Skip to main content

Advertisement

Log in

Isolation from forest habitats reduces chances of the presence of Osmoderma eremita sensu lato (Coleoptera, Scarabaeidae) in rural avenues

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Decline and fragmentation of natural habitats, such as old-growth forests, reduces their availability in the landscape. The solution to this problem for many forest-dwelling species, may be colonization of alternative habitats, such as parks, orchards or rural avenues, located in the highly fragmented agricultural landscape. Our main objective was to determine the effect of both habitat quality parameters and isolation from potential forest habitats, as primary habitats, on the occurrence of the hermit beetle (Osmoderma) in rural avenues in south-western Poland. The study was based on the results of an inventory of the species in 201 rural avenues within an area of approx. 30,000 km2. Occurrence of the hermit beetle in such alternative habitats was affected by both habitat quality parameters and connectivity with suitable forest habitats. The species occurrence in an avenue was significantly positively affected by mean tree diameter and diversity of tree species, but probability of occurrence decreased as isolation of avenue from the deciduous forest increased. Moreover, in the study area the hermit beetle seemed to avoid alleys with a large proportion of Acer platanoides, Fraxinus excelsior and Populus spp. Spatially isolated roadside avenues have limited value in the preservation of the hermit beetle in the long term conservation management of the species. Conservation plans in such habitats should therefore take into account surrounding suitable habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander KNA, Green EE, Key RS (1996) The management of overmature tree populations for nature conservation—the basic guidelines. In: Read HJ (ed) Pollard and Veteran Tree Management II. Corporation of London, London, pp 122–135

    Google Scholar 

  • Audisio P, Brustel H, Carpaneto GM, Coletti G, Mancini E, Trizzino M, De Biase A (2009) Data on molecular taxonomy and genetic diversification of the European Hermit beetles, a species complex of endangered insects (Coleoptera: Scarabaeidae, Cetoniinae, Osmoderma). J Zool Syst Evol Res 47:88–95. doi:10.1111/j.1439-0469.2008.00475.x

    Article  Google Scholar 

  • Bartoń K (2014) Package “MuMIn”: multi-model inference. ftp://155.232.191.229/cran/web/packages/MuMIn/MuMIn.pdf. Accessed 10 Mar 2015

  • Bengtsson J, Nilsson SG, Franc A, Menozzi P (2000) Biodiversity, disturbances, ecosystem function and management of European forests. For Ecol Manag 132:39–50

    Article  Google Scholar 

  • Bergman K-O, Jansson N, Claesson K, Palmer KMW, Milberg P (2012) How much and at what scale? Multiscale analyses as decision support for conservation of saproxylic oak beetles. For Ecol Manag 265:133–141. doi:10.1016/j.foreco.2011.10.030

    Article  Google Scholar 

  • Bjørnstad ON (2013) Package “ncf”: spatial nonparametric covariance functions. Version 1.1-5. http://www.idg.pl/mirrors/CRAN/web/packages/ncf/ncf.pdf. Accessed 6 Mar 2015

  • Bjørnstad ON, Flack W (2001) Nonparametric spatial covariance functions: estimation and testing. Environ Ecol Stat 8:53–70. doi:10.1023/A:1009601932481

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Buse J (2012) “Ghosts of the past”: flightless saproxylic weevils (Coleoptera: Curculionidae) are relict species in ancient woodlands. J Insect Conserv 16:93–102. doi:10.1007/s10841-011-9396-5

    Article  Google Scholar 

  • Carpaneto GM, Mazziotta A, Coletti G, Luiselli L, Audisio P (2010) Conflict between insect conservation and public safety: the case study of a saproxylic beetle (Osmoderma eremita) in urban parks. J Insect Conserv 14:555–565. doi:10.1007/s10841-010-9283-5

    Article  Google Scholar 

  • Chiari S, Marini L, Audisio P, Ranius T (2012) Habitat of an endangered saproxylic beetle, Osmoderma eremita, in Mediterranean woodlands. Ecoscience 19:299–307. doi:10.2980/19-4-3505

