Skip to main content

Advertisement

Log in

The Importance of Spatial Scale in Habitat Models: Capercaillie in the Swiss Alps

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

The role of scale in ecology is widely recognized as being of vital importance for understanding ecological patterns and processes. The capercaillie (Tetrao urogallus) is a forest grouse species with large spatial requirements and highly specialized habitat preferences. Habitat models at the forest stand scale can only partly explain capercaillie occurrence, and some studies at the landscape scale have emphasized the role of large-scale effects. We hypothesized that both the ability of single variables and multivariate models to explain capercaillie occurrence would vary with the spatial scale of the analysis. To test this hypothesis, we varied the grain size of our analysis from 1 to just over 1100 hectares and built univariate and multivariate habitat suitability models for capercaillie in the Swiss Alps. The variance explained by the univariate models was found to vary among the predictors and with spatial scale. Within the multivariate models, the best single-scale model (using all predictor variables at the same scale) worked at a scale equivalent to a small annual home range. The multi-scale model, in which each predictor variable was entered at the scale at which it had performed best in the univariate model, did slightly better than the best single-scale model. Our results confirm that habitat variables should be included at different spatial scales when species-habitat relationships are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • N.H. Augustin M.A. Mugglestone S.T. Buckland (1996) ArticleTitleAn autologistic model for the spatial distribution of wildlife J. Appl. Ecol. 33 339–347

    Google Scholar 

  • D. Baines R. Moss D. Dugan (2004) ArticleTitleCapercaillie breeding success in relation to forest habitat and predator abundance J. Appl. Ecol. 41 59–71 Occurrence Handle10.1111/j.1365-2664.2004.00875.x

    Article  Google Scholar 

  • A. Berg U. Gärdenfors T. von Proschwitz (2004) ArticleTitleLogistic regression models for predicting occurrence of terrestrial molluscs in Sweden – importance of environmental data quality and model complexity Ecography 27 83–93 Occurrence Handle10.1111/j.0906-7590.2004.03553.x

    Article  Google Scholar 

  • J.A. Bissonette (1997) Scale-sensitive ecological properties: historical contextcurrent meaning J.A. Bissonette (Eds) Wildlife and Landscape Ecology: Effects of Pattern and Scale Springer-Verlag New York 3–31

    Google Scholar 

  • M.S. Boyce P.R. Vernier S.E. Nielsen F.K.A. Schmiegelow (2002) ArticleTitleEvaluating resource selection functions Ecol. Model. 157 281–300 Occurrence Handle10.1016/S0304-3800(02)00200-4

    Article  Google Scholar 

  • C. Carroll W.J. Zielinski R.F. Noss (1999) ArticleTitleUsing presence–absence data to build and test spatial habitat models for the fisher in the Klamath region, USA Conserv. Biol. 13 1344–1359 Occurrence Handle10.1046/j.1523-1739.1999.98364.x

    Article  Google Scholar 

  • S.A. Cushman K. McGarigal (2004) ArticleTitlePatterns in the species-environment relationship depend on both scale and choice of response variables Oikos 105 117–124 Occurrence Handle10.1111/j.0030-1299.2004.12524.x

    Article  Google Scholar 

  • Deleo J.M. 1993. Receiver operating characteristic laboratory (ROCLAB): software for developing decision strategies that account for uncertainty. In: First International Symposium on Uncertainty Modelling and Analysis. IEEE, Computer Society Press, College Park, MD.

  • P.C. Elkie R.S. Rempel A.P. Carr (1999) Patch Analyst User's Manual: A Tool for Quantifying Landscape Structure Ontario Ministry of Natural Resources, Northwest Science and Technology Thunder Bay, OntarioCanada

    Google Scholar 

  • A.H. Fielding J.F. Bell (1997) ArticleTitleA review of methods for the assessment of prediction errors in conservation presence/ absence models Environ. Conserv. 24 38–49 Occurrence Handle10.1017/S0376892997000088

    Article  Google Scholar 

  • A.H. Fielding P.F. Haworth (1995) ArticleTitleTesting the generality of bird-habitat models Conserv. Biol. 9 1466–1481 Occurrence Handle10.1046/j.1523-1739.1995.09061466.x

    Article  Google Scholar 

  • J. Fischer D.B. Lindenmayer A. Cowling (2004) ArticleTitleThe challenge of managing multiple species at multiple scales: reptiles in an Australian grazing landscape J. Appl. Ecol. 41 32–44 Occurrence Handle10.1111/j.1365-2664.2004.00869.x

