Skip to main content
Log in

Microtopography determines the habitat quality of a threatened peatland butterfly at its southern range margin

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Knowledge of the ecology of pre-adult stages of an organism at its species’ range margins is a prerequisite for conserving species, especially for understanding its responses to future climate changes. Largely sedentary premature life stages require specific living conditions within a relatively small area. Such conditions are created by vegetation structure heterogeneity and a microclimate gradient, generated by varying microtopography. We investigated the microhabitat selection patterns of egg-laying females and overwintering caterpillars of peatland butterfly Coenonympha tullia relative to vegetation composition, water quantity and microclimatic conditions across microtopographic zones of transition mire at the species’ southern range margin. We showed that (1) small-scale variability in mire microtopography determines oviposition site selection and larval presence; (2) microhabitats of pre-adult stages were largely confined to the intermediate microtopographic zone of the transition mire (flats); (3) egg-laying females and overwintered larvae preferred microsites with high coverage of main hostplants (Trichophorum alpinum, Carex lasiocarpa, C. limosa, C. panicea), and those with more humid and cooler summertime conditions than on hummocks; (4) females and larvae avoided shallow hollows permanently filled with water. The vegetation structure of flats enables the females to select spots with sufficient humidity for egg development, and allows the larvae to change their location according to suitable thermal and moisture conditions. We also discuss poor prospects for species in view of impacts of future climate changes on mire ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aarvik L, Hansen LO, Kononenko V (2009) Norges Sommerfugler. Håndbok over Norges dagsommerfugler og nattsvermere. Norsk entomologisk forening, Naturhistorisk museum, Universitetet i Oslo

  • Alexander C, Deák B, Heilmeier H (2016) Micro-topography driven vegetation patterns in open mosaic landscapes. Ecol Indic 60:906–920. https://doi.org/10.1016/j.ecolind.2015.08.030

    Article  Google Scholar 

  • Anthes N, Fartmann T, Hermann G, Kaule G (2003) Combining larval habitat quality and metapopulation structure—the key for successful management of pre-alpine Euphydryas aurinia colonies. J Insect Conserv 7:175–185

    Article  Google Scholar 

  • ARSO (2006) Podnebne razmere v Sloveniji (obdobje 1971–2000). Agencija Republike Slovenije za okolje, Ljubljana

    Google Scholar 

  • Asher J, Warren M, Fox R, Harding P, Jeffcoate G, Jeffcoate S (2001) The millenium atlas of butterflies in Britain and Ireland. Oxford University Press, Oxford

    Google Scholar 

  • Ashton S, Gutierrez D, Wilson RJ (2009) Effects of temperature and elevation on habitat use by a rare mountain butterfly: implications for species responses to climate change. Ecol Entomol 34:437–446. https://doi.org/10.1111/j.1365-2311.2008.01068.x

    Article  Google Scholar 

  • Bourn NAD, Warren MS (1997) Species Action Plan. Large Heath, Coenonympha tullia. Butterfly Conservation, Wareham, Dorset

    Google Scholar 

  • Bragazza L (2006) A decade of plant species changes on a mire in the Italian alps: vegetation-controlled or climate-driven mechanisms? Clim Change 77:415–429. https://doi.org/10.1007/s10584-005-9034-x

    Article  Google Scholar 

  • Bragazza L, Buttler A, Siegenthaler A, Mitchell EAD (2008) Plant litter decomposition and nutrient release in peatlands. In: Baird AJ, Belyea LR, Comas X, Reeve AS, Slater LD (eds) Carbon cycling in Northern Peatlands. American Geophysical Union, Washington, pp 99–110

    Google Scholar 

  • Bruland GL, Richardson CJ (2005) Hydrologic, edaphic, and vegetative responses to microtopographic reestablishment in a restored wetland. Restor Ecol 13:515–523. https://doi.org/10.1111/j.1526-100X.2005.00064.x

    Article  Google Scholar 

  • Bubova T, Vrabec V, Kulma M, Nowicki P (2015) Land management impacts on European butterflies of conservation concern: a review. J Insect Conserv 19:805–821. https://doi.org/10.1007/s10841-015-9819-9

