Skip to main content

Advertisement

Log in

On Industrialization, Human Resources Training, and Policy Coordination

  • Published:
Journal of Industry, Competition and Trade Aims and scope Submit manuscript

Abstract

This paper proposes a dynamic model using a general equilibrium approach and shows that the coordination of public policies with suitable human resources training is a key factor for an economy to industrialize. We analyze three public policy domains: innovation policies; policies regarding human resources training, including wages and employment; and push policies. The omission or implementation of public policies, as well as their coordination, defines whether an economy stagnates in a poverty trap, or on the contrary, whether the economy is activated through industrialization processes. Such outcomes depend on what the initial state of the economy is like: whether it is on the left or the right of the industrialization frontier. The viability of crossing the industrialization frontier will depend on how these types of policies are coordinated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. This idea was first developed by Rosenstein-Rodan (1943).

  2. Alternatively, we may define segments within the continuum of goods, so that there are intermediate levels of aggregation. Then, we would have industrialization levels that differ between segments and λμ would be the average level of industrialization in the economy.

  3. An example of this are the cross-training models; see, e.g., De Bruecker et al. (2015) and Hopp et al. (2004).

  4. In several countries, the cost of formal education and vocational training is subsidized by the public sector, and the entire society absorbs this cost in a continuous form.

  5. Also, this simplification can be approached by assuming that we had numerous generations, and if the new generation did not face the training cost, the proportion of high-skilled labor would be reduced. Since we are focusing on the proportions of different types of labor units, this simplification seems closer to its dynamics than assuming that high-skilled labor units remain so.

  6. Notice that for all the phase diagrams in Fig. 4, condition (35) is satisfied.

  7. Notice that for all the phase diagrams in Fig. 5, condition (35) is satisfied.

References

  • Accinelli E, Sanchez Carrera EJ (2012) The evolutionary game of poverty traps. The Manchester School 80(4):381–400

    Article  Google Scholar 

  • Acemoglu D (2002a) Directed technical change. The Review of Economic Studies 69(4):781–809

    Article  Google Scholar 

  • Acemoglu D (2002b) Technical change, inequality, and the labor market. Journal of Economic Literature 40(1):7–72

    Article  Google Scholar 

  • Alesina A (2003) The size of countries: does it matter? Journal of the European Economic Association 1(2-3):301–316

    Article  Google Scholar 

  • Allen RC (2011) Global economic history: a very short introduction. Oxford University Press

  • Amsden AH (1989) Asia’s next giant: South Korea and late industrialization. Oxford University Press on Demand

  • Arthur WB (1989) Competing technologies, increasing returns, and lock-in by historical events. The Economic Journal 99(394):116–131

    Article  Google Scholar 

  • Basu K (2003) Analytical development economics: the less developed economy revisited. MIT Press

  • Bils M, Klenow PJ (2000) Does schooling cause growth? American Economic Review 90(5):1160–1183

    Article  Google Scholar 

  • Bjorvatn K, Coniglio ND (2012) Big push or big failure? On the effectiveness of industrialization policies for economic development. Journal of the Japanese and International Economies 26(1):129–141

    Article  Google Scholar 

  • Cantore N, Clara M, Lavopa A, Soare C (2017) Manufacturing as an engine of growth: which is the best fuel? Structural Change and Economic Dynamics 42:56–66

    Article  Google Scholar 

  • Caselli F, Coleman IIWJ (2006) The world technology frontier. American Economic Review 96(3):499–522

    Article  Google Scholar 

  • Cimoli M, Dosi G (2017) Industrial policies in learning economies. In: Noman A, Stiglitz JE (eds) Efficiency, finance, and varieties of industrial policy, pp 23. Columbia University Press, New York

  • Cimoli M, Dosi G, Nelson RR, Stiglitz J (2009) Institutions and policies shaping industrial development: an introductory note. In: Cimoli M, Dosi G, Stiglitz JE (eds) Industrial policy and development. The political economy of capabilities accumulation, pp 19–38. Oxford University Press, New York