    Article  Google Scholar 

  • K.E. Freemark H.G. Merriam (1986) ArticleTitleImportance of area and habitat heterogeneity to bird assemblages in temperate forest fragments Biol. Conserv. 36 115–141 Occurrence Handle10.1016/0006-3207(86)90002-9

    Article  Google Scholar 

  • S.D. Fuhlendorf A.J.W. Woodward D.M. Leslie SuffixJr. J.S. Shackford (2002) ArticleTitleMulti-scale effects of habitat loss and fragmentation on lesser prairie-chicken populations of the US Southern Great Plains Landscape Ecol. 17 617–628 Occurrence Handle10.1023/A:1021592817039

    Article  Google Scholar 

  • D.J. Gibson B.A. Wilson D.M. Cahill J. Hill (2004) ArticleTitleSpatial prediction of rufous bristlebird habitat in a coastal heathland: a GIS-based approach J. Appl. Ecol. 41 213–223 Occurrence Handle10.1111/j.0021-8901.2004.00896.x

    Article  Google Scholar 

  • A. Guisan N.E. Zimmermann (2000) ArticleTitlePredictive habitat distribution models in ecology Ecol. Model. 135 147–186 Occurrence Handle10.1016/S0304-3800(00)00354-9

    Article  Google Scholar 

  • D.W. Hosmer S. Lemeshow (1989) Applied Logistic Regression John Wiley & Sons New York

    Google Scholar 

  • C.J. Johnson D.R. Seip M.S. Boyce (2004) ArticleTitleA quantitative approach to conservation planning: using resource selection functions to map the distribution of mountain caribou at multiple spatial scales J. Appl. Ecol. 41 238–251 Occurrence Handle10.1111/j.0021-8901.2004.00899.x

    Article  Google Scholar 

  • D.M. Keppie J.M. Kierstead (2003) ArticleTitleThe need to improve our attention to scale of resolution in grouse research Wildlife Biol. 9 385–391

    Google Scholar 

  • S. Klaus A.V. Andreev H.-H. Bergmann F. Müller J. Porkert J. Wiesner (1986) Die Auerhühner A. Ziemsen Verlag Wittenberg LutherstadtGermany

    Google Scholar 

  • S. Klaus W. Boock M. Görner E. Seibt (1985) ArticleTitleZur Ökologie des Auerhuhns (Tetrao urogallus L.) in Thüringen Acta Ornithoecol. 1 3–46

    Google Scholar 

  • L. Kumar A.K. Skidmore E. Knowles (1997) ArticleTitleModelling topographic variation in solar radiation in a GIS environment J. Geogr. Inf. Syst. 11 475–497 Occurrence Handle10.1080/136588197242266

    Article  Google Scholar 

  • S. Kurki H. Linden (1995) ArticleTitleForest fragmentation due to agriculture affects the reproductive success of the ground-nesting black grouse Tetrao tetrix Ecography 18 109–113

    Google Scholar 

  • S. Kurki A. Nikula P. Helle H. Linden (2000) ArticleTitleLandscape fragmentation and forest composition effects on grouse breeding success in boreal forests Ecology 81 1985–1997

    Google Scholar 

  • J.J. Lawler T.C. Edwards SuffixJr. (2002) ArticleTitleLandscape patterns as habitat predictors: building and testing models for cavity-nesting birds in the Uinta Mountains of UtahUSA Landscape Ecol. 17 233–245 Occurrence Handle10.1023/A:1020219914926

    Article  Google Scholar 

  • S.A. Levin (1992) ArticleTitleThe problem of pattern and scale in ecology Ecology 73 1943–1967

    Google Scholar 

  • R.D. Mace J.S. Waller T.L. Manley K. Ake W.T. Wittinger (1999) ArticleTitleLandscape evaluation of grizzly bear habitat in western Montana Conserv. Biol. 13 367–377 Occurrence Handle10.1046/j.1523-1739.1999.013002367.x

    Article  Google Scholar 

  • S.W. MacFaden D.E. Capen (2002) ArticleTitleAvian habitat relationships at multiple scales in a New England forest For. Sci. 48 243–253

    Google Scholar 

  • B.F.J. Manly L.L. McDonald D.L. Thomas T.L. McDonald W.P. Erickson (2002) Resource Selection by Animals – Statistical Design and Analysis for Field Studies Kluwer Academic Publishers DordrechtNetherlands

    Google Scholar 

  • McGarigal K., Cushman S.A. and Neel M.C. 2002. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Computer Software Program produced by the authors at the University of Massachusetts, AmherstUSA.

