Skip to main content

Advertisement

Log in

When landscape modification is advantageous for protected species. The case of a synanthropic tarantula, Brachypelma vagans

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Landscape fragmentation usually has a considerable effect on the genetic and demographic viability of most species because it reduces population size and increases isolation among populations. This situation provokes loss of genetic diversity and increased inbreeding that can lead to population or species extinctions. Some studies also show that landscape fragmentation may have no effect on or even positive consequences for species genetic diversity. The protected tarantula, Brachypelma vagans, exhibits a particular situation in the Mexican Caribbean, which has experienced high lowland and coastal fragmentation because of recent increases in agricultural, urban and touristic development. This modified landscape structure creates favorable conditions for establishment of B. vagans populations in rural settlements. Populations of this tarantula have high densities of individuals, principally females and juveniles, and gene dispersion is assumed by the rare males. Within this context, we studied the influence of natural and anthropogenic fragmentation on the genetic diversity of six B. vagans populations (five continental, one insular), together with their spatial organization. Our approach used seven inter simple sequence repeat markers, which are highly polymorphic markers. The 76 loci selected revealed high genetic variability for continental populations and a low, but not critical situation, for the insular population. We detected a good level of gene exchange among continental populations, and an evident and recent isolation of the island population. This species exhibits a metapopulation structure in the lowlands with numerous local populations where mature females exhibit high birth site fidelity. We conclude that this protected species does not exhibit characteristics to warrant its current conservation status, and we propose complete revision of the ecological and genetic situation for B. vagans in particular, and for all species within the genus Brachypelma in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrén H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71:355–366

    Article  Google Scholar 

  • Arisqueta-Chablé C, Manrique-Saide P, Pinkus Rendón MA, Meléndez Ramírez V (2009) Noteworthy records of Brachypelma (Araneae: Theraphosidae) from Peninsula of Yucatan, Mexico. Entomol News 120(5):566–569

    Article  Google Scholar 

  • Baerg WJ (1958) The tarantulas. University of Kansas Press, Lawrence, Kansas

    Google Scholar 

  • Baguette M, Stevens VM (2003) Local populations and metapopulations are both natural and operational categories. Oikos 101:661–663

    Article  Google Scholar 

  • Barilani M, Sfougaris A, Giannakopoulos A, Mucci N, Tabarroni C, Randi E (2007) Detecting introgressive hybridization in rock partridge populations (Alectoris graeca) in Greece through Bayesian admixture analyses of multilocus genotypes. Conserv Genet 8:343–354

    Article  CAS  Google Scholar 

  • Binford MW, Brenner M, Whitmore TJ, Higuera-Gundy A, Deevey ES, Leyden B (1987) Ecosystems, paleoecology and human disturbance in subtropical and tropical America. Quatern Sci Rev 6:115–128

    Google Scholar 

  • Burkey TV (1989) Extinction in nature reserves: the effect of fragmentation and the importance of migration between fragments. Oikos 55:75–81

    Article  Google Scholar 

  • Cazals F director (1971) El jardín de tía Isabel, 35 mm colour film, Alpha-Centauri S.A., Mexico, duration 112 min

  • Coulon A, Cosson JF, Angibault JM, Cargnelutti B, Galan M, Morellet N, Petit E, Aulagnier S, Hewison AJM (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol Ecol 13:2841–2850

    Article  PubMed  CAS  Google Scholar 

  • Didham RK, Ghazoul J, Stork NE, Davis AJ (1996) Insects in fragmented forests: a functional approach. Trends Ecol Evol 11:255–260

    Article  PubMed  CAS  Google Scholar 

  • Dor A, Hénaut Y (2011) Are cannibalism and tarantula predation factors of the spatial distribution of the wolf spider Lycosa subfusca (Araneae, Lycosidae)? Ethol Ecol Evol 00:1–13 (in press)

    Google Scholar 

  • Dor A, Machkour-M’Rabet S, Legal L, Williams T, Hénaut Y (2008) Chemically-mediated intraspecific recognition in the Mexican tarantula Brachypelma vagans. Naturwissenschaften 95:1189–1193

    Article  PubMed  CAS  Google Scholar 

  • Edwards GB, Hibbard LH (1999) The Mexican Redrump, Brachypelma vagans (Araneae: Theraphosidae) an exotic tarantula established in Florida. Entomology circular No 394, Fla. Dept. Agric. & Consumer Services, Division of Plant Industry

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed  CAS  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Rev Global Ecol Biodivers 16:265–280

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2005) Introduction to conservation genetics. Cambridge University Press, New York