  • D’Costa AP (1994) State, steel and strength: structural competitiveness and development in South Korea. The Journal of Development Studies 31 (1):44–81

    Article  Google Scholar 

  • De Bruecker P, Van den Bergh J, Beliën J, Demeulemeester E (2015) Workforce planning incorporating skills: state of the art. European Journal of Operational Research 243(1):1–16

    Article  Google Scholar 

  • Dosi G, Nelson RR (1994) An introduction to evolutionary theories in economics. Journal of Evolutionary Economics 4(3):153–172

    Article  Google Scholar 

  • Dosi G, Fagiolo G, Roventini A (2006) An evolutionary model of endogenous business cycles. Computational Economics 27(1):3–34

    Article  Google Scholar 

  • El Colegio de México (2018) Desigualdades en méxico 2018 https://desigualdades.colmex.mx/informe-desigualdades-2018.pdf

  • Fatas-Villafranca F, Jarne G, Sanchez-Choliz J (2009) Industrial leadership in science-based industries: a co-evolution model. Journal of Economic Behavior & Organization 72(1):390–407

    Article  Google Scholar 

  • Franck R, Galor O (2015) The complementary between technology and human capital in the early phase of industrialization. Technical report. CESifo Working Paper Series No. 5485

  • Greenwald B, Stiglitz JE (2013) Industrial policies, the creation of a learning society, and economic development. In: Stiglitz JE, Lin JY (eds) The industrial policy revolution I, The role of government beyond ideology, pp 43–71. Palgrave Macmillan

  • Grimm M, Knorringa P, Lay J (2012) Constrained gazelles: High potentials in West Africa’s informal economy. World Development 40(7):1352–1368

    Article  Google Scholar 

  • Haraguchi N, Martorano B, Sanfilippo M (2019) What factors drive successful industrialization? Evidence and implications for developing countries. Structural Change and Economic Dynamics 49:266–276

    Article  Google Scholar 

  • Hausmann R, Rodrik D (2006) Doomed to choose: industrial policy as predicament. Technical report. John F. Kennedy School of Government, Harvard University

  • Hofbauer J, Sigmund K, et al. (1998) Evolutionary games and population dynamics. Cambridge University Press

  • Hopp WJ, Tekin E, Van Oyen MP (2004) Benefits of skill chaining in serial production lines with cross-trained workers. Management Science 50 (1):83–98

    Article  Google Scholar 

  • Kreickemeier U, Wrona J (2020) Industrialisation and the big push in a global economy. Technical report

  • Krugman P (1992) Toward a counter-counterrevolution in development theory. The World Bank Economic Review 6(suppl_1):15–38

    Article  Google Scholar 

  • Lane N (2020) The new empirics of industrial policy. Journal of Industry, Competition and Trade 20(2):209–234

    Article  Google Scholar 

  • Lucas E. JR (1988) On the mechanics of economic development. Journal of Monetary Economics 22(1):3–42

    Article  Google Scholar 

  • Mendoza-Palacios S, Mercado A (2021) A note on the big push as industrialization process. In: Mendoza-Palacios S, Mercado A (eds) Games and evolutionary dynamics: selected theoretical and applied developments, pp 153–169. El Colegio de México

  • Mowery DC, Nelson RR (1999) Sources of industrial leadership: studies of seven industries. Cambridge University Press

  • Murphy KM, Shleifer A, Vishny RW (1989) Industrialization and the big push. Journal of Political Economy 97(5):1003–1026

    Article  Google Scholar 

  • Nelson RR, Winter SG (2009) An evolutionary theory of economic change. Harvard University Press

  • Pritchett L (2006) Does learning to add up add up? The returns to schooling in aggregate data. In: Hanushek E, Welch F (eds) Handbook of the economics of education, vol 1, pp 635–695. Elsevier

  • Reinhard K, Osburg T, Townsend R (2008) The sponsoring by industry of universities of cooperative education: a case study in Germany. International Journal of Work-Integrated Learning 9(1):1