    Article  Google Scholar 

  • Burnham KP, Anderson D (2002) Model selection and multi-model inference. A pratical information—theoretic approch. Springer, New York

    Google Scholar 

  • Čelik T (2012) Munčev okarček, Coenonympha tullia (Müller, 1764) (Lepidoptera: Nymphalidae) v Sloveniji ni izumrl. Acta Entomologica Slovenica 20:45–58

    Google Scholar 

  • Čelik T, Braü M, Bonelli S, Cerrato C, Vreš B, Balletto E, Stettmer C, Dolek M (2015) Winter-green host-plants, litter quantity and vegetation structure are key determinants of habitat quality for Coenonympha oedippus in Europe. J Insect Conserv 19:359–375. https://doi.org/10.1007/s10841-014-9736-3

    Article  Google Scholar 

  • Davenport D (1941) The butterflies of the Satyrid genus Coenonympha. Bull Mus Comp Zool Harv 87:213–424

    Google Scholar 

  • Deák B, Valkó O, Alexander C, Mücke W, Kania A, Tamáse J, Heilmeier H (2014) Fine-scale vertical position as an indicator of vegetation in alkali grasslands—Case study based on remotely sensed data. Flora 209:693–697. https://doi.org/10.1016/j.flora.2014.09.005

    Article  Google Scholar 

  • Delić A, Mihoci I, Mičetić-Stanković V, Stanković I, Kučinić M (2011) Lorkovićev cretni okaš i dalje leti. Priroda 101:20–25

    Google Scholar 

  • Dennis RLH (2012) A resource-based habitat view for conservation: butterflies in the British landscape. Wiley-Blackwell, West Sussex

    Google Scholar 

  • Dennis RLH, Eales HT (1997) Patch occupancy in Coenonympha tullia (Müller, 1764) (Lepidoptera: Satyrinae): habitat quality matters as much as patch size and isolation. J Insect Conserv 1:167–176. https://doi.org/10.1023/A:1018455714879

    Article  Google Scholar 

  • Eilers S, Pettersson LB, Öckinger E (2013) Micro-climate determines oviposition site selection and abundance in the butterfly Pyrgus armoricanus at its northern range margin. Ecol Entomol 38:183–192 https://doi.org/10.1111/een.12008

    Article  Google Scholar 

  • Eliasson CU, Ryrholm N, Holmer M, Jilg K, Gärdenfors U (2005) Fjärilar: Dagfjärilar / Hesperiidae - Nymphalidae. Nationalnyckeln till Sveriges flora och fauna. ArtDatabanken, SLU, Uppsala

    Google Scholar 

  • Ellenberg H (2009) Vegetation ecology of central Europe. Cambridge University Press, Cambridge

    Google Scholar 

  • Ellenberg H, Düll R, Wirth V, Werner W, Paulißen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Verlag Erich Goltze KG, Göttingen

    Google Scholar 

  • Elo M, Penttinen J, Kotiaho JS (2015) The effect of peatland drainage and restoration on Odonata species richness and abundance. BMC Ecol 15:11–18. https://doi.org/10.1186/s12898-015-0042-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans C, Woodin S, Lindsay R (2016) Atmospheric pollution. IUCN UK Committee Peatland Programme, Briefing Note No. 13

  • Fox R, Asher J, Brereton T, Roy D, Warren M (2006) The state of butterflies in Britain and Ireland. NatureBureau, Berkshire

    Google Scholar 

  • Franco AMA, Hill JK, Kitschke C, Collingham YC, Roy DB, Fox R, Huntley B, Thomas CD (2006) Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob Change Biol 12:1545–1553. https://doi.org/10.1111/j.1365-2486.2006.01180.x

    Article  Google Scholar 

  • Goffart P, Cavalier E, Lighezzolo P, Rauw A, Lafontaine D (2014) Restoration and management of habitat networks for Lycaena helle in Belgium. In: Habel JC, Meyer M, Schmit T (eds) Jewels in the mist: a synopsis on the endangered violet copper Butterfly Lycaena Helle, Pensoft, Sofia, pp. 197–216