    Google Scholar 

  • Gibbons JW, Scott DE, Ryan TJ, Buhlmann KA, Tuberville TD, Metts BS, Greene JL, Mills T, Leiden Y, Poppy S, Winne CT (2000) The global decline of reptiles, déjà vu amphibians. Bioscience 50:653–666

    Article  Google Scholar 

  • Hamilton DE (2008) Combining direct methods (PIT tags and radio-telemetry) with an indirect method (mtDNA) to measure movement and dispersal at different scales in North American tarantulas (Aphonopelma spp.). PhD Dissertation, Texas Tech University, Lubbock, TX

  • Hedrick PW (2005) Genetics of populations, 3rd edn. Jones and Bartlett Publishers, Sudbury

    Google Scholar 

  • Hénaut Y, Machkour-M’Rabet S (2005) Canibalismo y cleptobiosis en la tarántula Brachypelma vagans. Entomol Mex 4:30–32

    Google Scholar 

  • Hobbs RJ, Yates CJ (2003) Impacts of ecosystem fragmentation on plant populations: generalising the idiosyncratic. Aust J Bot 51:471–488

    Article  Google Scholar 

  • Janowski-Bell ME, Horner NV (1999) Movement of the male brown tarantula, Aphonopelma hentzi (Araneae, Theraphosidae) using radio telemetry. J Arachnol 27:503–512

    Google Scholar 

  • Keyghobadi N (2007) The genetic implications of habitat fragmentation for animals. Can J Zool 85:1049–1064

    Article  Google Scholar 

  • Klepeis PJ (2000) Deforesting the once deforested: land transformation in southeastern Mexico. PhD Dissertation, Clark University, Worcester, Massachusetts

  • Locht A, Yáñéz M, Vázquez I (1999) Distribution and natural history of Mexican species of Brachypelma and Brachypelmides (Theraphosidae, Theraphosinae) with morphological evidence for their synonymy. J Arachnol 27:196–200

    Google Scholar 

  • Longhorn SJ (2002) Non-lethal DNA sampling from CITES II protected ‘tarantula’ spiders of Belize. Las Cuevas Newslett 9:8–9

    Google Scholar 

  • Longhorn SJ, Nicholas M, Chuter J, Volger AP (2007) The utility of molecular markers from non-lethal DNA samples of the CITES II protected “tarantula” Brachypelma vagans (Araneae, Theraphosidae). J Arachnol 35:278–292

    Article  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  PubMed  CAS  Google Scholar 

  • Machkour-M’Rabet S, Henaut Y, Rojo R, Calmé S (2005) A not so natural history of the tarantula Brachypelma vagans: interaction of the human activity. J Nat Hist 39:2515–2523

    Article  Google Scholar 

  • Machkour-M’Rabet S, Hénaut Y, Sépulveda A, Rojo R, Calmé S, Geissen V (2007) Soil preference and burrow structure of an endangered tarantula, Brachypelma vagans (Mygalomorphae: Theraphosidae). J Nat Hist 41:1025–1033

    Article  Google Scholar 

  • Machkour-M’Rabet S, Hénaut Y, Charruau P, Gevrey M, Legal L (2009a) Extinction risk of the American Crocodile in the Mexican Caribbean revealed by ISSR-PCR method: implication for conservation. Mar Biol 156:1321–1333

    Article  Google Scholar 

  • Machkour-M’Rabet S, Hénaut Y, Dor A, Perez-Lachaud G, Pelissier C, Gers C, Legal L (2009b) ISSR (Inter Simple Sequence Repeats) as molecular markers to study genetic diversity in Tarantulas (Mygalomorphae). J Arachnol 37:10–14

    Article  Google Scholar 

  • Machkour-M’Rabet S, Hénaut Y, Winterton P, Rojo R (2011) A case of zootherapy with the tarantula in the traditional medicine of the Chol Mayan ethnic group in Mexico. J Ethnobiol Ethnomed 7:12

    Article  PubMed  Google Scholar 

  • Martínez-Morales MA, Cuarón AD (1999) Boa constrictor, an introduced predator threatening the endemic fauna on Cozumel Island, Mexico. Biodivers Conserv 8:957–963

    Article  Google Scholar 

  • Nevo E, Beiles A, Ben-Shlomo R (1984) The evolutionary significance of genetic diversity: ecological demographic and life history correlates. In: Mani GS (ed) Evolutionary dynamics of genetic diversity. Springer, New York, pp 13–213

    Chapter  Google Scholar 

  • Page RDM (1996) Treeview: an application to display phylogenetic trees on personal computers. Bioinformatics 12:357–358

