Skip to main content
Log in

2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation

  • CONSENSUS STATEMENT
  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society (HRS), the Asia Pacific HRS, and the Latin American HRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Calkins H, Brugada J, Packer DL, Cappato R, Chen SA, Crijns HJ, et al. HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for personnel, policy, procedures and follow-up. A report of the Heart Rhythm Society (HRS) task force on catheter and surgical ablation of atrial fibrillation developed in partnership with the European Heart Rhythm Association (EHRA) and the European Cardiac Arrhythmia Society (ECAS); in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), and the Society of Thoracic Surgeons (STS). Endorsed and approved by the governing bodies of the American College of Cardiology, the American Heart Association, the European Cardiac Arrhythmia Society, the European Heart Rhythm Association, the Society of Thoracic Surgeons, and the Heart Rhythm Society. Europace. 2007;9:335–79.

    Article  PubMed  Google Scholar 

  2. Calkins H, Kuck KH, Cappato R, Brugada J, Camm AJ, Chen SA, et al. 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design: a report of the Heart Rhythm Society (HRS) task force on catheter and surgical ablation of atrial fibrillation. Developed in partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology (ESC) and the European Cardiac Arrhythmia Society (ECAS); and in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), the Asia Pacific Heart Rhythm Society (APHRS), and the Society of Thoracic Surgeons (STS). Endorsed by the governing bodies of the American College of Cardiology Foundation, the American Heart Association, the European Cardiac Arrhythmia Society, the European Heart Rhythm Association, the Society of Thoracic Surgeons, the Asia Pacific Heart Rhythm Society, and the Heart Rhythm Society. Heart Rhythm. 2012;9:632-96.e21.

    Article  PubMed  Google Scholar 

  3. Calkins H, Hindricks G, Cappato R, Kim Y-H, Saad EB, Aguinaga L, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary. J Arrhythm. 2017;33:369–409.

    Article  PubMed  PubMed Central  Google Scholar 

  4. January CT, Wann LS, Calkins H, Chen LY, Cigarroa JE, Cleveland JC Jr, et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Rhythm Society in collaboration with the Society of Thoracic Surgeons. Circulation. 2019;140:e125-51.

    Article  PubMed  Google Scholar 

  5. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomstrom-Lundqvist C, et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the task force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42:373–498.

    Article  PubMed  Google Scholar 

  6. Diederichsen SZ, Haugan KJ, Brandes A, Lanng MB, Graff C, Krieger D, et al. Natural history of subclinical atrial fibrillation detected by implanted loop recorders. J Am Coll Cardiol. 2019;74:2771–81.

    Article  CAS  PubMed  Google Scholar 

  7. Aguilar M, Macle L, Deyell MW, Yao R, Hawkins NM, Khairy P, et al. Influence of monitoring strategy on assessment of ablation success and postablation atrial fibrillation burden assessment: implications for practice and clinical trial design. Circulation. 2022;145:21–30.

    Article  PubMed  Google Scholar 

  8. January CT, Wann LS, Calkins H, Chen LY, Cigarroa JE, Cleveland JC Jr, et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2019;74:104–32.

    Article  PubMed  Google Scholar 

  9. Andrade JG, Aguilar M, Atzema C, Bell A, Cairns JA, Cheung CC, et al. The 2020 Canadian Cardiovascular Society/Canadian Heart Rhythm Society comprehensive guidelines for the management of atrial fibrillation. Can J Cardiol. 2020;36:1847–948.

    Article  PubMed  Google Scholar 

  10. NHFA CSANZ Atrial Fibrillation Guideline Working Group, Brieger D, Amerena J, Attia J, Bajorek B, Chan KH, et al. National Heart Foundation of Australia and the Cardiac Society of Australia and New Zealand: Australian clinical guidelines for the diagnosis and management of atrial fibrillation 2018. Heart Lung Circ. 2018;27:1209–66.

    Article  Google Scholar 

  11. Cheung CC, Nattel S, Macle L, Andrade JG. Management of atrial fibrillation in 2021: an updated comparison of the current CCS/CHRS, ESC, and AHA/ACC/HRS guidelines. Can J Cardiol. 2021;37:1607–18.

    Article  PubMed  Google Scholar 

  12. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation. 1995;92:1954–68.

    Article  CAS  PubMed  Google Scholar 

  13. Fareh S, Villemaire C, Nattel S. Importance of refractoriness heterogeneity in the enhanced vulnerability to atrial fibrillation induction caused by tachycardia-induced atrial electrical remodeling. Circulation. 1998;98:2202–9.

    Article  CAS  PubMed  Google Scholar 

  14. Crijns HJ, van Wijk LM, van Gilst WH, Kingma JH, van Gelder IC, Lie KI. Acute conversion of atrial fibrillation to sinus rhythm: clinical efficacy of flecainide acetate. Comparison of two regimens. Eur Heart J. 1988;9:634–8.

