Skip to main content

Terrain Classification and Negotiation with a Walking Robot


This paper describes a walking robot controller for negotiation of terrains with different traction characteristics. The feedback is based on three perception systems. The purpose of the presented research is to enhance the autonomy of the walking robot. The information about the class of the terrain allows the robot to work in the real world scenarios more efficiently. In the presented work twelve types of the ground were tested. Suitability of each type of the perception system for characterizing the terrain class was checked. Namely, vision, depth and tactile sensors were used. In each case as a classifier the Support Vector Machines were utilized. The separate classification results from each sensor were combined to obtain better precision and recall in the ground classification process. The information about the terrain type was fed into robot controller to adapt the robot gait parameters. The goal was to achieve good balance between the speed of the movement and the vibration caused by the bounciness and the irregularities of the terrain.

The paper begins with the description of the experimental setup. Next, the classification results for each sensor used are presented. Then, the rules of combining classifiers were tested. Finally, the robot gait controller was proposed and evaluated.


  1. Angelova, A., Matthies, L., Helmick, D.M., Perona, P.: Fast terrain classification using variable-length representation for autonomous navigation. In: CVPR. IEEE Computer Society (2007)

  2. Bellone, M., Reina, G., Giannoccaro, N.I., Spedicato, L.: Unevenness point descriptor for terrain analysis in mobile robot applications. Int. J. Adv. Robot. Syst. 10, 1–10 (2013)

    Article  Google Scholar 

  3. Belter, D., Skrzypczynski, P.: Rough terrain mapping and classification for foothold selection in a walking robot. J. Field Robot 28(4), 497–528 (2011)

    Article  MATH  Google Scholar 

  4. Bermudez, F.G., Julian, R.C., Haldane, D.W., Abbeel, P., Fearing, R.S.: Performance analysis and terrain classification for a legged robot over rough terrain. In: IROS, pp. 513–519. IEEE (2012)

  5. Bradski, G.: The openCV Library. Dr. Dobb’s J. Softw. Tools 25(11), 120–126 (2000)

  6. Bretl, T.: Motion planning of multi-limbed robots subject to equilibrium constraints: the free-climbing robot problem. I. J. Robot. Res. 25(4), 317–342 (2006)

    Article  Google Scholar 

  7. Brooks, C., Iagnemma, K.: Vibration-based terrain classification for planetary exploration rovers. Robot. IEEE Trans. on 21 (6), 1185–1191 (2005)

    Article  Google Scholar 

  8. Brooks, R.: A robot that walks; emergent behaviors from a carefully evolved network. In: robotics and automation, 1989. proceedings., 1989 IEEE International Conference on, pp. 692–4+2 vol.2 (1989)

  9. Buss, M., Schmidt, G.: Hybrid system behavior specification for multiple robotic mechanisms. In: IROS, pp. 140–147. IEEE (1996)

  10. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Tech. 2, 27:1–27:27 (2011)

    Article  Google Scholar 

  11. Chemori, A., Le Floch, S., Krut, S., Dombre, E.: A control architecture with stabilizer for 3D stable dynamic walking of SHERPA biped robot on compliant ground. In: Humanoid Robots (Humanoids), 2010 10th IEEE-RAS International Conference on, pp. 480–485 (2010)

  12. Christos, C., Lafortune, S.: Introduction to Discrete Event Systems – second edition. Springer Science+Business Media, New York (2008)

  13. Filitchkin, P., Byl, K.: Feature-based terrain classification for LittleDog. In: IROS, pp. 1387–1392. IEEE (2012)

  14. Genya, I., Masatsugu, O., Takashi, K.: Lidar-based Terrain Mapping and Navigation for a Planetary Exploration Rover. In: Proc. International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS)’12 (2012)

  15. Giguere, P., Dudek, G.: Clustering sensor data for autonomous terrain identification using time-dependency. Auton. Robot. 26(2-3), 171–186 (2009)