    Article  Google Scholar 

  • Chiari S, Carpaneto GM, Zauli A, Zirpoli G, Audisio P, Ranius T (2013) Dispersal patterns of a saproxylic beetle, Osmoderma eremita, in Mediterranean woodlands. Insect Conserv Divers 6:309–318. doi:10.1111/j.1752-4598.2012.00215.x

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, García Marquéz JR, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46. doi:10.1111/j.1600-0587.2012.07348.x

    Article  Google Scholar 

  • Dubois GF, Vernon P, Brustel H (2009a) A flight mill for large beetles such as Osmoderma eremita (Coleoptera: Cetoniidae). In: Buse J, Alexander KNA, Ranius T, Assmann T (eds) Saproxylic beetles: their role and diversity in European woodland and tree habitats-Proceedings of the 5th symposium and workshop, Pensoft Publishers, Sofia, pp 219–224

  • Dubois GF, Vignon V, Delettre YR, Rantier Y, Vernon P, Burel F (2009b) Factors affecting the occurrence of the endangered saproxylic beetle Osmoderma eremita (Scopoli, 1763) (Coleoptera: Cetoniidae) in an agricultural landscape. Landsc Urban Plan 91:152–159. doi:10.1016/j.landurbplan.2008.12.009

    Article  Google Scholar 

  • Dubois GF, Le Gouar PJ, Delettre YR, Brustel H, Vernon P (2010) Sex-biased and body condition dependent dispersal capacity in the endangered saproxylic beetle Osmoderma eremita (Coleoptera: Cetoniidae). J Insect Conserv 14:679–687. doi:10.1007/s10841-010-9296-0

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515. doi:10.1146/annurev.ecolsys.34.011802.132419

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280

    Article  Google Scholar 

  • Graf RF, Bollmann K, Suter W, Bugmann H (2005) The importance of spatial scale in habitat models: capercaillie in the Swiss Alps. Landsc Ecol 20:703–717. doi:10.1007/s10980-005-0063-7

    Article  Google Scholar 

  • Grove SJ (2002) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23. doi:10.1146/annurev.ecolsys.33.010802.150507

    Article  Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Kendi FD, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song D-X, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052. doi:10.1126/sciadv.1500052

    Article  PubMed  PubMed Central  Google Scholar 

  • Hannah L, Carr JL, Lankerani A (1995) Human disturbance and natural habitat: a biome level analysis of a global data set. Biodivers Conserv 4:128–155. doi:10.1007/BF00137781

    Article  Google Scholar 

  • Hanski I, Ovaskainen O (2002) Extinction Debt at Extinction Threshold. Conserv Biol 16:666–673. doi:10.1046/j.1523-1739.2002.00342.x

    Article  Google Scholar 

  • Harrell FE Jr (2015) Package “rms”: regression modeling strategies. http://cran.r-project.org/web/packages/rms/rms.pdf. Accessed 13 Mar 2015

  • Hedin J, Ranius T, Nilsson SG, Smith HG (2008) Restricted dispersal in a flying beetle assessed by telemetry. Biodivers Conserv 17:675–684. doi:10.1007/s10531-007-9299-7

    Article  Google Scholar 

  • Hilszczański J, Jaworski T, Plewa R, Jansson N (2014) Surrogate tree cavities: boxes with artificial substrate can serve as temporary habitat for Osmoderma barnabita (Motsch.) (Coleoptera, Cetoniinae). J Insect Conserv 18:855–861. doi:10.1007/s10841-014-9692-y

    Article  Google Scholar 

  • Horak J (2014) Fragmented habitats of traditional fruit orchards are important for dead wood-dependent beetles associated with open canopy deciduous woodlands. Naturwissenschaften 101:499–504. doi:10.1007/s00114-014-1179-x

