Skip to main content
Log in

Correlation analysis among audible sound emissions and machining parameters in hardened steel turning

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Nowadays, monitoring systems are essential tools for manufacturing processes. As the main objective in machining processes is to produce high-quality products with reduced time, many efforts are being made to find new indirect methods that does not require to interrupt the process and does not have an excessively cost. Motivated by this premise, results of investigation on the relationship between audible sound emitted during process and the machining parameters are reported in this paper. Through experiments with the AISI 52100 hardened steel, this work shows that such a correlation does exist, presenting strong evidences that principal components scores, extracted from the power spectra of audible sound, are correlated with different machining parameters, such as material removal rate, cutting speed and depth of cut, as well as with different surface roughness levels, which makes it a promising feature for real-time process quality monitoring systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The Pearson product-moment correlation is used to assess the strength and direction of association between two continuous variables that are linearly related. Its coefficient, r, indicates the strength and direction of this relationship and can range from −1 for a perfect negative linear relationship to \(+\)1 for a perfect positive linear relationship. A value of 0 (zero) indicates that there is no relationship between the two variables (Frigieri et al. 2017).

References

  • Ai, C. S., Sun, Y. J., He, G. W., Ze, X. B., Li, W., & Mao, K. (2012). The milling tool wear monitoring using the acoustic spectrum. International Journal of Advanced Manufacturing Technology, 61(5-8), 457–463, ISSN 02683768. doi:10.1007/s00170-011-3738-z.

  • Benardos, P. G., & Vosniakos, G. C. (2003). Predicting surface roughness in machining: A review. International Journal of Machine Tools and Manufacture, 43(8), 833–844, ISSN 08906955. doi:10.1016/S0890-6955(03)00059-2. http://linkinghub.elsevier.com/retrieve/pii/S0890695503000592.

  • Chen, B., Chen, X., Li, B., He, Z., Cao, H., & Cai, G. (2011). Reliability estimation for cutting tools based on logistic regression model using vibration signals. Mechanical Systems and Signal Processing, 25(7), 2526–2537. doi:10.1016/j.ymssp.2011.03.001.

    Article  Google Scholar 

  • Dannenberg, R. (2013.) Audacity. http://audacity.sourceforge.net/.

  • De Oliveira, A. G., Ventura, T. M., Ganchev, T. D., De Figueiredo, J. M., Jahn, O, Marques, M. I., & Schuchmann, K. L. (2015) Bird acoustic activity detection based on morphological filtering of the spectrogram. Applied Acoustics, 98, 34–42, ISSN 1872910X. doi:10.1016/j.apacoust.2015.04.014.

  • Dimla Sr., D. E., & Lister, P. M. (2000). On-line metal cutting tool condition monitoring. International Journal of Machine Tools and Manufacture, 40(5), 769–781, ISSN 08906955. doi:10.1016/S0890-6955(99)00085-1.

  • Downey, J., O’Leary, P., & Raghavendra, R. (2014). Comparison and analysis of audible sound energy emissions during single point machining of HSTS with PVD TiCN cutter insert across full tool life. Wear, 313(1-2), 53–62, ISSN 00431648. doi:10.1016/j.wear.2014.02.004.

  • Fahmy, M. M. M. (2010). Palmprint recognition based on Mel frequency cepstral coefficients feature extraction. Ain Shams Engineering Journal, 1(1), 39–47. doi:10.1016/j.asej.2010.09.005.

    Article  Google Scholar 

  • Frigieri, E. P., Brito, T. G., Ynoguti, C. A., Paiva, A. P., Ferreira, J. R., & Balestrassi, P. P. (2017). Pattern recognition in audible sound energy emissions of AISI 52100 hardened steel turning: a MFCC-based approach. The International Journal of Advanced Manufacturing Technology, 88(5-8), 1383–1392, February ISSN 0268-3768. doi:10.1007/s00170-016-8748-4.

  • Frigieri, E. P., Campos, P. H. S., Paiva, A. P., Balestrassi, P. P., Ferreira, J. R., & Ynoguti, C. A. (2016). A mel-frequency cepstral coefficient-based approach for surface roughness diagnosis in hard turning using acoustic signals and gaussian mixture models. Applied Acoustics, 113, 230–237, December ISSN 0003682X. doi:10.1016/j.apacoust.2016.06.027. http://linkinghub.elsevier.com/retrieve/pii/S0003682X16301840.

