2013)

  5. Bittner, M., Fisch, F., Holzapfel, F.: A multi-model gauss pseudospectral optimization method for aircraft trajectories. In: AIAA Atmospheric Flight Mechanics Coneference. AIAA 2012-4728, Minneapolis, Minnesota (2012)

  6. Bryson, A.E., Ho, Y.C.: Applied optimal Control: Optimization Estimation, and Control. Taylor & Francis (1975)

  7. Crassidis, J.L., Junkins, J.L.: Optimal Estimation of Dynamic Systems. Chapman & Hall/CRC Press, Boca Raton, FL (2004)

    Book  MATH  Google Scholar 

  8. Dever, C., Mettler, B., Feron, E., Popović, J., McConley, M.: Nonlinear trajectory generation for autonomous vehicles via parameterized maneuver classes. J. Guid. Control Dyn. 29(2), 289–302 (2006)

    Article  Google Scholar 

  9. Dorobantu, A., Murch, A., Mettler, B., Balas, G.: System identification for small, low-cost, fixed-wing, unmanned aircraft. J. Aircr. 50(4), 1117–1130 (2013)

    Article  Google Scholar 

  10. Draper, N.R., Smith, H.: Applied Regression Analysis. Wiley, Hoboken, NJ (1998)

    Book  MATH  Google Scholar 

  11. Drury, R.G., Whidborne, J.F.: Quaternion-based inverse dynamics model for expressing aerobatic aircraft trajectories. J. Guid. Control Dyn. 32(4), 1388–1392 (2009)

    Article  Google Scholar 

  12. Dullerud, G.E., Lall, S.G.: A new approach to analysis and synthesis of time-varying systems. IEEE Trans. Autom. Control 44(8), 1486–1497 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Farhood, M.: LPV control of nonstationary systems: A parameter-dependent Lyapunov approach. IEEE Trans. Autom. Control 57(1), 209–215 (2012)

    Article  MathSciNet  Google Scholar 

  14. Farhood, M.: Nonstationary LPV control for trajectory tracking: a double pendulum example. Int. J. Control 85(5), 545–562 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Farhood, M., Dullerud, G.E.: LMI tools for eventually periodic systems. Syst. Control Lett. 47, 417–432 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Farhood, M., Dullerud, G.E.: Duality and eventually periodic systems. Int. J. Robust Nonlinear Control 15, 575–599 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fisch, F., Lenz, J., Holzapfel, F., Sachs, G.: Trajectory optimization applied to air races. In: AIAA Atmospheric Flight Mechanics Conference. AIAA 2009-5930, Chicago, Illinois (2009)

  18. Frazzoli, E., Dahlah, M., Feron, E.: Maneuver-based motion planning for nonlinear systems with symmetries. IEEE Trans. Robot. 21(6), 1077–1091 (2005)

    Article  Google Scholar 

  19. Gahinet, P.: Explicit controller formulas for LMI-based H synthesis. Automatica 32(7), 1007–1014 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gahinet, P., Apkarian, P.: A linear matrix inequality approach to H control. Int. J. Robust Nonlinear Control 4, 421–448 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Garg, D., Hager, W.W., Rao, A.V.: Pseudospectral methods for solving infinite-horizon optimal control problems. Automatica 47(4), 829–837 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Garg, D., Patterson, M.A., Darby, C.L., Francolin, C., Huntington, G.T., Hager, W.W., Rao, A.V.: Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems via a Radau pseudospectral method. Comput. Opt. Appl. 49(2), 335–339 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Garg, D., Patterson, M.A., Hager, W.W., Rao, A.V., Benson, D.A., Huntington, G.T.: A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica 46(11), 1843–1851 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gibbs, B.P.: Advanced Kalman Filtering, Least-Squares and Modeling: A Practical Handbook. Wiley, Hoboken, NJ (2011)

    Book  Google Scholar 

  25. Grymin, D.J.: Two-step system identification and primitive-based motion planning for control of small unmanned aerial vehicles. Ph.D. thesis, Virginia Tech, VA, USA (2013)

  26. Grymin, D.J., Farhood, M.: Two-step system identification for control of small UAVs along pre-specified trajectories. In: Proceedings of the American Control Conference, pp 4404–4409, Portland, OR (2014)

  27. Hall, J.K., Beard, R.W., McLain, T.W.: Quaternion control for autonomous path following maneuvers. In: AIAA Infotech Aerospace. AIAA 2012-2483, Garden Grove, California (2012)

  28. Hall, J.K., McLain, T.W.: Aerobatic maneuvering of miniature air vehicles using attitude trajectories. In: AIAA Guidance, Navigation, and Control Conference. AIAA 2008-7257, Honolulu, Hawaii (2008)

  29. Hepperle, M.: JavaProp - design and analysis of propellers. Technical Report, MH Aerotools (2010). Available from http://www.mh-aerotools.de

  30. Hoffer, N.V., Coopmans, C., Jensen, A.M., Chen, Y.Q.: A survey and categorization of small low-cost unmanned aerial vehicle system identification. J. Intell. Robot Syst., 2013 (2013)