    Article  CAS  PubMed  Google Scholar 

  • Jansson N, Ranius T, Larsson A, Milberg P (2009) Boxes mimicking tree hollows can help conservation of saproxylic beetles. Biodivers Conserv 18:3891–3908. doi:10.1007/s10531-009-9687-2

    Article  Google Scholar 

  • Jonsell M (2012) Old park trees as habitat for saproxylic beetle species. Biodivers Conserv 21:619–642. doi:10.1007/s10531-011-0203-0

    Article  Google Scholar 

  • Kadej M, Zając K, Tarnawski D, Malkiewicz A, Gil R, Tyszecka K, Smolis A, Myśków E, Bobrowicz G, Sarnowski J, Zawisza M, Józefczuk J, Gottfried T, Zając T (2014) Pachnica dębowa Osmoderma eremita s.l. (Scopoli, 1763) (Coleoptera, Scarabaeidae) w Polsce południowo-zachodniej. Przyr Sudet 17:89–120

    Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Kupfer JA, Malanson GP, Franklin SB (2006) Not seeing the ocean for the islands: the mediating influence of matrix-based processes on forest fragmentation effects. Glob Ecol Biogeogr 15:8–20. doi:10.1111/j.1466-822X.2006.00204.x

    Article  Google Scholar 

  • Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Rodã F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571

    Article  PubMed  Google Scholar 

  • Landvik M, Niemelä P, Roslin T (2015) Opportunistic habitat use by Osmoderma barnabita (Coleoptera: Scarabaeidae), a saproxylic beetle dependent on tree cavities. Insect Conserv Divers. doi:10.1111/icad.12141

    Google Scholar 

  • Liira J, Lõhmus K, Tuisk E (2012) Old manor parks as potential habitats for forest flora in agricultural landscapes of Estonia. Biol Conserv 146:144–154. doi:10.1016/j.biocon.2011.11.034

    Article  Google Scholar 

  • Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845

    Article  Google Scholar 

  • Lindenmayer DB (2000) Factors at multiple scales affecting distribution patterns and their implications for animal conservation—Leadbeaters Possum as a case study. Biodivers Conserv 9:15–35. doi:10.1023/A:1008943713765

    Article  Google Scholar 

  • Lõhmus K, Liira J (2013) Old rural parks support higher biodiversity than forest remnants. Basic Appl Ecol 14:165–173. doi:10.1016/j.baae.2012.12.009

    Article  Google Scholar 

  • Mayor SJ, Schneider DC, Schaefer JA, Mahoney SP (2009) Habitat selection at multiple scales. Ecoscience 16:238–247. doi:10.2980/16-2-3238

    Article  Google Scholar 

  • Mazgajski TD, Żmihorski M, Abramowicz K (2010) Forest habitat loss and fragmentation in Central Poland during the last 100 years. Silva Fenn 44:715–723

    Article  Google Scholar 

  • Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145. doi:10.1890/0012-9658(2002)083[1131:SCMISE]2.0.CO;2

    Article  Google Scholar 

  • Nieto A, Alexander KNA (2010) European red list of saproxylic beetles. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Nordén B, Appelqvist T (2001) Conceptual problems of ecological continuity and its bioindicators. Biodivers Conserv 10:779–791

    Article  Google Scholar 

  • Nordén B, Dahlberg A, Brandrud TE, Fritz O, Ejrnaes R, Ovaskainen O (2014) Effects of ecological continuity on species richness and composition in forests and woodlands: a Review. Ecoscience 21:34–45. doi:10.2980/21-1-3667

    Article  Google Scholar 

  • Oksanen J (2015) Vegan: ecological diversity. http://cran.r-project.org/web/packages/vegan/vignettes/diversity-vegan.pdf. Accessed 6 Mar 2015

  • Oleksa A (2009) Conservation and ecology of the hermit beetle Osmoderma eremita s.l. in Poland. In: Buse J, Alexander KNA, Ranius T, Assmann T (eds) Saproxlic beetles: their role and diversity in European woodland and tree habitats. Proceedings of the 5th Symposium and Workshop on the conservation of saproxylic beetles, Lüneberg, Germany, 14–16 June 2008. PENSOFT Publishers, pp 177–188