    Google Scholar 

  • Rodrik D (1995) Getting interventions right: how South Korea and Taiwan grew rich. Economic Policy 10(20):53–107

    Article  Google Scholar 

  • Rosenstein-Rodan PN (1943) Problems of industrialisation of Eastern and South-eastern Europe. The Economic Journal 53(210/211):202–211

    Article  Google Scholar 

  • Sanchez-Carrera E (2019) Evolutionary dynamics of poverty traps. Journal of Evolutionary Economics 29(2):611–630

    Article  Google Scholar 

  • Sandholm WH (2010) Population games and evolutionary dynamics. MIT Press

  • Sternberg R, Litzenberger T (2004) Regional clusters in Germany–their geography and their relevance for entrepreneurial activities. European Planning Studies 12(6):767–791

    Article  Google Scholar 

  • Szirmai A, Verspagen B (2015) Manufacturing and economic growth in developing countries, 1950–2005. Structural Change and Economic Dynamics 34:46–59

    Article  Google Scholar 

  • Trindade V (2005) The big push, industrialization and international trade: the role of exports. Journal of Development Economics 78(1):22–48

    Article  Google Scholar 

  • Uzawa H (1964) Optimal growth in a two-sector model of capital accumulation. The Review of Economic Studies 31(1):1–24

    Article  Google Scholar 

  • Wood A (2017) Variation in structural change around the world, 1985–2015: patterns causes and implications

  • Yamada M (1999) Specialization and the big push. Economics Letters 64(2):249–255

    Article  Google Scholar 

Download references

Funding

Work partially supported by Consejo Nacional de Ciencia y Tecnología (CONACYT-México) under grant Ciencia Frontera 2019-87787.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saul Mendoza-Palacios.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Stability Analysis

To study the stability of the dynamic system (36)-(37), we will analyze the characteristic polynomial \(f(\epsilon )=\det (A-\epsilon I)\), where 𝜖 = (𝜖1, 𝜖2), I is the 2 × 2-identity matrix and A is the matrix

$$ \left[\begin{array}{ccc} {\partial G\over \partial \lambda_{\mu}} & {\partial G \over \partial \gamma_{h}} \\ {\partial H\over \partial \lambda_{\mu}} & {\partial H \over \partial \gamma_{h}} \end{array}\right] $$
(48)

where

$$ \begin{array}{@{}rcl@{}} G(\lambda_{\mu},\gamma_{h})&:=&\lambda_{\mu} (1-\lambda_{\mu})\pi_{\mu} (\lambda_{\mu},\gamma_{h}),\\ H(\lambda_{\mu},\gamma_{h})&:=&\gamma_{h} (1-\gamma_{h})[\kappa\lambda_{\mu}\omega-(1-\kappa)(\lambda_{\mu} w_{\mu}+(1-\lambda_{\mu})w_{\tau}],\\ {\partial G\over \partial \lambda_{\mu}}&=&\lambda_{\mu} (1-\lambda_{\mu}) {\partial \pi_{\mu}\over \partial \lambda_{\mu}} +(1-2\lambda_{\mu})\pi_{\mu},\\ {\partial G \over \partial \gamma_{h}}&=& \lambda_{\mu} (1-\lambda_{\mu}) \left[{\partial\pi_{\mu} \over \partial\gamma}{d \gamma \over d\gamma_{h}}+{\partial\pi_{\mu} \over \partial\gamma_{h}}\right],\\ {\partial H\over \partial \lambda_{\mu}}&=& \gamma_{h} (1-\gamma_{h}) [\kappa\omega+(1-\kappa)(w_{\tau}-w_{\mu})],\\ {\partial H \over \partial \gamma_{h}}&=& (1-2\gamma_{h}) [\kappa\lambda_{\mu}\omega-(1-\kappa)(\lambda_{\mu} w_{\mu}+(1-\lambda_{\mu})w_{\tau})]. \end{array} $$

1.1 1.1 Steady State (0, 0)