  • S. Menard (2002) Applied Logistic Regression Analysis Sage Publications London

    Google Scholar 

  • D.J. Mladenoff T.A. Sickley (1998) ArticleTitleAssessing potential gray wolf restoration in the northeastern United States: a spatial prediction of favorable habitat and potential population levels J. Wildlife Manage. 62 1–10

    Google Scholar 

  • P. Mollet B. Badilatti K. Bollmann R.F. Graf R. Hess H. Jenny B. Mulhauser A. Perrenoud F. Rudmann S. Sachot J. Studer (2003) ArticleTitleVerbreitung und Bestand des Auerhuhns Tetrao urogallus in der Schweiz 2001 und ihre Veränderungen im 19. und 20. Jahrhundert Der Ornithologische Beobachter 100 67–86

    Google Scholar 

  • R.A. Monserud R. Leemans (1992) ArticleTitleComparing global vegetation maps with the Kappa statistics Ecol. Model. 62 275–293 Occurrence Handle10.1016/0304-3800(92)90003-W

    Article  Google Scholar 

  • P.A.P. Moran (1948) ArticleTitleThe interpretation of statistical maps J. R. Stat. Soc. 10 243–251

    Google Scholar 

  • R. Moss J. Oswald D. Baines (2001) ArticleTitleClimate change and breeding success: decline of the capercaillie in Scotland J. Anim. Ecol. 70 47–61 Occurrence Handle10.1046/j.1365-2656.2001.00473.x

    Article  Google Scholar 

  • N.J.D. Nagelkerke (1991) ArticleTitleA note on a general definition of the coefficient of determination Biometrika 78 691–692

    Google Scholar 

  • J. Pearce S. Ferrier (2000) ArticleTitleAn evaluation of alternative algorithms for fitting species distribution models using logistic regression Ecol. Model. 128 127–147 Occurrence Handle10.1016/S0304-3800(99)00227-6

    Article  Google Scholar 

  • J. Rolstad P. Wegge (1989) ArticleTitleCapercaillie populations and modern forestry – a case for landscape ecological studies Finnish Game Res. 46 43–52

    Google Scholar 

  • J. Rolstad P. Wegge B.B. Larsen (1988) ArticleTitleSpacing and habitat use of capercaillie during summer Can. J. Zool. 66 670–679

    Google Scholar 

  • P. Roth B. Nievergelt (1975) ArticleTitleDie Standorte der Balzplätze beim Auerhuhn (Tetrao urogallus) Der Ornithologische Beobachter 72 101–112

    Google Scholar 

  • S.P. Rushton S.J. Ormerod G. Kerby (2004) ArticleTitleNew paradigms for modelling species distributions? J. Appl. Ecol. 41 193–200 Occurrence Handle10.1111/j.0021-8901.2004.00903.x

    Article  Google Scholar 

  • S. Sachot N. Perrin C. Neet (2003) ArticleTitleWinter habitat selection by two sympatric forest grouse in western Switzerland: implications for conservation Biol. Conserv. 112 373–382 Occurrence Handle10.1016/S0006-3207(02)00334-8

    Article  Google Scholar 

  • B. Schröder (2000) Zwischen Naturschutz und Theoretischer Ökologie: Modelle zur Habitateignung und räumlichen Populationsdynamik für Heuschrecken im Niedermoor Technische Universität Braunschweig Braunschweig, Germany 228

    Google Scholar 

  • B. Schröder (2002) Habitatmodelle für ein modernes Naturschutzmanagement A. Gnauck (Eds) Workshop Kölpinsee 2000 Shaker Aachen, Germany 201–224

    Google Scholar 

  • K.-E. Schroth (1992) Zum Lebensraum des Auerhuhns (Tetrao urogallus L.) im Nordschwarzwald Universität München München, Germany 129

    Google Scholar 

  • G. Segelbacher I. Storch J. Tomiuk (2003) ArticleTitleGenetic evidence of capercaillie Tetrao urogallus dispersal sources and sinks in the Alps Wildlife Biol. 9 267–273

