Skip to main content
Log in

Enhanced Equilibrium Optimizer algorithm applied in job shop scheduling problem

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The Equilibrium Optimizer (EO) algorithm is a new meta-heuristic algorithm that uses an equilibrium pool and candidates to update particles (solutions). EO algorithm not only has strong exploitation and exploration capabilities but also avoids falling into the local optimum. The reason why EO has these advantages is because of the existence of “generation rate”. This paper proposes an Enhanced Equilibrium Optimizer (EEO) Algorithm based on three communication strategies to solve the Job Shop Scheduling Problem (JSSP). To prove the accuracy of the algorithm, this paper uses 28 benchmark functions for testing. At the same time, the Enhanced Equilibrium Optimizer (EEO1, EEO2, EEO3) Algorithms are compared with the existing optimization methods, including Grey Wolf Optimizer (GWO), Multi-Version Optimizer (MVO), Differential Evolution (DE), Whale Optimization Algorithm (WOA). Experiments show that the EO algorithm is significantly better than GWO, MVO, DE, WOA. EO algorithm is mainly used to optimize continuous problems, but JSSP is a discrete application, so the standard equilibrium optimizer algorithm needs to be discretized. This paper extends the enhanced equilibrium optimizer algorithm and adds discretization processing to JSSP. The algorithm is also applied for the job shop scheduling problem by discretization and is compared with the three improvement methods of EEO. Experimental results prove that the algorithm has made significant improvements in solving JSSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job shop scheduling. Management Science, 34(3), 391–401.

    Article  Google Scholar 

  • Ahmadian, M. M., Salehipour, A., & Cheng, T. (2021). A meta-heuristic to solve the just-in-time job-shop scheduling problem. European Journal of Operational Research, 288(1), 14–29.

    Article  Google Scholar 

  • Alba, E., Luque, G., & Nesmachnow, S. (2013). Parallel metaheuristics: Recent advances and new trends. International Transactions in Operational Research, 20(1), 1–48.

    Article  Google Scholar 

  • Çaliş, B., & Bulkan, S. (2015). A research survey: Review of Al solution strategies of job shop scheduling problem. Journal of Intelligent Manufacturing, 26(5), 961–973.

    Article  Google Scholar 

  • Chang, J. F., Roddick, J. F., Pan, J. S., & Chu, S. C. (2005). A parallel particle swarm optimization algorithm with communication strategies. Information Science and Engineering, 21, 809–818.

    Google Scholar 

  • Cheng, R., Gen, M., & Tsujimura, Y. (1996). A tutorial survey of job-shop scheduling problems using genetic algorithms—I. Representation. Computers& Industrial Engineering, 30(4), 983–997.

    Article  Google Scholar 

  • Chryssolouris, G., & Subramaniam, V. (2001). Dynamic scheduling of manufacturing job shops using genetic algorithms. Journal of Intelligent Manufacturing, 12(3), 281–293.

    Article  Google Scholar 

  • Chu, S. C., Roddick, J. F., & Pan, J. S. (2004). Ant colony system with communication strategies. Information Sciences, 167(1–4), 63–76.

    Article  Google Scholar 

  • Dao, T. K., Pan, T. S., Trong-The, N., & Pan, J. S. (2018). Parallel bat algorithm for optimizing makespan in job shop scheduling problems. Journal of Intelligent Manufacturing, 29(2), 451–462.

    Article  Google Scholar 

  • Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In MHS’95. Proceedings of the sixth international symposium on micro machine and human science (pp. 39–43).

  • Eddaly, M., Jarboui, B., & Siarry, P. (2016). Combinatorial particle swarm optimization for solving blocking flowshop scheduling problem. Journal of Computational Design and Engineering, 3(4), 295–311.

    Article  Google Scholar 

  • Faramarzi, A., Heidarinejad, M., Stephens, B., & Mirjalili, S. (2020). Equilibrium optimizer: A novel optimization algorithm. Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2019.105190.

    Article  Google Scholar 

  • Gen, M., & Lin, L. (2014). Multiobjective evolutionary algorithm for manufacturing scheduling problems: State-of-the-art survey. Journal of Intelligent Manufacturing, 25(5), 849–866.

    Article  Google Scholar 

  • González, M. A., Vela, C. R., González-Rodríguez, I., & Varela, R. (2013). Lateness minimization with tabu search for job shop scheduling problem with sequence dependent setup times. Journal of Intelligent Manufacturing, 24(4), 741–754.

    Article  Google Scholar 

  • Heydari, M., & Aazami, A. (2018). Minimizing the maximum tardiness and makespan criteria in a job shop scheduling problem with sequence dependent setup times. Journal of Industrial and Systems Engineering, 11(2), 134–150.