In this case

$$ \left.\left[\begin{array}{ccc} {\partial G\over \partial \lambda_{\mu}} & {\partial G \over \partial \gamma_{h}} \\ {\partial H\over \partial \lambda_{\mu}} & {\partial H \over \partial \gamma_{h}} \end{array}\right] \right|_{(0, 0)}= \left[\begin{array}{ccc} \pi_{\mu}(0, 0) & 0 \\ 0 &-(1-\kappa)w_{\tau} \end{array} \right], $$

where

$$ \pi_{\mu}(0, 0)= [(w_{\tau}-w_{\mu} c) (L/(NF)) -w_{\mu}] F. $$

By (42), πμ(0, 0) < 0. In this case

$$ f(\epsilon)=(\pi_{\mu}(0, 0)-\epsilon_{1})(-(1-\kappa)w_{\tau}-\epsilon_{2}), $$

which implies that the steady state (0, 0) is an attractor.

1.2 1.2 Steady State (0,1)

For this steady state

$$ \left.\left[\begin{array}{ccc} {\partial G\over \partial \lambda_{\mu}} & {\partial G \over \partial \gamma_{h}} \\ {\partial H\over \partial \lambda_{\mu}} & {\partial H \over \partial \gamma_{h}} \end{array}\right] \right|_{(0,1)}= \left[\begin{array}{ccc} \pi_{\mu}(0,1) & 0 \\ 0 & (1-\kappa)w_{\tau} \end{array} \right], $$

where

$$ \pi_{\mu}(0,1)=F\big[(w_{\tau}-(w_{\mu}+\omega)c\sigma) (\kappa L/(NF)) -(w_{\mu} +\omega) \big]. $$

We have that

$$ f(\epsilon)= (\pi_{\mu}(0,1)-\epsilon_{1})((1-k)w_{\tau}-\epsilon_{2}) $$

which implies that the steady state (1, 0) is a repeller if (43) is satisfied, and it is a saddle if (43) is not satisfied.

1.3 1.3 Steady State (1, 0)

In this case

$$ \left.\left[\begin{array}{ccc} {\partial G\over \partial \lambda_{\mu}} & {\partial G \over \partial \gamma_{h}} \\ {\partial H\over \partial \lambda_{\mu}} & {\partial H \over \partial \gamma_{h}} \end{array}\right] \right|_{(1, 0)}= \left[\begin{array}{ccc} -\pi_{\mu}(1, 0) & 0 \\ 0 & \kappa(w_{\mu}+\omega)-w_{\mu} \end{array} \right], $$

where

$$ \pi_{\mu}(1, 0)= {F\over c} [(w_{\tau}-w_{\mu} c) (L/(NF)) -w_{\tau}]. $$

Since (42) is satisfied, then πμ(1, 0) > 0. Moreover

$$ f(\epsilon)=(-\pi_{\mu}(1, 0)-\epsilon_{1})(\kappa(w_{\mu}+\omega)-w_{\mu}-\epsilon_{2}). $$

Given πμ(1, 0) > 0, if (35) is not satisfied we have that the steady state (0,1) is an attractor. If (35) is satisfied, then it is a saddle.

1.4 1.4 Steady state (1,1)

For this steady state

$$\left.\left[\begin{array}{ccc} {\partial G\over \partial \lambda_{\mu}} & {\partial G \over \partial \gamma_{h}} \\ {\partial H\over \partial \lambda_{\mu}} & {\partial H \over \partial \gamma_{h}} \end{array}\right] \right|_{(1,1)}= \left[\begin{array}{ccc} -\pi_{\mu}(1,1) & 0 \\ 0 & -(\kappa(w_{\mu}+\omega)-w_{\mu}) \end{array} \right], $$

where

$$\pi_{\mu}(1,1)={F\over c\sigma} \left[(w_{\tau}-(w_{\mu}+\omega)c\sigma) (\kappa L/NF)-w_{\tau}\right] $$

By (16) and (42),

$$(w_{\tau}-(w_{\mu}+\omega)c\sigma) (\kappa L/(NF))-w_{\tau}~>~(w_{\tau}-w_{\mu} c) (\kappa L/(NF))-w_{\tau}~>~0,$$

then πμ(1, 1) > 0. We have that

$$f(\epsilon)=(-\pi_{\mu}(1,1)-\epsilon_{1})(-(\kappa(w_{\mu}+\omega)-w_{\mu})-\epsilon_{2}),$$

where πμ(1, 1) > 0. Therefore, the steady state (0,1) is a saddle if (35) is not satisfied, and it is an attractor if (35) is satisfied.