    Article  Google Scholar 

  16. Giguere, P., Dudek, G.: Surface identification using simple contact dynamics for mobile robots. In: ICRA’09 IEEE International Conference on Robotics and Automation, 2009, pp. 3301–3306 (2009)

  17. Giguere, P., Dudek, G.: A simple tactile probe for surface identification by mobile robots. Robot. IEEE Trans. on 27(3), 534–544 (2011)

    Article  Google Scholar 

  18. Giguère, P., Dudek, G., Saunderson, S., Prahacs, C.: Environment identification for a running robot using inertial and actuator cues. In: Sukhatme, G.S, Schaal, S., Burgard, W., Fox, D. (eds.) Robotics: Science and Systems. The MIT Press (2006)

  19. Hoepflinger, M., Remy, C., Hutter, M., Haag, S., Siegwart, R.: Haptic Terrain Classification on Natural Terrains for Legged Robots. In: Proceedings of the 13th International Conference on Climbing and Walking Robots (CLAWAR), pp. 785–792, World Scientific (2010)

  20. Hoepflinger, M., Remy, C., Hutter, M., Spinello, L., Siegwart, R.: Haptic terrain classification for legged robots. In: Robotics and Automation (ICRA), 2010 IEEE International Conference on, pp. 2828–2833 (2010)

  21. Howard, A.M., Parker, L.T.: A hierarchical strategy for learning of robot walking strategies in natural terrain environments. In: Proc. ISIC. IEEE Int. Conf. on Syst. Man and Cybern.(SMC 07), pp. 2336–2341 (2007)

  22. Iagnemma, K., Dubowsky, S.: Mobile robots in rough terrain - estimation, motion planning, and control with application to planetary rovers. Springer Tracts in Advanced Robotics, vol. 12, Springer (2004)

  23. Izumi, K., Sato, R., Watanabe, K.: Generation of obstacle avoidance behaviors for quadruped robots using finite automaton. In: SICE annual conference, 2008, pp. 2523–2527 (2008)

  24. Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.: Fast, robust quadruped locomotion over challenging terrain. In: ICRA, pp. 2665–2670. IEEE (2010)

  25. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On Combining Classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)

  26. Kroemer, O., Lampert, C., Peters, J.: Learning Dynamic Tactile Sensing With Robust Vision-Based Training. Robot. IEEE Trans. on 27(3), 545–557 (2011)

  27. Laible, S., Khan, Y., Bohlmann, K., Zell, A.: 3D LIDAR- and camera-based terrain classification under different lighting conditions. In: Levi, P., Zweigle, O., Häußermann, K., Eckstein, B. (eds.) Autonomous Mobile Systems 2012, Informatik aktuell, pp 21–29. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  28. Lalonde, J.F., Vandapel, N., Huber, D., Hebert, M.: Natural terrain classification using three-dimensional ladar data for ground robot mobility. J. Field Robot. 23(10), 839–861 (2006)

  29. MacLellan, M., Patla, A.: Adaptations of walking pattern on a compliant surface to regulate dynamic stability. Exp. Brain Res. 173, 521–530 (2006)

  30. MacLellan, M., Patla, A.: Stepping over an obstacle on a compliant travel surface reveals adaptive and maladaptive changes in locomotion patterns. Exp. Brain Res. 173, 554–554 (2006)

  31. Manjanna, S., Dudek, G., Giguere, P.: Using gait change for terrain sensing by robots. In: International Conference on Computer and Robot Vision (CRV), 2013, pp. 16–22 (2013)

  32. Newman, P., Chandran-Ramesh, M., Cole, D., Cummins, M., Harrison, A., Posner, I., Schr¨oter, D.: Describing, navigating and recognising urban spaces – building an end-toend SLAM system. In: Kaneko, M., Nakamura, Y. (eds.) ISRR, Springer Tracts in Advanced Robotics, vol. 60, pp. 237–253. Springer (2007)

  33. Niwa, T., Inagaki, S., Suzuki, T.: Locomotion control of multi-legged robot based on Follow-the-Contact-Point gait. In: ICCAS-SICE, 2009, pp. 2247–2253 (2009)