    Google Scholar 

  • Hu, P., Pan, J. S., & Chu, S. C. (2020). Improved binary grey wolf optimizer and its application for feature selection. Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2020.105746.

    Article  Google Scholar 

  • Jalilvand-Nejad, A., & Fattahi, P. (2015). A mathematical model and genetic algorithm to cyclic flexible job shop scheduling problem. Journal of Intelligent Manufacturing, 26(6), 1085–1098.

    Article  Google Scholar 

  • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95-international conference on neural networks (Vol. 4, pp. 1942–1948).

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.

    Article  Google Scholar 

  • Liang, J., Qu, B., Suganthan, P., & Hernández-Díaz, A. G. (2013). Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report, 201212(34), 281–295.

    Google Scholar 

  • Lian, Z., Jiao, B., & Gu, X. (2006). A similar particle swarm optimization algorithm for job-shop scheduling to minimize makespan. Applied Mathematics and Computation, 183(2), 1008–1017.

    Article  Google Scholar 

  • Liu, N., Pan, J. S., Wang, J., & Nguyen, T. T. (2019). An adaptation multi-group quasi-affine transformation evolutionary algorithm for global optimization and its application in node localization in wireless sensor networks. Sensors. https://doi.org/10.3390/s19194112.

    Article  Google Scholar 

  • Meng, Z., Pan, J. S., & Tseng, K. K. (2019). Pade: An enhanced differential evolution algorithm with novel control parameter adaptation schemes for numerical optimization. Knowledge-Based Systems, 168, 80–99.

    Article  Google Scholar 

  • Meng, Z., Pan, J. S., & Xu, H. (2016). Quasi-affine transformation evolutionary (quatre) algorithm: A cooperative swarm based algorithm for global optimization. Knowledge-Based Systems, 109, 104–121.

    Article  Google Scholar 

  • Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.

    Article  Google Scholar 

  • Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Computing and Applications, 27(2), 495–513.

    Article  Google Scholar 

  • Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Article  Google Scholar 

  • Moin, N. H., Chung Sin, O., & Omar, M. (2015). Hybrid genetic algorithm with multiparents crossover for job shop scheduling problems. Mathematical Problems in Engineering. https://doi.org/10.1155/2015/210680.

    Article  Google Scholar 

  • Mou, J., Li, X., Gao, L., & Yi, W. (2018). An effective l-mong algorithm for solving multi-objective flow-shop inverse scheduling problems. Journal of Intelligent Manufacturing, 29(4), 789–807.

    Article  Google Scholar 

  • Nagano, M. S., Komesu, A. S., & Miyata, H. H. (2019). An evolutionary clustering search for the total tardiness blocking flow shop problem. Journal of Intelligent Manufacturing, 30(4), 1843–1857.

    Article  Google Scholar 

  • Nguyen, T. T., Pan, J. S., & Dao, T. K. (2019). A novel improved bat algorithm based on hybrid parallel and compact for balancing an energy consumption problem. Information, 10(6), 194.

    Article  Google Scholar 

  • Nouiri, M., Bekrar, A., Jemai, A., Niar, S., & Ammari, A. C. (2018). An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem. Journal of Intelligent Manufacturing, 29(3), 603–615.

    Article  Google Scholar 

  • Pan, J. S., McInnes, F., & Jack, M. (1996). Application of parallel genetic algorithm and property of multiple global optima to vq codevector index assignment for noisy channels. Electronics Letters, 32(4), 296–297.

    Article  Google Scholar 

  • Pan, J. S., Meng, Z., Xu, H., & Li, X. (2017). A matrix-based implementation of de algorithm: The compensation and deficiency. In International conference on industrial, engineering and other applications of applied intelligent systems (pp. 72–81). Springer.

  • Penas, D. R., Banga, J. R., González, P., & Doallo, R. (2015). Enhanced parallel differential evolution algorithm for problems in computational systems biology. Applied Soft Computing, 33, 86–99.

    Article  Google Scholar 

  • Sayed, G.I., Darwish, A., Hassanien, A.E., & Pan, J.S. (2016). Breast cancer diagnosis approach based on meta-heuristic optimization algorithm inspired by the bubble-net hunting strategy of whales. In International conference on genetic and evolutionary computing (pp. 306–313). Springer.

  • Schutte, J. F., Reinbolt, J. A., Fregly, B. J., Haftka, R. T., & George, A. D. (2004). Parallel global optimization with the particle swarm algorithm. International Journal for Numerical Methods in Engineering, 61(13), 2296–2315.

    Article  Google Scholar 

  • Song, S.z., Ren, J.j., Fan, J.x. (2012). Improved simulated annealing algorithm used for job shop scheduling problems. In Advances in electrical engineering and automation (pp 17–25). Springer.