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) genalex V6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pérez-Miles F, Costa FG, Toscano-Gadea C, Mignone A (2005) Ecology and behaviour of the ‘road tarantulas’ Eupalaestrus weijenberghi and Acanthoscurria suina (Araneae, Theraphosidae) from Uruguay. J Nat Hist 39:483–498

    Article  Google Scholar 

  • Petersen SD, Mason T, Akber S, West R, White B, Wilson P (2007) Species identification of tarantulas using exuviae for international wildlife law enforcement. Conserv Genet 8:497–502

    Article  Google Scholar 

  • Pritchard JK, Wen W (2004) Documentation for Structure software: version 2. http://pritch.bsd.uchicago.edu/structure.html. Accessed 12 July 2011

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Reichling SB (2000) Group dispersal in juvenile Brachypelma vagans (Araneae, Theraphosidae). J Arachnol 28:248–250

    Article  Google Scholar 

  • Roux O, Gevrey M, Arvanitakis L, Gers C, Bordat D, Legal L (2007) ISSR-PCR: tool for discrimination and genetic structure analysis of Plutella xylostella populations native to different geographical areas. Mol Phylogenet Evol 43:240–250

    Article  PubMed  CAS  Google Scholar 

  • Row Chowdhury R, Turner BL II (2006) Reconciling agency and structure in empirical analysis: smallholder land use in the southern Yucatán, Mexico. Ann Assoc Am Geogr 96:302–322

    Article  Google Scholar 

  • Sala OE, Chapin FS III, Armesto JJ, Berlow R, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge D, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Google Scholar 

  • Schmook B, Vance C (2009) Agricultural policy, market barriers, and deforestations: the case of Mexico’s southern Yucatán. World Dev 37:1015–1025

    Article  Google Scholar 

  • Shields WM (1987) Dispersal and mating systems: investigating their causal connections. In: Chepko-Sade BD, Tang Halpin Z (eds) Mammalian dispersal patterns. University of Chicago Press, Chicago, pp 3–24

    Google Scholar 

  • Shillington C, McEwen B (2006) Activity of juvenile tarantulas in and around the maternal burrow. J Arachnol 34:261–265

    Article  Google Scholar 

  • Shillington C, Verrell P (1997) Sexual strategies of a North America “tarantula” (Araneae: Theraphosidae). Ethology 103:588–598

    Article  Google Scholar 

  • Soulé ME, Alberts AC, Bolger DT (1992) The effects of habitat fragmentation on chaparral plants and vertebrates. Oikos 63:39–47

    Article  Google Scholar 

  • Stoltey T, Shillington C (2009) Metabolic rates and movements of the male tarantula Aphonopelma anax during the mating season. Can J Zool 87:1210–1220

    Article  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2001) PAUP phylogenetic analysis using parsimony (Version 4.0b10). Sinauer, Sunderland

  • Turner BL II (1974) Prehistoric intensive agriculture in the Maya lowlands. Science 185:118–124

    Article  PubMed  Google Scholar 

  • Turner BL II, Cortina Villar S, Foster DR et al (2001) Deforestation in the southern Yucatán peninsular region: an integrative approach. Forest Ecol Manag 115:343–370

    Google Scholar 

  • Vekemans X (2002) AFLP-SURV version 1.0. Distributed by the author. Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, Belgium

  • Yáñez M, Floater G (2000) Spatial distribution and habitat preference of the endangered tarantula, Brachypelma klaasi (Araenae: Theraphosidae) in Mexico. Biodivers Conserv 9:795–810

    Article  Google Scholar 

  • Yeh FC, Yang R, Boyle TJB (1999) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 129:157

    Google Scholar 

Download references

Acknowledgments

We are grateful to the people of Ley de Fomento, Conhuas, Zoh-Laguna, Luis Echeverría, and Raudales for granting us access to their land and for their hospitality during our stay. We thank Héctor González Cortés of the ‘‘Fundación de Parques y Museos de Cozumel’’ for providing logistic support during our visit to Cozumel island. We are grateful to Ariane Dor for providing the samples. Thanks to Holger Weissenberger (ECOSUR), for producing Fig. 1 and to Birgit Schmook (ECOSUR) for the information about the villages. Finally, we are thankful to two anonymous reviewers for their comments on a previous version of this manuscript, and to Bill Parsons for editing it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salima Machkour-M’Rabet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machkour-M’Rabet, S., Hénaut, Y., Calmé, S. et al. When landscape modification is advantageous for protected species. The case of a synanthropic tarantula, Brachypelma vagans . J Insect Conserv 16, 479–488 (2012). https://doi.org/10.1007/s10841-011-9434-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-011-9434-3

Keywords

Navigation