1.5 1.5 Steady State \((\lambda _{\mu _{0}^{*}}, 0)\)

Consider \(\lambda _{\mu _{0}^{*}}\) as in (44). In this case

$$\left.\left[\begin{array}{ccc} {\partial G\over \partial \lambda_{\mu}} & {\partial G \over \partial \gamma_{h}} \\ {\partial H\over \partial \lambda_{\mu}} & {\partial H \over \partial \gamma_{h}} \end{array}\right] \right|_{(\lambda_{\mu_{0}}^{*}, 0)}= \left[\begin{array}{ccc} \lambda_{\mu} (1-\lambda_{\mu}) \left.{\partial \pi_{\mu}\over \partial \lambda_{\mu}}\right|_{(\lambda_{\mu_{0}}^{*}, 0)} & \left.{\partial G \over \partial \gamma_{h}}\right|_{(\lambda_{\mu_{0}}^{*}, 0)} \\ 0 & \kappa \lambda_{\mu_{0}}^{*}\omega-(1-\kappa)(\lambda_{\mu_{0}}^{*} w_{\mu}+(1-\lambda_{\mu_{0}}^{*})w_{\tau}) \end{array} \right] $$

where

$$\left.{\partial \pi_{\mu}\over \partial \lambda_{\mu}}\right|_{(\lambda_{\mu_{0}}^{*}, 0)}={{(w_{\mu}-w_{\tau}) F }\over{\lambda_{\mu_{0}}^{*} c + (1-\lambda_{\mu_{0}}^{*}) }}>0. $$

The roots of the characteristic polynomial f(𝜖) are

$$ \begin{array}{@{}rcl@{}} \epsilon_{1}&=&\lambda_{\mu} (1-\lambda_{\mu}) \left.{\partial \pi_{\mu}\over \partial \lambda_{\mu}}\right|_{(\lambda_{\mu_{0}}^{*}, 0)},\\ \epsilon_{2}&=& \kappa \lambda_{\mu_{0}}^{*}\omega-(1-\kappa)(\lambda_{\mu_{0}}^{*} w_{\mu}+(1-\lambda_{\mu_{0}}^{*})w_{\tau}), \end{array} $$

where 𝜖1 > 0. If (35) is not satisfied, then 𝜖2 < 0. In the other case, i.e., if (35) is satisfied, then it is not possible to determine the sign of 𝜖2. Therefore if (35) is not satisfied, then \((\lambda _{\mu _{0}}^{*}, 0)\) is saddle; in the other case, we only know that it is unstable.

1.6 1.6 Steady State \((\lambda _{\mu _{1}^{*}},1)\)

Consider \(\lambda _{\mu _{1}^{*}}\) as in (45), this steady state does not exist if \(\lambda _{\mu _{1}^{*}}\) is not positive. If \(\lambda _{\mu _{1}^{*}}>0\), then

$$\left.\left[\begin{array}{ccc} {\partial G\over \partial \lambda_{\mu}} & {\partial G \over \partial \gamma_{h}} \\ {\partial H\over \partial \lambda_{\mu}} & {\partial H \over \partial \gamma_{h}} \end{array}\right] \right|_{(\lambda_{\mu_{1}}^{*},1)}= \left[\begin{array}{ccc} \lambda_{\mu} (1-\lambda_{\mu}) \left.{\partial \pi_{\mu}\over \partial \lambda_{\mu}}\right|_{(\lambda_{\mu_{1}}^{*},1)} & \left.{\partial G \over \partial \gamma_{h}}\right|_{(\lambda_{\mu_{1}}^{*},1)} \\ 0 & -\kappa \lambda_{\mu_{1}}^{*}\omega+(1-\kappa)(\lambda_{\mu_{1}}^{*} w_{\mu}+(1-\lambda_{\mu_{1}}^{*})w_{\tau}) \end{array} \right] $$