  • Gajate, A., Haber, R., Del Toro, R., Vega, P., & Bustillo, A. (2012). Tool wear monitoring using neuro-fuzzy techniques: A comparative study in a turning process. Journal of Intelligent Manufacturing, 23(3), 869–882, ISSN 09565515. doi:10.1007/s10845-010-0443-y.

  • Ghasempoor, A., Jeswiet, J., & Moore, T. N. (1999). Real time implementation of on-line tool condition monitoring in turning. International Journal of Machine Tools and Manufacture, 39(12), 1883–1902, ISSN 08906955. doi:10.1016/S0890-6955(99)00035-8. http://linkinghub.elsevier.com/retrieve/pii/S0890695599000358.

  • Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis, volume 6 (5th edn). New Jersey: Prentice-Hall Inc, ISBN 9780131877153.

  • Jolliffe, I. T. (1986). Principal component analysis. New York, NY: Springer. ISBN 978-1-4757-1906-2. doi:10.1007/978-1-4757-1904-8.

  • Kasban, H., Zahran, O., Arafa, H., El-Kordy, M., Elaraby, S. M. S., & Abd El-Samie, F. E. (2011). Welding defect detection from radiography images with a cepstral approach. NDT and E International, 44(2), 226–231, ISSN 09638695. doi:10.1016/j.ndteint.2010.10.005.

  • Koolagudi, S. G., Rastogi, D., & Rao, K. S. (2012). Identification of language using mel-frequency cepstral coefficients (MFCC). Procedia Engineering, 38, 3391–3398, ISSN 18777058. doi:10.1016/j.proeng.2012.06.392.

  • Kumari, R. S. S., Nidhyananthan, S. S., & Anand, G. (2012). Fused Mel feature sets based text-independent speaker identification using Gaussian mixture model. Procedia Engineering, 30, 319–326, ISSN 18777058. doi:10.1016/j.proeng.2012.01.867. http://www.sciencedirect.com/science/article/pii/S1877705812008776.

  • Lu, M.-C., & Wan, B.-S. (2012). Study of high-frequency sound signals for tool wear monitoring in micromilling. The International Journal of Advanced Manufacturing Technology. doi:10.1007/s00170-012-4458-8.

  • Mannan, M. A., Kassim, A. A., & Jing, M. (2000). Application of image and sound analysis techniques to monitor the condition of cutting tools. Pattern Recognition Letters, 21(11), 969–979. doi:10.1016/S0167-8655(00)00050-7.

    Article  Google Scholar 

  • Marwala, T., Mahola, U., & Nelwamondo, F. V. V. (2006). Hidden Markov models and Gaussian mixture models for bearing fault detection using fractals. In The 2006 IEEE International Joint Conference on Neural Network Proceedings (pp. 3237–3242). doi:10.1109/IJCNN.2006.247310.

  • Modi, S., Lin, Y., Cheng, L., Yang, G., Liu, L., & Zhang, W. J. (2011). A socially inspired framework for human state inference using expert opinion integration. IEEE/ASME Transactions on Mechatronics, 16(5), 874–878, ISSN 10834435. doi:10.1109/TMECH.2011.2161094.

  • Montgomery, D. C. (2013). Design and analysis of experiments (8th edn). Hoboken: Wiley, ISBN 9781118146927.

  • Paiva, A. P., Campos, P. H., Ferreira, J. R., Lopes, L. G. D, Paiva, E. J., & Balestrassi, P. P. (2012). A multivariate robust parameter design approach for optimization of AISI 52100 hardened steel turning with wiper mixed ceramic tool. International Journal of Refractory Metals and Hard Materials, 30(1), 152–163, ISSN 02634368. doi:10.1016/j.ijrmhm.2011.08.001.

  • Picone, J. W. (1993). Signal modeling techniques in speech recognition. Proceedings of the IEEE, 81(9), 1215–1247, ISSN 15582256. doi:10.1109/5.237532.

  • Ragab, A., Yacout, S., Ouali, M. S., & Osman, H. (2016). Prognostics of multiple failure modes in rotating machinery using a pattern-based classifier and cumulative incidence functions. Journal of Intelligent Manufacturing, pp. 1–20, ISSN 15728145. doi:10.1007/s10845-016-1244-8.

  • Raja, J. E., Lim, W. S., & Venkataseshaiah, C. (2012). Emitted sound analysis for tool flank wear monitoring using hilbert huang transform. International Journal of Computer and Electrical Engineering, 4(2), 110–114, ISSN 17938163. doi:10.7763/IJCEE.2012.V4.460. http://www.ijcee.org/show-43-732-1.html.