    Google Scholar 

  • Gorbunov P (2001) The butterflies of Russia: classification, genitalia, keys for identification (Lepidoptera: Hesperioidea and Papilionoidea). Russian Academy of Sciences, Institute of Plant and Animal Ecology, Ekaterinburg

    Google Scholar 

  • Gregori J (1980) Zelenci, izvir Save Dolinke. 97. zvezek Zbirke vodnikov kulturni in naravni spomeniki Slovenije. Zavod SR Slovenije za varstvo naravne in kulturne dediščine, Ljubljana

    Google Scholar 

  • Gunnarsson U, Malmer N, Rydin H (2002) Dynamics or constancy in Sphagnum dominated mire ecosystems? A 40-year study. Ecography 25:685–704. https://doi.org/10.1034/j.1600-0587.2002.250605.x

    Article  Google Scholar 

  • Gunnarsson U, Granberg G, Nilsson M (2004) Growth, production and interspecific competition in Sphagnum: effects of temperature, nitrogen and sulphur treatments on a boreal mire. New Phytol 163:349–359. https://doi.org/10.1111/j.1469-8137.2004.01108.x

    Article  Google Scholar 

  • Heijmans MMPD, Berendse F, Arp WJ, Masselink AK, Klees H, de Visser W, van Breemen N (2001) Effects of elevated carbon dioxide and increased nitrogen deposition on bog vegetation in the Netherlands. J Ecol 89:268–279. https://doi.org/10.1046/j.1365-2745.2001.00547.x

    Article  CAS  Google Scholar 

  • Heijmans MMPD, Mauquoy D, van Geel B, Berendse F (2008) Long-term effects of climate change on vegetation and carbon dynamics in peat bogs. J Veg Sci 19:307–320. https://doi.org/10.3170/2008-8-18368

    Article  Google Scholar 

  • Heijmans MMPD, van der Knaap YAM, Holmgren M, Limpens J (2013) Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events. Glob Change Biol 19:2240–2250. https://doi.org/10.1111/gcb.12202

    Article  Google Scholar 

  • Huemer P (2004) Die Tagfalter Südtirols. Folio Verlag, Wien

    Google Scholar 

  • IPCC (2013) In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Janssen JAM, Rodwell J, Garcia Criado M, Gubby S, Haynes T, Nieto A, Sanders N, Landucci F, Loidi J, Ssymank A, Tahvanainen T, Valderrabano M, Acosta A, Aronsson M, Arts G, Attorre F, Bergmeier E, Bijlsma RJ, Bioret F, Biţă-Nicolae C, Biurrun I, Calix M, Capelo J, Čarni A, Chytrý M, Dengler J, Dimopoulos P, Essl F, Gardfjell H, Gigante D, Giusso del Galdo G, Hájek M, Jansen F, Jansen J, Kapfer J, Mickolajczak A, Molina JA, Molnár Z, Paternoster D, Piernik A, Poulin B, Renaux B, Schaminée JHJ, Šumberová K, Toivonen H, Tonteri T, Tsiripidis I, Tzonev R, Valachovič M (2016) European red list of habitats. Part 2, Terrestrial and freshwater habitats. Publication Office of the European Union

  • Joy J, Pullin AS (1997) The effects of flooding on the survival and behaviour of overwintering large heath butterfly Coenonympha tullia larvae. Biol Conserv 82:61–66. https://doi.org/10.1016/S0006-3207(97)00006-2

    Article  Google Scholar 

  • Joy J, Pullin AS (1999) Field studies on flooding and survival of overwintering Large Heath butterfly Coenonympha tullia larvae on Fenn’s and Whixall Mosses in Shropshire and Wrexham UK. Ecol Entomol 24:426–431. https://doi.org/10.1046/j.1365-2311.1999.00208.x and

    Article  Google Scholar 

  • Kingsolver JG, Woods HA, Buckley LB, Potter KA, MacLean HJ, Higgins JK (2011) Complex life cycles and the responses of insects to climate change. Integr Comp Biol 51:719–732. https://doi.org/10.1093/icb/icr015