  • Oleksa A, Gawroński R (2004) Aleje śródpolne Parku Krajobrazowego Pojezierza Iławskiego jako ostoja owadów saproksylicznych. Wiad Entomol 23:177–179

    Google Scholar 

  • Oleksa A, Gawroński R (2006) Forest insects in an agricultural landscape—presence of old trees is more important than the existence of nearby forest. Ecol Quest 7:29–36

    Google Scholar 

  • Oleksa A, Gawroński R (2008) Wpływ pogody i pory dnia na aktywność pachnicy dębowej (Osmoderma eremita Scolpoli) oraz ich konsekwencje dla monitoringu. Parki nar Rez Przyr 27(3):63–73

    Google Scholar 

  • Oleksa A, Ulrich W, Gawroński R (2007) Host tree preferences of hermit beetles (Osmoderma eremita Scop., Coleoptera: Scarabaeidae) in a network of rural avenues in Poland. Pol J Ecol 55:315–323

    Google Scholar 

  • Oleksa A, Chybicki IJ, Gawroński R, Svensson GP, Burczyk J (2013) Isolation by distance in saproxylic beetles may increase with niche specialization. J Insect Conserv 17:219–233. doi:10.1007/s10841-012-9499-7

    Article  Google Scholar 

  • Pawłowski J (1961) Próchnojady blaszkorożne w biocenozie leśnej Polski. Ekol Pol Ser A 9(21):355–437

    Google Scholar 

  • Ranius T (2000) Minimum viable metapopulation size of a beetle, Osmoderma eremita, living in tree hollows. Anim Conserv 3:37–43

    Article  Google Scholar 

  • Ranius T (2001) Constancy and asynchrony of Osmoderma eremita populations in tree hollows. Oecologia 126:208–215. doi:10.1007/s004420000515

    Article  Google Scholar 

  • Ranius T (2007) Extinction risks in metapopulations of a beetle inhabiting hollow trees predicted from time series. Ecography 30:716–726. doi:10.1111/j.2007.0906-7590.05134.x

    Article  Google Scholar 

  • Ranius T, Hedin J (2001) The dispersal rate of a beetle, Osmoderma eremita, living in tree hollows. Oecologia 126:363–370. doi:10.1007/s004420000529

    Article  Google Scholar 

  • Ranius T, Nilsson SG (1997) Habitat of Osmoderma eremita Scop. (Coleoptera: Scarabaeidae), a beetle living in hollow trees. J Insect Conserv 1:193–204

    Article  Google Scholar 

  • Ranius T, Aguado LO, Antonsson K, Audisio P, Ballerio A, Carpaneto G, Chobot K, Gjurašin B, Hanssen O, Huijbregts H, Lakatos F, Martin O, Neculiseanu Z, Nikitsky N, Paill W, Pirnat A, Rizun V, Ruicanescu A, Stegner J, Süda I, Szwałko P, Tamutis V, Telnov D, Tsinkevich V, Versteirt V, Vignon V, Vögeli M, Zach P (2005) Osmoderma eremita (Coleoptera, Scarabaeidae, Cetoniinae) in Europe. Anim Biodivers Conserv 28:1–44

    Google Scholar 

  • Ranius T, Eliasson P, Johansson P (2008) Large-scale occurrence patterns of red-listed lichens and fungi on old oaks are influenced both by current and historical habitat density. Biodivers Conserv 17:2371–2381. doi:10.1007/s10531-008-9387-3

    Article  Google Scholar 

  • Ranius T, Niklasson M, Berg N (2009a) Development of tree hollows in pedunculate oak (Quercus robur). For Ecol Manag 257:303–310. doi:10.1016/j.foreco.2008.09.007

    Article  Google Scholar 

  • Ranius T, Svensson GP, Berg N, Niklasson M, Larsson MC (2009b) The successional change of hollow oaks affects their suitability for an inhabiting beetle, Osmoderma eremita. Ann Zool Fenn 46:205–216. doi:10.5735/086.046.0305