  • Robben, L., Rahman, S., Buhl, J. C., Denkena, B., & Konopatzki, B. (2010). Airborne sound emission as a process monitoring tool in the cut-off grinding of concrete. Applied Acoustics, 71(1), 52–60, ISSN 0003682X. doi:10.1016/j.apacoust.2009.07.004.

  • Rubio, E. M., & Teti, R. (2009). Cutting parameters analysis for the development of a milling process monitoring system based on audible energy sound. Journal of Intelligent Manufacturing, 20(1), 43–54. doi:10.1007/s10845-008-0102-8.

    Article  Google Scholar 

  • Rubio, E. M., & Teti, R. (2010). Process monitoring systems for machining using audible sound energy sensors. Future Manufacturing Systems. doi:10.5772/55601.

  • Salgado, D. R., & Alonso, F. J. (2007) An approach based on current and sound signals for in-process tool wear monitoring. International Journal of Machine Tools and Manufacture, 47(14), 2140–2152, ISSN 08906955. doi:10.1016/j.ijmachtools.2007.04.013.

  • Scheffer, C., Kratz, H., Heyns, P. S., & Klocke, F. (2003). Development of a tool wear-monitoring system for hard turning. International Journal of Machine Tools and Manufacture, 43(10), 973–985, ISSN 08906955. doi:10.1016/S0890-6955(03)00110-X. URL http://linkinghub.elsevier.com/retrieve/pii/S089069550300110X.

  • Sharma, V. S., Sharma, S. K., & Sharma, A. K. (2008). Cutting tool wear estimation for turning. Journal of Intelligent Manufacturing, 19(1), 99–108, ISSN 09565515. doi:10.1007/s10845-007-0048-2.

  • Sick, B. (2002). On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research. Mechanical Systems and Signal Processing, 16(4), 487–546, July ISSN 08883270. doi:10.1006/mssp.2001.1460. http://linkinghub.elsevier.com/retrieve/pii/S0888327001914608.

  • Tekiner, Z., & Yeilyurt, S. (2004). Investigation of the cutting parameters depending on process sound during turning of AISI 304 austenitic stainless steel. Materials & Design, 25(6), 507–513. doi:10.1016/j.matdes.2003.12.011. http://linkinghub.elsevier.com/retrieve/pii/S0261306903002632.

  • Teti, R., Jemielniak, K., O’Donnell, G., & Dornfeld, D. (2010). Advanced monitoring of machining operations. CIRP Annals-Manufacturing Technology, 59(2), 717–739. doi:10.1016/j.cirp.2010.05.010, ISSN 00078506.

  • Vejdannik, M., & Sadr, A. (2016). Automatic microstructural characterization and classification using higher-order spectra on ultrasound signals. Journal of Nondestructive Evaluation, 35(1), 1–14, ISSN 15734862. doi:10.1007/s10921-015-0332-6.

  • Vignolo, L. D., Rufiner, H. L., Milone, D. H., & Goddard, J. C. (2011). Evolutionary cepstral coefficients. Applied Soft Computing, 11(4), 3419–3428, June ISSN 15684946. doi:10.1016/j.asoc.2011.01.012. http://linkinghub.elsevier.com/retrieve/pii/S1568494611000226.

  • Xiqing, M., & Chuangwen, X. (2009) Tool wear monitoring of acoustic emission signals from milling processes. In 2009 First International Workshop on Education Technology and Computer Science (pp. 431–435). doi:10.1109/ETCS.2009.105. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4958808.

  • Zhou, J.-H., Pang, C. K., Zhong, Z.-W., Lewis, F. L.(2011). Tool wear monitoring using acoustic emissions by dominant-feature identification. IEEE Transactions on Instrumentation and Measurement, 60(2), 547–559, ISSN 0018-9456. doi:10.1109/TIM.2010.2050974. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5483234&contentType=Journals+&+Magazines&refinements=4291944246&queryText=tool+wear+MFCC.

Download references

Acknowledgements

This research was supported by CAPES under process number BEX 3203/15-8. Thanks also to the Brazilian governmental agencies of CNPq and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edielson P. Frigieri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frigieri, E.P., Ynoguti, C.A. & Paiva, A.P. Correlation analysis among audible sound emissions and machining parameters in hardened steel turning. J Intell Manuf 30, 1753–1764 (2019). https://doi.org/10.1007/s10845-017-1356-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-017-1356-9

Keywords

Navigation