  • Storn, R., & Price, K. (1997). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

    Article  Google Scholar 

  • Sui, X., Chu, S. C., Pan, J. S., & Luo, H. (2020). Parallel compact differential evolution for optimization applied to image segmentation. Applied Sciences, 10(6), 2195.

    Article  Google Scholar 

  • Sun, C., Jin, Y., Cheng, R., Ding, J., & Zeng, J. (2017). Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems. IEEE Transactions on Evolutionary Computation, 21(4), 644–660.

    Article  Google Scholar 

  • Sun, C., Jin, Y., Zeng, J., & Yu, Y. (2015). A two-layer surrogate-assisted particle swarm optimization algorithm. Soft Computing, 19(6), 1461–1475.

    Article  Google Scholar 

  • Sun, L., Lin, T.C., Huang, H.C., Liao, B.Y., & Pan, J.S. (2007). An optimized approach on applying genetic algorithm to adaptive cluster validity index. In Third international conference on intelligent information hiding and multimedia signal processing (IIH-MSP 2007) (Vol. 2, pp. 582–585).

  • Tan, C. J., Neoh, S. C., Lim, C. P., Hanoun, S., Wong, W. P., Loo, C. K., et al. (2019). Application of an evolutionary algorithm-based ensemble model to job-shop scheduling. Journal of Intelligent Manufacturing, 30(2), 879–890.

    Article  Google Scholar 

  • Teng, L., & Li, H. (2018). A new frog leaping algorithm based on simulated annealing and immunization algorithm for low-power mapping in network-on-chip. Information Hiding and Multimedia Signal Processing, 9(3), 2073–4212.

    Google Scholar 

  • Van Laarhoven, P. J., Aarts, E. H., & Lenstra, J. K. (1992). Job shop scheduling by simulated annealing. Operations Research, 40(1), 113–125.

    Article  Google Scholar 

  • Wang, H., Wang, W., Sun, H., Cui, Z., Rahnamayan, S., & Zeng, S. (2017). A new cuckoo search algorithm with hybrid strategies for flow shop scheduling problems. Soft Computing, 21(15), 4297–4307.

    Article  Google Scholar 

  • Wang, H., Wu, Z., Rahnamayan, S., Liu, Y., & Ventresca, M. (2011). Enhancing particle swarm optimization using generalized opposition-based learning. Information Sciences, 181(20), 4699–4714.

    Article  Google Scholar 

  • Wang, X., Pan, J. S., & Chu, S. C. (2020). A parallel multi-verse optimizer for application in multilevel image segmentation. IEEE Access, 8, 32018–32030.

    Article  Google Scholar 

  • Xue, X., Yang, H., & Zhang, J. (2019). Using population-based incremental learning algorithm for matching class diagrams. Data Science and Pattern Recognition, 3(1), 2520–4165.

    Google Scholar 

  • Yuan, S., Li, T., Wang, B., et al. (2020). A discrete differential evolution algorithm for flow shop group scheduling problem with sequence-dependent setup and transportation times. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-020-01580-3.

    Article  Google Scholar 

  • Zhang, C., Li, P., Guan, Z., & Rao, Y. (2007). A tabu search algorithm with a new neighborhood structure for the job shop scheduling problem. Computers& Operations Research, 34(11), 3229–3242.

    Article  Google Scholar 

  • Zhang, J., Ding, G., Zou, Y., Qin, S., & Fu, J. (2019). Review of job shop scheduling research and its new perspectives under industry 4.0. Journal of Intelligent Manufacturing, 30(4), 1809–1830.

    Article  Google Scholar 

  • Zhao, B., Gao, J., Chen, K., & Guo, K. (2018a). Two-generation pareto ant colony algorithm for multi-objective job shop scheduling problem with alternative process plans and unrelated parallel machines. Journal of Intelligent Manufacturing, 29(1), 93–108.

  • Zhao, L., Gai, M., & Jia, Y. (2018b). Classification of multiple power quality disturbances based on PSO-SVM of hybrid kernel function. The Journal of Intelligent Information Hiding and Multimedia Signal Processing, 10(1), 138–146.

  • Zhuang, J., Luo, H., Pan, T. S., & Pan, J. S. (2020). Improved flower pollination algorithm for the capacitated vehicle routing problem. Network Intelligence, 5(3), 2414–8105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Pan, JS., Hu, P. et al. Enhanced Equilibrium Optimizer algorithm applied in job shop scheduling problem. J Intell Manuf 34, 1639–1665 (2023). https://doi.org/10.1007/s10845-021-01899-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-021-01899-5

Keywords

Navigation