    Article  Google Scholar 

  • Ranius T, Johansson V, Fahrig L (2011) Predicting spatial occurrence of beetles and pseudoscorpions in hollow oaks in southeastern Sweden. Biodivers Conserv 20:2027–2040. doi:10.1007/s10531-011-0072-6

    Article  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Ries L, Debinski DM (2001) Butterfly responses to habitat edges in the highly fragmented prairies of Central Iowa: butterfly response to edges. J Anim Ecol 70:840–852. doi:10.1046/j.0021-8790.2001.00546.x

    Article  Google Scholar 

  • Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-Ch, Müller M (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform 12:77. doi:10.1186/1471-2105-12-77

    Article  Google Scholar 

  • Schtickzelle N, Baguette M (2003) Behavioural responses to habitat patch boundaries restrict dispersal and generate emigration-patch area relationships in fragmented landscapes. J Anim Ecol 72:533–545. doi:10.1046/j.1365-2656.2003.00723.x

    Article  Google Scholar 

  • Sebek P, Čižek L, Hauck D, Schlaghamerský J (2012) Saproxylic beetles in an isolated pollard willow stand and their association with Osmoderma barnabita (Coleoptera: Scarabaeidae). In: Jurc M (ed) Saproxylic beetles in Europe: monitoring, biology and conservation, Studia Forestalia Slovenica, Ljubljana, pp 67–72

  • Sing T, Sander O, Beerenwinkel N, Lengauer T (2005) ROCR: visualizing classifier performance in R. Bioinformatics 21:3940–3941. doi:10.1093/bioinformatics/bti623

    Article  CAS  PubMed  Google Scholar 

  • Svensson GP, Sahlin U, Brage B, Larsson MC (2011) Should I stay or should I go? Modelling dispersal strategies in saproxylic insects based on pheromone capture and radio telemetry: a case study on the threatened hermit beetle Osmoderma eremita. Biodivers Conserv 20:2883–2902. doi:10.1007/s10531-011-0150-9

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293. doi:10.1126/science.3287615

    Article  CAS  PubMed  Google Scholar 

  • Thomas CD (2000) Dispersal and extinction in fragmented landscapes. Proc R Soc B Biol Sci 267:139–145. doi:10.1098/rspb.2000.0978

    Article  CAS  Google Scholar 

  • Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66. doi:10.1038/371065a0

    Article  Google Scholar 

  • Valainis U, Nitcis M, Aksjuta K, Barševskis A, Cibuļskis R, Balalaikins M, Avgin SS (2015) Results of using pheromone-baited traps for investigations of Osmoderma barnabita Motschulsky, 1845 (Coleoptera: Scarabaeidae: Cetoniinae) in Latvia. Balt J Coleopterol 15:37–45

    Google Scholar 

  • Vuidot A, Paillet Y, Archaux F, Gosselin F (2011) Influence of tree characteristics and forest management on tree microhabitats. Biol Conserv 144:441–450. doi:10.1016/j.biocon.2010.09.030

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems: data exploration. Methods Ecol Evol 1:3–14. doi:10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Foundation for Sustainable Development (FER Wrocław) for the possibility to use the data collected within the program ‘Roads for Nature’. We gratefully acknowledge Dr. Remigiusz Pielech (University of Wrocław, Poland) for his valuable comments and suggestions. The research was supported by the Department of Invertebrate Biology, Evolution and Conservation, Institute of Environmental Biology, Faculty of Biological Sciences, University of Wroclaw (Project No. 1076/S/IBŚ/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Smolis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadej, M., Zając, K., Smolis, A. et al. Isolation from forest habitats reduces chances of the presence of Osmoderma eremita sensu lato (Coleoptera, Scarabaeidae) in rural avenues. J Insect Conserv 20, 395–406 (2016). https://doi.org/10.1007/s10841-016-9873-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-016-9873-y

Keywords

Navigation