    Article  PubMed  Google Scholar 

  • Kleckova I, Klecka J (2016) Facing the Heat: Thermoregulation and Behaviour of Lowland Species of a Cold-Dwelling Butterfly Genus, Erebia. PLoS One 11:e0150393. https://doi.org/10.1371/journal.pone.0150393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krämer B, Kämpf I, Enderle J, Poniatowski D, Fartmann T (2012) Microhabitat selection in a grassland butterfly: a trade-off between microclimate and food availability. J Insect Conserv 16:857–865. https://doi.org/10.1007/s10841-012-9473-4

    Article  Google Scholar 

  • Kudrna O, Pennersorfer J, Lux K (2015) Distribution atlas of European butterflies and skippers. Wissenschftlicher Verlag Peks, Schwanfeld

    Google Scholar 

  • Lawson CR, Bennie J, Hodgson JA, Thomas CD, Wilson RJ (2014) Topographic microclimates drive microhabitat associations at the range margin of a butterfly. Ecography 37:732–740. https://doi.org/10.1111/ecog.00535

    Article  Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate Analysis of Ecological data using CANOCO. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Limpens J, Berendse F, Klees H (2004) How phosphorus availability affects the impact of nitrogen deposition on Sphagnum and vascular plants in bogs. Ecosystems 7:793–804. https://doi.org/10.1007/s10021-004-0274-9

    Article  CAS  Google Scholar 

  • Lindsay R, Birnie R, Clough J (2014) Peat bog ecosystems: structure, form, state and condition. IUCN UK Committee Peatland Programme, Briefing Note No. 2

  • Martinčič A (1988) Flora in vegetacija barja Drni pri Zelencih. Biološki vestnik 36:19–32

    Google Scholar 

  • Mikkola K, Spitzer J (1983) Lepidoptera associated with peatlands in central and northern Europe: a synthesis. Nota Lepidopterologica 6:216–229

    Google Scholar 

  • Minelli A, Fusco G (2010) Developmental plasticity and the evolution of animal complex life cycles. Philos T Roy Soc B 365:631–640. https://doi.org/10.1098/rstb.2009.0268

    Article  Google Scholar 

  • Moeslund JE, Arge L, Bøcher PK, Dalgaard T, Svenning JC (2013) Topography as a driver of local terrestrial vascular plant diversity patterns. Nord J Bot 31:129–144. https://doi.org/10.1111/j.1756-1051.2013.00082.x

    Article  Google Scholar 

  • Munguira ML, Garcia-Barros E, Cano JM (2009) Butterfly herbivory and larval ecology. In: Settele J, Shreeve T, Konvička M, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 43–54

    Google Scholar 

  • Noreika N, Kotiaho JS, Penttinen J, Punttila P, Vuori A, Pajunen T, Autio O, Loukola OJ, Kotze DJ (2015) Rapid recovery of invertebrate communities after ecological restoration of boreal mires. Restor Ecol 23:566–579. https://doi.org/10.1111/rec.12237

    Article  Google Scholar 

  • Noreika N, Kotze DJ, Loukola OJ, Sormunen N, Vuori A, Päivinen J, Penttinen J, Punttila P, Kotiaho JS (2016) Specialist butterflies benefit most from the ecological restoration of mires. Biol Conserv 196:103–114. https://doi.org/10.1016/j.biocon.2016.02.014

    Article  Google Scholar 

  • Nungesser MK (2003) Modelling microtopography in boreal peatlands: hummocks and hollows. Ecol Model 165:175–207. https://doi.org/10.1016/S0304-3800(03)00067-X

    Article  Google Scholar 

  • Nunner A, Bolz R (2014) Grosses Wiesenvögelchen Coenonympha tullia. In: Bräu M, Bolz R, Kolbeck H, Nunner A, Voith J, Wolf W (esds): Tagfalter in Bayern. Eugen Ulmer Verlag, Nürtingen, pp 456–459