where

$$\left.{\partial \pi_{\mu}\over \partial \lambda_{\mu}}\right|_{(\lambda_{\mu_{1}}^{*},1)}={{(w_{\mu}+\omega-w_{\tau}) F }\over{\lambda_{\mu_{1}}^{*} c\sigma + (1-\lambda_{\mu_{1}}^{*}) }}>0. $$

The roots of the characteristic polynomial f(𝜖) are

$$ \begin{array}{@{}rcl@{}} \epsilon_{1}&=&\lambda_{\mu} (1-\lambda_{\mu}) \left.{\partial \pi_{\mu}\over \partial \lambda_{\mu}}\right|_{(\lambda_{\mu_{1}}^{*},1)},\\ \epsilon_{2}&=& -\kappa \lambda_{\mu_{1}}^{*}\omega+(1-\kappa)(\lambda_{\mu_{1}}^{*} w_{\mu}+(1-\lambda_{\mu_{1}}^{*})w_{\tau}), \end{array} $$

where 𝜖1 > 0. If (35) is not satisfied, then 𝜖2 > 0. If (35) is satisfied, then it is not possible to determine the sign of 𝜖2. Therefore if (35) is not satisfied, then \((\lambda _{\mu _{1}}^{*},1)\) is repeller; in the other case, we only know that it is unstable.

1.7 1.7 Steady State \((\lambda _{\mu }^{*},\gamma _{h}^{*})\)

Consider \(\lambda _{\mu }^{*}\) and \(\gamma _{h}^{*}\) as (46) and (47), respectively. In this case

$$\left.\left[\begin{array}{ccc} {\partial G\over \partial \lambda_{\mu}} & {\partial G \over \partial \gamma_{h}} \\ {\partial H\over \partial \lambda_{\mu}} & {\partial H \over \partial \gamma_{h}} \end{array}\right] \right|_{(\lambda_{\mu}^{*},\gamma_{h}^{*})}= \left[\begin{array}{ccc} \lambda_{\mu} (1-\lambda_{\mu}) \left.{\partial \pi_{\mu}\over \partial \lambda_{\mu}}\right|_{(\lambda_{\mu}^{*},\gamma_{h}^{*})} & \left.{\partial G \over \partial \gamma_{h}}\right|_{(\lambda_{\mu}^{*},\gamma_{h}^{*})} \\ \gamma_{h}^{*}(1-\gamma_{h}^{*})[\kappa\gamma+(1-\kappa)(w_{\tau}-w_{\mu})] & 0 \end{array} \right] $$

where

$$ \begin{array}{@{}rcl@{}} \left.{\partial \pi_{\mu}\over \partial \lambda_{\mu}}\right|_{(\lambda_{\mu}^{*},\gamma_{h}^{*})}&=& {{(w_{\mu}+\omega\gamma^{*}-w_{\tau}) (w_{\mu}+\omega\gamma^{*})F }\over{\Big[\lambda_{\mu}^{*}[(1-\gamma^{*})w_{\mu} c+\gamma^{*}(w_{\mu}+\omega)c\sigma ]+(w_{\mu}+\omega\gamma^{*})(1-\lambda_{\mu}^{*}) \Big]} } >0,\\ \gamma^{*}&=&\gamma\big|_{\gamma_{h}^{*}} \text{~~with~} \gamma \text{~as~in~} (11). \end{array} $$

The roots of the characteristic polynomial f(𝜖) of A as in (48) are

$$ \epsilon_{1,2}={\text{tr}(A)\pm\big((\text{tr}(A))^{2}-4\det(A) \big)^{1/2}\over 2} $$

with

$$ \text{tr}(A)=\lambda_{\mu} (1-\lambda_{\mu}) \left.{\partial \pi_{\mu}\over \partial \lambda_{\mu}}\right|_{(\lambda_{\mu}^{*},\gamma_{h}^{*})}>0. $$

Since tr(A) > 0, then \((\lambda _{m}u^{*},\gamma _{h}^{*})\) is not a stable steady state. Therefore \((\lambda _{\mu }^{*},\gamma _{h}^{*})\) is unstable, but it is not possible to determine their classification.