  34. Ojeda, L., Borenstein, J., Witus, G., Karlsen, R.: Terrain characterization and classification with a mobile robot. J. Field Robot. 23(2), 103–122 (2006)

  35. Palankar, M., Palmer, L.R.: Toward innate leg stability on unmodeled and natural terrain: hexapod walking. In: IROS, pp. 526–531. IEEE (2012)

  36. Posner, I., Cummins, M., Newman, P.M.: A generative framework for fast urban labeling using spatial and temporal context. Auton. Robot. 26(2-3), 153–170 (2009)

  37. Sinnet, R., M.P.R.S., Ames, A.D.: A human-inspired hybrid control approach to bipedal robotic walking. In: Proc. of the 18th World Congress, the International Federation of Automatic Control, pp. 6904–6911 (2011)

  38. Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: IEEE international conference on Robotics and Automation (ICRA). Shanghai, China (2011)

  39. Stavens, D., Thrun, S.: A self-supervised terrain roughness estimator for off-road autonomous driving. In: UAI. AUAI Press (2006)

  40. Visser, L., Stramigioli, S., Carloni, R.: Control strategy for energy-efficient bipedal walking with variable leg stiffness. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5624–5629 (2013)

  41. Walas, K.: Improving accuracy of local maps with active haptic sensing. In: Kozłowski, K. (ed.) Robot Motion and Control 2011, Lecture Notes in Control and Information Sciences, Vol. 422, pp 137–146. Springer, London (2012)

    Chapter  Google Scholar 

  42. Walas, K.: Tactile sensing for ground classification. J. Autom. Mob. Robot. Int. Syst. 7(2), 18–23 (2013)

  43. Walas, K.: Terrain Classification Using Vision, Depth and Tactile Perception. In: RSS workshop RGB-D: Advanced Reasoning with Depth Cameras., p. Archived on the Website of the Workshop (2013)

  44. Walas, K., Belter, D.: Messor – Versatile Walking Robot for Search and Rescue Missions. J. Autom. Mob. Robot. Intell. Syst. 5 (2), 28–34 (2011)

    MathSciNet  Google Scholar 

  45. Walas, K., Kasinski, A.J.: Discrete event controller for urban obstacles negotiation with walking robot. In: IROS, pp. 181–186. IEEE (2012)

  46. Walas, K., Schmidt, A., Kraft, M., Fularz, M.: Hardware implementation of ground classification for a walking robot. In: Robot Motion and Control (RoMoCo), 2013 9th Workshop on, pp. 110–115 (2013)

  47. Weiss, C., Frohlich, H., Zell, A.: Vibration-based terrain classification using support vector machines. In: Intelligent Robots And Systems, 2006 IEEE/RSJ International Conference on, pp. 4429–4434 (2006)

  48. Weiss, C., Tamimi, H., Zell, A.: A combination of vision- and vibration-based terrain classification. In: Intelligent robots and systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pp. 2204–2209 (2008)

  49. Zarrouk, D., Fearing, R.S.: Cost of Locomotion of a Dynamic Hexapedal Robot. In: IEEE International Conference on Robotics And Automation (ICRA), pp. 2533–2538 (2013)

  50. Zenker, S., Aksoy, E., Goldschmidt, D., Worgotter, F., Manoonpong, P.: Visual terrain classification for selecting energy efficient gaits of a hexapod robot. In: advanced intelligent mechatronics (AIM), 2013 IEEE/ASME International Conference on, pp. 577–584 (2013)

Download references

Author information



Corresponding author

Correspondence to Krzysztof Walas.

Additional information

The author gratefully acknowledge the support from the Polish National Science Centre, Grant No. 2011/01/N/ST7/02070.

Parts of this work have been presented at ([43]); that work did not present how the results of the classifiers were merged and how the experiments to obtain the controller were performed.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Walas, K. Terrain Classification and Negotiation with a Walking Robot. J Intell Robot Syst 78, 401–423 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Walking robots
  • Terrain classification
  • Gait control