    Google Scholar 

  • Oliver T, Hill JK, Thomas CD, Brereton T, Roy DB (2009) Changes in habitat specificity of species at their climatic range boundaries. Ecol Lett 12:1091–1102. https://doi.org/10.1111/j.1461-0248.2009.01367.x

    Article  PubMed  Google Scholar 

  • Pavličko A, Konvička M (2002) Okáč stříbrookỳ Coenonympha tullia (Müller, 1764). In: Beneš J, Konvička M (eds) Butterflies of the Czech Republic: Distribution and conservation II. Společnost pro ochranu motỳlů, Praha, pp 559–561

    Google Scholar 

  • Roy DB, Thomas JA (2003) Seasonal variation in the niche, habitat availability and population fluctuations of a bivoltine thermophilous insect near its range margin. Oecologia 134:439–444. https://doi.org/10.1007/s00442-002-1121-3

    Article  CAS  PubMed  Google Scholar 

  • Rutten G, Ensslin A, Hemp A, Fischer M (2015) Vertical and Horizontal Vegetation Structure across Natural and Modified Habitat Types at Mount Kilimanjaro. PLoS One 10(9):e0138822. https://doi.org/10.1371/journal.pone.0138822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rydin H, Jeglum JK (2013) The biology of peatlands. Oxford University Press, Oxford

    Book  Google Scholar 

  • Settele J, Kudrna O, Hharpke A, Kühn I, van Swaay C, Verovnik R, Warren M, Wiemers M, Hanspach J, Hickler T, Ku¨hn E, vanHalder I, Veling K, Vliegenthart A, Wynhoff I, Schweiger O (2008) Climatic risk atlas of European butterflies. Pensoft, Sofia-Moscow

    Book  Google Scholar 

  • Settele J, Dover J, Dolek M, Konvička M (2009) Butterflies of European ecosystems: impact of land use and options for conservation management. In: Settele J, Shreeve T, Konvička M, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 353–370

    Google Scholar 

  • Sijarić R (1984) Vrste roda Coenonympha Hübner u fauni Rhopalocera Jugoslavije (Lepidoptera: Satyridae). Glasnik Zemaljskog muzeja Bosne i Hercegovine, Prirodne nauke. Nova serija 23:1–106

    Google Scholar 

  • Stuhldreher G, Fartmann T (2014) When habitat management can be a bad thing: effects of habitat quality, isolation and climate on a declining grassland butterfly. J Insect Conserv 18:965–979. https://doi.org/10.1007/s10841-014-9704-y

    Article  Google Scholar 

  • Stuhldreher G, Fartmann T (2015) Oviposition-site preferences of a declining butterfly Erebia medusa (Lepidoptera: Satyrinae) in nutrient-poor grasslands. Eur J Entomol 112:493–499. https://doi.org/10.14411/eje.2015.067

    Article  Google Scholar 

  • Suggitt AJ, Gillingham PK, Hill JK, Huntley B, Kunin WE, Roy DB, Thomas CD (2011) Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120:1–8. https://doi.org/10.1111/j.1600-0706.2010.18270.x

    Article  Google Scholar 

  • Ter Braak CJF, Šmilauer P (1997–2014) Canoco 5, Windows Release 5.04. Biometris, Plant Research International, the Netherlands, and Šmilauer P, Czech republic

  • Tiitsaar A, Kaasik A, Lindman L, Stanevitš T, Tammaru T (2016) Host associations of Coenonympha hero (Lepidoptera: Nymphalidae) in northern Europe: microhabitat rather than plant species. J Insect Conserv 20:265–275. https://doi.org/10.1007/s10841-016-9861-2

    Article  Google Scholar 

  • Tshikolovets VV (2003) Butterflies of Eastern Europe. Urals and Caucasus, Brno

    Google Scholar 

  • Turlure C, Choutt J, Baguette M, Van Dyck H (2010) Microclimatic buffering and resource-based habitat in a glacial relict butterfly: significance for conservation under climate change. Glob Change Biol 16:1883–1893. https://doi.org/10.1111/j.1365-2486.2009.02133.x