Appendix 2: Comparative Statics of λ μ in the Steady States

1.1 2.1 Parameter in Table 2

Consider the values of \(\lambda _{\mu _{0}}^{*},~ \lambda _{\mu _{1}}^{*},\) and \(\lambda _{\mu }^{*}\), as in (44), (45), and (46), respectively.

  • (i) Partial derivatives of λμ with respect to σ:

    $$ \begin{array}{@{}rcl@{}} {\partial\lambda_{\mu_{0}}^{*}\over \partial\sigma}&=&0; \\ {\lambda_{\mu_{1}}^{*}\over \partial\sigma}&=&{(w_{\mu}+\omega)c \over (w_{\mu}+\omega)- w_{\tau}}{\kappa L\over NF}>0; \\ {\lambda_{\mu}^{*}\over \partial\sigma}&=& 0. \end{array} $$
  • (ii) Partial derivatives of λμ with respect to c:

    $$ \begin{array}{@{}rcl@{}} {\partial\lambda_{\mu_{0}}^{*}\over \partial c}&=&{w_{\mu} \over (w_{\mu}-w_{\tau})} {L\over NF}>0; \\ {\lambda_{\mu_{1}}^{*}\over \partial c}&=&{(w_{\mu}+\omega)\sigma\over (w_{\mu}+\omega)- w_{\tau}}{\kappa L\over NF}>0; \\ {\lambda_{\mu}^{*}\over \partial c}&=&0. \end{array} $$
  • (ii) Partial derivatives of λμ with respect to F:

    $$ \begin{array}{@{}rcl@{}} {\partial\lambda_{\mu_{0}}^{*}\over \partial F}&=&{(w_{\tau}-w_{\mu} c) \over (w_{\mu}-w_{\tau})} {L\over NF^{2}}>0; \\ {\lambda_{\mu_{1}}^{*}\over \partial F} &=&{w_{\tau}-(w_{\mu}+\omega)c\sigma \over (w_{\mu}+\omega)- w_{\tau}}{\kappa L\over NF^{2}}>0; \\ {\lambda_{\mu}^{*}\over \partial F}&=&0. \end{array} $$
  • (ii) Partial derivatives of λμ with respect to N:

    $$ \begin{array}{@{}rcl@{}} {\partial\lambda_{\mu_{0}}^{*}\over \partial N}&=&{(w_{\tau}-w_{\mu} c) \over (w_{\mu}-w_{\tau})} {L\over N^{2}F}>0; \\ {\lambda_{\mu_{1}}^{*}\over \partial N} &=&{w_{\tau}-(w_{\mu}+\omega)c\sigma \over (w_{\mu}+\omega)- w_{\tau}}{\kappa L\over N^{2}F}>0; \\ {\lambda_{\mu}^{*}\over \partial N}&=&0. \end{array} $$

1.2 2.2 Parameter in Table 3

Consider the values of \(\lambda _{\mu _{0}}^{*},~ \lambda _{\mu _{1}}^{*},\) and \(\lambda _{\mu }^{*}\), as in (44), (45), and (46), respectively.

