Skip to main content
Log in

Towards a Trajectory Planning Concept: Augmenting Path Planning Methods by Considering Speed Limit Constraints

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Trajectory planning is an essential part of systems controlling autonomous entities such as vehicles or robots. It requires not only finding spatial curves but also that dynamic properties of the vehicles (such as speed limits for certain maneuvers) must be followed. In this paper, we present an approach for augmenting existing path planning methods to support basic dynamic constraints, concretely speed limit constraints. We apply this approach to the well known A* and state-of-the-art Theta* and Lazy Theta* path planning algorithms. We use a concept of trajectory planning based on a modular architecture in which spatial and dynamic parts can be easily implemented. This concept allows dynamic aspects to be processed during planning. Existing systems based on a similar concept usually add dynamics (velocity) into spatial curves in a post-processing step which might be inappropriate when the curves do not follow the dynamics. Many existing trajectory planning approaches, especially in mobile robotics, encode dynamic aspects directly in the representation (e.g. in the form of regular lattices) which requires a precise knowledge of the environmental and dynamic properties of particular autonomous entities making designing and implementing such trajectory planning approaches quite difficult. The concept of trajectory planning we implemented might not be as precise but the modular architecture makes the design and implementation easier because we can use (modified) well known path planning methods and define models of dynamics of autonomous entities separately. This seems to be appropriate for simulations used in feasibility studies for some complex autonomous systems or in computer games etc. Our basic implementation of the augmented A*, Theta* and Lazy Theta* algorithms is also experimentally evaluated. We compare (i) the augmented and basic A*, Theta* and Lazy Theta* algorithms and (ii) optimizing of augmented Theta* and Lazy Theta* for distance (the trajectory length) and duration (time needed to move through the trajectory).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmadzadeh, A., Motee, N., Jadbabaie, A., Pappas, G.J.: Multi-vehicle path planning in dynamically changing environments. In: Proceedings of ICRA, pp. 2449–2454 (2009)

  2. Barraquand, J., Latombe, J.C.: Nonholonomic multibody mobile robots: controllability and motion planning in the presence of obstacles. Algorithmica 10(2–4), 121–155 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Botea, A., Müller, M., Schaeffer, J.: Near optimal hierarchical path-finding. JOGD 1, 7–28 (2004)

    Google Scholar 

  4. Bresenham, J.: Algorithm for computer control of a digital plotter. IBM Syst. J. 4(1), 25–30 (1965)

    Article  Google Scholar 

  5. Cheng, P., LaValle, S.M.: Resolution complete rapidly-exploring random trees. In: Proceedings of ICRA, pp. 267–272 (2002)

  6. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge (2005)

  7. Chrpa, L.: Trajectory planning on grids: Considering speed limit constraints. In: Proceedings of SCAI, pp. 60–69. IOS press, Amsterdam (2011)

  8. Chrpa, L., Komenda, A.: Smoothed hex-grid trajectory planning using helicopter dynamics. In: Proceedings of International Conference on Agents and Artificial Intelligence (ICAART), vol. 1, pp. 629–632 (2011)

  9. Daniel, K., Nash, A., Koenig, S., Felner, A.: Theta*: Any-angle path planning on grids. J. Artif. Intell. Res. (JAIR) 39, 533–579 (2010)

    MATH  MathSciNet  Google Scholar 

  10. Demyen, D., Buro, M.: Efficient triangulation-based pathfinding. In: Proceedings of AAAI (2006)

  11. Ferguson, D., Howard, T.M., Likhachev, M.: Motion planning in urban environments. In: The DARPA Urban Challenge, pp. 61–89 (2009)

  12. Ferguson, D., Stentz, A.: Using interpolation to improve path planning: the field d* algorithm. J. Field Robot. 23(2), 79–101 (2006)

    Article  MATH  Google Scholar 

  13. Ghallab, M., Nau, D., Traverso, P.: Automated Planning, Theory and Practice. Morgan Kaufmann Publishers, San Mateo (2004)

  14. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  15. Howard, T.M., Kelly, A.: Optimal rough terrain trajectory generation for wheeled mobile robots. Int. J. Robot. Res. 26(2), 141–166 (2007)

    Article  Google Scholar 

  16. Karaman, S., Walter, M.R., Perez, A., Frazzoli, E., Teller, S.J.: Anytime motion planning using the rrt*. In: Proceedings of ICRA, pp. 1478–1483 (2011)

  17. Kavraki, L.E., Svestka, P., Kavraki, L.E., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12, 566–580 (1996)

    Article  Google Scholar 

  18. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell (1991)

    Book  Google Scholar 

  19. Likhachev, M., Ferguson, D., Gordon, G.J., Stentz, A., Thrun, S.: Anytime search in dynamic graphs. Artif. Intell. 172(14), 1613–1643 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Communun. ACM 22(10), 560–570 (1979)

    Article  Google Scholar 

  21. Mehlhorn, K.: Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness. Springer-Verlag, Heidelber (1984)

    Book  MATH  Google Scholar 

  22. Narayanan, V., Phillips, M., Likhachev, M.: Anytime safe interval path planning for dynamic environments. In: Proceedings of IROS, pp. 4708–4715 (2012)

  23. Nash, A., Daniel, K., Koenig, S., Felner, A.: Theta*: Any-angle path planning on grids. In: Proceedings of AAAI, pp. 1177–1183 (2007)

  24. Nash, A., Koenig, S., Likhachev, M.: Incremental phi*: Incremental any-angle path planning on grids. In: Proceedings of IJCAI, pp. 1824–1830 (2009)

  25. Nash, A., Koenig, S., Tovey, C.A.: Lazy theta*: any-angle path planning and path length analysis in 3d. In: AAAI (2010)

  26. O’Rourke, J.: Computational Geometry in C. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  27. Phillips, M., Likhachev, M.: Sipp: Safe interval path planning for dynamic environments. In: Proceedings of ICRA, pp. 5628–5635 (2011)

  28. Pivtoraiko, M., Knepper, R.A., Kelly, A.: Differentially constrained mobile robot motion planning in state lattices. J. Field Robot. 26(3), 308–333 (2009)

    Article  Google Scholar 

  29. Scheuer, A., Fraichard, T.: Continuous-curvature path planning for car-like vehicles. In: Proceedings of the IEEE-RSJ International Conference on Intelligent Robots and Systems, pp. 997–1003 (1998)

  30. Šišlák, D., Pěchouček, M., Volf, P., Pavlíček, D., Samek, J., Mařík, V., Losiewicz, P.: Defense Industry Applications of Autonomous Agents and Multi-Agent Systems, chap. AGENTFLY: Towards Multi-Agent Technology in Free Flight Air Traffic Control, pp. 73–97. Birkhauser Verlag (2008)

  31. Wang, W., Xu, X., Li, Y., Song, J., He, H.: Triple rrts: an effective method for path planning in narrow passages. Adv. Robot. 24(7), 943–962 (2010)

    Article  Google Scholar 

  32. Wzorek, M., Doherty, P.: Reconfigurable path planning for an autonomous unmanned aerial vehicle. In: Proceedings of ICAPS, pp. 438–441 (2006)

  33. Yap, P.: Grid-based path-finding. In: Proceedings of Canadian Conference on AI, pp. 44–55 (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukáš Chrpa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chrpa, L., Osborne, H. Towards a Trajectory Planning Concept: Augmenting Path Planning Methods by Considering Speed Limit Constraints. J Intell Robot Syst 75, 243–270 (2014). https://doi.org/10.1007/s10846-013-9886-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9886-7

Keywords

Navigation