    Article  Google Scholar 

  • Turlure C, Radchuk V, Baguette M, Van Dyck H, Schtickzelle N (2011) On the significance of structural vegetation elements for caterpillar thermoregulation in two peat bog butterflies: Boloria eunomia and B. aquilonaris. J Therm Biol 36:173–180. https://doi.org/10.1016/j.jtherbio.2011.02.001

    Article  Google Scholar 

  • Turlure C, Radchuk V, Baguette M, Meijrink M, van der Burg A, WalliDeVries M, van Duinen GJ (2013) Plant quality and local adaptation undermine relocation in a bog specialist butterfly. Ecol Evol 3:244–254. https://doi.org/10.1002/ece3.427

    Article  PubMed  Google Scholar 

  • van Swaay CAM, Warren MS, Loïs G (2006) Biotope use and trends of European butterflies. J Insect Conserv 10:189–209. https://doi.org/10.1007/s10841-006-6293-4

    Article  Google Scholar 

  • van Swaay CAM, Maes D, Collins S, Munguira ML, Šašić M, Settele J, Verovnik V, Warren M, Wiemers M, Wynhoff I, Cuttelod A (2011) Applying IUCN criteria to invertebrates: How red is the Red List of European butterflies? Biol Conserv 144:470–478. https://doi.org/10.1016/j.biocon.2010.09.034

    Article  Google Scholar 

  • van der Molen PC, Wijmstra TA (1994) The thermal regime of hummock-hollow complexes on Clara Bog, Co. Offaly. P Roy Irish Acad B 94:3: 209–221

    Google Scholar 

  • Vilbas M, Esperk T, Edovald T, Kaasik A, Teder T (2016) Oviposition site selection of the Alcon blue butterfly at the northern range margin. J Insect Conserv 20:1059–1067. https://doi.org/10.1007/s10841-016-9939-x

    Article  Google Scholar 

  • Vivian-Smith G (1997) Microtopographic heterogeneity and floristic diversity in experimental wetland communities. J Ecol 85:71–82. https://doi.org/10.2307/2960628

    Article  Google Scholar 

  • Wainwright D, Ellis S. Large heath priority species factsheet. http://www.butterfly-conservation.org/sites/default/files/large-heath-psf.pdf

  • Ward G, Hastie T, Barry S, Elith J, Leathwick JR (2009) Presence-only data and the EM algorithm. Biometrics 65:554–563. https://doi.org/10.1111/j.1541-0420.2008.01116.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Weking S, Hermann G, Fartmann T (2013) Effects of mire type, land use an climate on strongly declining wetland butterfly. J Insect Conserv 17:1081–1091. https://doi.org/10.1007/s10841-013-9585-5

    Article  Google Scholar 

  • Weltzin JF, Pastor J, Harth C, Bridgham SD, Updegraff K, Chapin CT (2000) Response of bog and fen plant communities to warming and water-table manipulations. Ecology 81:3464–3478. https://doi.org/10.1890/0012-9658(2000)081%5B3464:ROBAFP%5D2.0.CO;2

    Article  Google Scholar 

  • Weltzin JF, Bridgham SD, Pastor J, Chen J, Harth C (2003) Potential effects of warming and drying on peatland plant community composition. Glob Change Biol 9:141–151. https://doi.org/10.1046/j.1365-2486.2003.00571.x

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks to two anonymous referees for their valuable comments to improve the manuscript. We thank E. Turk and F. Küzmič for the English revision of a previous version of the manuscript, and I. Sajko for making the map (Fig. 1). We are grateful to the landlords for allowing us to access the study area. Permission for the field study of C. tullia was accorded to the authors by the Ministry of the Environment and Spatial planning of Republic of Slovenia (No. 35601-140/2009–6). The study was funded by the Slovenian Research Agency (P1-0236).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Čelik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čelik, T., Vreš, B. Microtopography determines the habitat quality of a threatened peatland butterfly at its southern range margin. J Insect Conserv 22, 707–720 (2018). https://doi.org/10.1007/s10841-018-0095-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-018-0095-3

Keywords

Navigation