  31. Jategaonkar, R.V.: Flight Vehicle System Identification - a Time-Domain Methodology. AIAA, Reston, VA (2006)

    Book  Google Scholar 

  32. Jung, D., Levy, E.J., Zhou, D., Fink, R., Moshe, J., Earl, A., Tsiotras, P.: Design and development of a low-cost test-bed for undergraduate education in UAVs. In: 44th IEEE Conference on Decision and Control and 2005 European Control Conference, pp 2739–2744, Seville, Spain (2005)

  33. Klein, V., Morelli, E.: Aircraft System Identification - Theory and Practice. AIAA, Reston, VA (2006)

    Book  Google Scholar 

  34. Löfberg, J.: YALMIP : A toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference. http://users.isy.liu.se/johanl/yalmip, Taipei, Taiwan (2004)

  35. Moorhouse, D.J., Woodcock, R.J.: Background information and user guide for MIL-F-8785C, military specification - flying qualities of piloted airplanes. Technical Report, Air Force Wright Aeronautical Labs, Wright-Patterson AFB. OH (1982)

  36. Mulder, J.A., Chu, Q.P., Sridhar, J.K.: Decomposition of aircraft state and parameter estimation problem. In: Proceedings of the 10th IFAC Symposium on System Identification, pp 61–66, Copenhagen, Denmark (1994)

  37. Mulder, J.A., Chu, Q.P., Sridhar, J.K., Breeman, J.H., Laban, M.: Non-linear aircraft flight path reconstruction review and new advances. Progess Aerosp. Sci. 35, 673–726 (1999)

    Article  Google Scholar 

  38. Nelson, R.C.: Flight Stability and Automatic Control, 2nd edn. McGraw Hill, Boston, MA (1998)

    Google Scholar 

  39. Oliveira, J., Chu, Q.P., Mulder, J.A., Balini, H.M.N.K., Vos, W.G.M.: Output error method and two step method for aerodynamic model identification. In: AIAA Guidance, Navigation, and Control Conference, San Francisco, California (2005)

  40. Packard, A.: Gain scheduling via linear fractional transformations. Syst. Control Lett. 22, 79–92 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  41. Paris, A.C., Bonner, M.: Nonlinear model development from flight-test data for F/A-18E super hornet. J. Aircr. 41(4), 692–702 (2004)

    Article  Google Scholar 

  42. Park, S.: Autonomous aerobatic flight by three-dimensional path-following with relaxed roll constraint. In: AIAA Guidance, Navigation, and Control Conference. AIAA 2011-6593, Portland, Oregon (2011)

  43. Phillips, W.F.: Mechanics of Flight. Wiley, Hoboken, NJ (2010)

    Google Scholar 

  44. Rao, A.V., Benson, D.A., Darby, C., Patterson, M.A., Francolin, C., Sanders, I., Huntington, G.T.: Algorithm 902: GPOPS, a MATLAB software for solving multiple-phase optimal control problems using the Gauss pseudospectral method. ACM Trans. Math. Softw. 37(2), 22:1–39 (2010)

    Article  Google Scholar 

  45. Raol, J.R., Girija, G., Singh, J.: Modeling and Parameter Estimation of Dynamical Systems. The Institution of Electrical Engineers, London, UK (2004)

    Book  MATH  Google Scholar 

  46. Rauch, T.E., Tung, F., Striebel, C.T.: Maximum likelihood estimates of linear dynamic systems. AIAA J. 3, 1445–1450 (1965)

    Article  MathSciNet  Google Scholar 

  47. Salman, S.A., Sreenatha, A.G., Choi, J.Y.: Attitude dynamics identification of unmanned aerial vehicle. Int. J. Control Autom. Syst. 4(6), 782–787 (2006)

    Google Scholar 

  48. Schouwennaars, T., Mettler, B., Feron, E., How, J.: Hybrid model for trajectory planning of agile autonomous vehicles. J. Aerosp. Comput. Inf. Commun. 1, 629–651 (2004)

    Article  Google Scholar 

  49. Sri-Jayantha, M., Stengel, R.F.: Determination of nonlinear aerodynamic coefficients using the estimation-before-modeling method. J. Aircr. 25(9), 796–804 (1988)

    Article  Google Scholar 

  50. Stalford, H.L.: High-alpha aerodynamic model identification of T-2C aircraft using the EBM method. J. Aircr. 18(10), 801–809 (1981)

    Article  Google Scholar 

  51. Stengel, R.F.: Optimal Control and Estimation. Dover Publications, New York (1994)

    MATH  Google Scholar 

  52. Stevens, B.L., Lewis, F.L.: Aircraft Control and Simulation - Second Edition. Wiley, Hoboken, NJ (2003)

    Google Scholar 

  53. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999). Version 1.05 available from http://fewcal.kub.nl/sturm

    Article  MathSciNet  MATH  Google Scholar 

  54. Theil, H.: Economic Forecasts and Policy. North-Holland Publishing Company, Amsterdam, Netherlands (1961)

    Google Scholar 

  55. Tischler, M.: Aircraft and Rotorcraft System Identification: Engineering Methods with Flight Test Examples. AIAA, Reston, VA (2006)

    Google Scholar 

  56. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Programm. 106(1), 25–57 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazen Farhood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grymin, D.J., Farhood, M. Two-Step System Identification and Trajectory Tracking Control of a Small Fixed-Wing UAV. J Intell Robot Syst 83, 105–131 (2016). https://doi.org/10.1007/s10846-015-0298-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-015-0298-8

Keywords

Navigation