    Google Scholar 

  • K. Sjöberg (1996) Modern forestry and the capercaillie M. DeGraaf R.I. Miller (Eds) Forested Landscapes Chapman & Hall London 111–135

    Google Scholar 

  • P.A. Smith (1994) ArticleTitleAutocorrelation in logistic regression modelling of speciesȁ9 distributions Global Ecol. Biogeogr. Lett. 4 47–61

    Google Scholar 

  • P. Steiger (1994) Wälder der Schweiz Ott Verlag Thun, Switzerland

    Google Scholar 

  • I. Storch (1994) ArticleTitleHabitat and survival of capercaillie Tetrao urogallus nests and broods in the bavarian alps Biol. Conserv. 70 237–243 Occurrence Handle10.1016/0006-3207(94)90168-6

    Article  Google Scholar 

  • I. Storch (1995) ArticleTitleAnnual home ranges and spacing patterns of capercaillie in Central Europe J. Wildlife Manage. 59 392–400

    Google Scholar 

  • I. Storch (1997) The importance of scale in habitat conservation for an endangered species: the capercaillie in Central Europe J.A. Bissonette (Eds) Wildlife and Landscape Ecology: Effects of Pattern and Scale Springer-Verlag New York 310–330

    Google Scholar 

  • I. Storch (2000a) ArticleTitleConservation status and threats to grouse worldwide: an overview Wildlife Biol. 6 195–204

    Google Scholar 

  • I. Storch (Eds) (2000b) Grouse status survey and Conservation Action Plan 2000–2004 WPA/BirdLife/SSC Grouse Specialist Group IUCN GlandSwitzerland and CambridgeUK

    Google Scholar 

  • I. Storch (2002) ArticleTitleOn spatial resolution in habitat models: can small-scale forest structure explain capercaillie numbers? Conserv. Ecol. 6 IssueID1 6

    Google Scholar 

  • I. Storch G. Segelbacher (2000) ArticleTitleGenetic correlates of spatial population structure in central European capercaillie Tetrao urogallusblack grouse T-tetrix: a project in progress Wildlife Biol. 6 305–310

    Google Scholar 

  • R. Suchant (2002) Die Entwicklung eines mehrdimensionalen Habitatmodells für Auerhuhnareale (Tetrao urogallus L.) als Grundlage für die Integration von Diversität in die Waldbaupraxis Universität Freiburg Freiburg, Germany 331

    Google Scholar 

  • C.M. Thompson K. McGarigal (2002) ArticleTitleThe influence of research scale on bald eagle habitat selection along the lower Hudson RiverNew York (USA) Landscape Ecol. 17 569–586 Occurrence Handle10.1023/A:1021501231182

    Article  Google Scholar 

  • P. Wegge B.B. Larsen (1987) ArticleTitleSpacing of adult and subadult male common capercaillie during the breeding season Auk 104 481–490

    Google Scholar 

  • P. Wegge J. Rolstad (1986) ArticleTitleSize and spacing of capercaillie leks in relation to social behaviour and habitat Behav. Ecol. Sociobiol. 19 401–408 Occurrence Handle10.1007/BF00300542

    Article  Google Scholar 

  • J.A. Wiens (1989) ArticleTitleSpatial scaling in ecology Funct. Ecol. 3 385–397

    Google Scholar 

  • C.J. Zabel J.R. Dunk H.B. Stauffer L.M. Roberts B.S. Mulder A. Wright (2003) ArticleTitleNorthern spotted owl habitat models for research and management application in California (USA) Ecol. Appl. 13 1027–1040

    Google Scholar 

  • N.E. Zimmermann F. Kienast (1999) ArticleTitlePredictive mapping of alpine grasslands in Switzerland: species versus community approach J. Veg. Sci. 10 469–482

    Google Scholar 

  • N.E. Zimmermann D.W. Roberts (2001) Final report of the MLP climate and biophysical mapping project Swiss Federal Research Institute WSL/Utah State University Birmensdorf, Switzerland/Logan, USA 18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland F. Graf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graf, R., Bollmann, K., Suter, W. et al. The Importance of Spatial Scale in Habitat Models: Capercaillie in the Swiss Alps. Landscape Ecol 20, 703–717 (2005). https://doi.org/10.1007/s10980-005-0063-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-005-0063-7

Keywords

Navigation