  • (i) Partial derivatives of λμ with respect to L:

    $$ \begin{array}{@{}rcl@{}} {\partial\lambda_{\mu_{0}}^{*}\over \partial L}&=&-{(w_{\tau}-w_{\mu} c) \over (w_{\mu}-w_{\tau})} {1\over NF} <0; \\ {\lambda_{\mu_{1}}^{*}\over \partial L}&=&-{w_{\tau}-(w_{\mu}+\omega)c\sigma \over (w_{\mu}+\omega)- w_{\tau}}{\kappa \over NF}<0; \\ {\lambda_{\mu}^{*}\over \partial L} &=&0. \end{array} $$
  • (ii) Partial derivatives of λμ with respect to κ:

    $$ \begin{array}{@{}rcl@{}} {\partial\lambda_{\mu_{0}}^{*}\over \partial \kappa}&=&0; \\ {\lambda_{\mu_{1}}^{*}\over \partial \kappa}&=&-{w_{\tau}-(w_{\mu}+\omega)c\sigma \over (w_{\mu}+\omega)- w_{\tau}}{L\over NF}<0; \\ {\lambda_{\mu}^{*}\over \partial \kappa} &=&{-w_{\tau} \over \kappa\omega -(1-\kappa)(w_{\mu}-w_{\tau})}-{(1-\kappa)w_{\tau} (w_{\mu}+\omega -w_{\tau} )\over \big(\kappa\omega -(1-\kappa)(w_{\mu}-w_{\tau})\big)^{2}}<0. ~~(*) \end{array} $$

    (*) If \(\lambda _{\mu _{0}}^{*}>0\) we need that κω − (1 − κ)(wμwτ) > 0, which implies that \({\lambda _{\mu }^{*}\over \partial \kappa }<0\).

  • (iii) Partial derivatives of λμ with respect to wμ:

    $$ \begin{array}{@{}rcl@{}} {\partial\lambda_{\mu_{0}}^{*}\over \partial w_{\mu}}&=&{{-w_{\tau}\left( 1-(1-c){L\over NF}\right) }\over (w_{\mu}-w_{\tau})^{2}}>0~~(*); \\ {\lambda_{\mu_{1}}^{*}\over \partial w_{\mu}}&=&{{-w_{\tau}\left( 1-(1-c\sigma){\kappa L\over NF}\right) }\over (w_{\mu}-w_{\tau})^{2}}>0~~(**); \\ {\lambda_{\mu}^{*}\over \partial w_{\mu}} &=&{(1-\kappa)^{2} w_{\tau} \over\big(\kappa\omega -(1-\kappa)(w_{\mu}-w_{\tau})\big)^{2}}>0. \end{array} $$

    (*) If (43) is satisfied then

    $$(1-c){L\over NF}>\left( 1-{w_{\mu} c \over w_{\tau}} \right) {L\over NF}>1,$$

    which implies that \({\partial \lambda _{\mu _{0}}^{*}\over \partial w_{\mu }}>0\).

    (**) If (43) is satisfied then

    $$(1-c\sigma){\kappa L\over NF}>\left( 1-{w_{\mu} c \over w_{\tau}} \right) {L\over NF}>1,$$

    which implies that \({\partial \lambda _{\mu _{1}}^{*}\over \partial w_{\mu }}>0\).

  • (iii) Partial derivatives of λμ with respect to ω:

    $$ \begin{array}{@{}rcl@{}} {\partial\lambda_{\mu_{0}}^{*}\over \partial \omega}&=&0; \\ {\lambda_{\mu_{1}}^{*}\over \partial \omega}&=&{{-w_{\tau}\left( 1-(1-c\sigma){\kappa L\over NF}\right) }\over (w_{\mu}-w_{\tau})^{2}}>0; \\ {\lambda_{\mu}^{*}\over \partial \omega} &=&{-(1-\kappa)\kappa w_{\tau} \over \big(\kappa\omega -(1-\kappa)(w_{\mu}-w_{\tau})\big)^{2}}<0; \\ \end{array} $$

1.3 2.3 Parameter of Figures

Table 4 Values of parameters in Figs. 1 and 2
Table 5 Values of parameters in Fig. 4
Table 6 Values of parameters in Fig. 5
Table 7 Values of parameters in Fig. 6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendoza-Palacios, S., Berasaluce, J. & Mercado, A. On Industrialization, Human Resources Training, and Policy Coordination. J Ind Compet Trade 22, 179–206 (2022). https://doi.org/10.1007/s10842-021-00376-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10842-021-00376-2

Keywords

JEL Classification

Navigation