    Article  CAS  PubMed  Google Scholar 

  15. Suttorp MJ, Kingma JH, Jessurun ER, Lie AHL, van Hemel NM, Lie KI. The value of class IC antiarrhythmic drugs for acute conversion of paroxysmal atrial fibrillation or flutter to sinus rhythm. J Am Coll Cardiol. 1990;16:1722–7.

    Article  CAS  PubMed  Google Scholar 

  16. Andrade JG, Deyell MW, Verma A, Macle L, Champagne J, Leong-Sit P, et al. Association of atrial fibrillation episode duration with arrhythmia recurrence following ablation: a secondary analysis of a randomized clinical trial. JAMA Netw Open. 2020;3: e208748.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Boriani G, Botto GL, Padeletti L, Santini M, Capucci A, Gulizia M, et al. Improving stroke risk stratification using the CHADS2 and CHA2DS2-VASc risk scores in patients with paroxysmal atrial fibrillation by continuous arrhythmia burden monitoring. Stroke. 2011;42:1768–70.

    Article  PubMed  Google Scholar 

  18. Van Gelder IC, Healey JS, Crijns H, Wang J, Hohnloser SH, Gold MR, et al. Duration of device-detected subclinical atrial fibrillation and occurrence of stroke in ASSERT. Eur Heart J. 2017;38:1339–44.

    Article  PubMed  Google Scholar 

  19. Chew DS, Li Z, Steinberg BA, O’Brien EC, Pritchard J, Bunch TJ, et al. Arrhythmic burden and the risk of cardiovascular outcomes in patients with paroxysmal atrial fibrillation and cardiac implanted electronic devices. Circ Arrhythm Electrophysiol. 2022;15: e010304.

    Article  PubMed  Google Scholar 

  20. Charitos EI, Purerfellner H, Glotzer TV, Ziegler PD. Clinical classifications of atrial fibrillation poorly reflect its temporal persistence: insights from 1,195 patients continuously monitored with implantable devices. J Am Coll Cardiol. 2014;63:2840–8.

    Article  PubMed  Google Scholar 

  21. Andrade JG, Yao RRJ, Deyell MW, Hawkins NM, Rizkallah J, Jolly U, et al. Clinical assessment of AF pattern is poorly correlated with AF burden and post ablation outcomes: a CIRCA-DOSE sub-study. J Electrocardiol. 2020;60:159–64.

    Article  PubMed  Google Scholar 

  22. De With RR, Erkuner O, Rienstra M, Nguyen BO, Korver FWJ, Linz D, et al. Temporal patterns and short-term progression of paroxysmal atrial fibrillation: data from RACE V. Europace. 2020;22:1162–72.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Blum S, Meyre P, Aeschbacher S, Berger S, Auberson C, Briel M, et al. Incidence and predictors of atrial fibrillation progression: a systematic review and metaanalysis. Heart Rhythm. 2019;16:502–10.

    Article  PubMed  Google Scholar 

  24. Kopecky SL, Gersh BJ, McGoon MD, Whisnant JP, Holmes DR, Ilstrup DM, et al. The natural history of lone atrial fibrillation. A population-based study over three decades. N Engl J Med. 1987;317:669–74.

    Article  CAS  PubMed  Google Scholar 

  25. Pappone C, Radinovic A, Manguso F, Vicedomini G, Ciconte G, Sacchi S, et al. Atrial fibrillation progression and management: a 5-year prospective follow-up study. Heart Rhythm. 2008;5:1501–7.

    Article  PubMed  Google Scholar 

  26. Simantirakis EN, Papakonstantinou PE, Kanoupakis E, Chlouverakis GI, Tzeis S, Vardas PE. Recurrence rate of atrial fibrillation after the first clinical episode: a prospective evaluation using continuous cardiac rhythm monitoring. Clin Cardiol. 2018;41:594–600.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Andrade JG, Deyell MW, Macle L, Wells GA, Bennett M, Essebag V, et al. Progression of atrial fibrillation after cryoablation or drug therapy. N Engl J Med. 2022;388:105–16.

    Article  PubMed  Google Scholar 

  28. Nguyen BO, Weberndorfer V, Crijns HJ, Geelhoed B, Ten Cate H, Spronk H, et al. Prevalence and determinants of atrial fibrillation progression in paroxysmal atrial fibrillation. Heart. 2022;109:186–94.

    Article  PubMed  Google Scholar 

  29. Potpara TS, Stankovic GR, Beleslin BD, Polovina MM, Marinkovic JM, Ostojic MC, et al. A 12-year follow-up study of patients with newly diagnosed lone atrial fibrillation: implications of arrhythmia progression on prognosis: the Belgrade atrial fibrillation study. Chest. 2012;141:339–47.

    Article  PubMed  Google Scholar 

  30. Padfield GJ, Steinberg C, Swampillai J, Qian H, Connolly SJ, Dorian P, et al. Progression of paroxysmal to persistent atrial fibrillation: 10-year follow-up in the Canadian Registry of Atrial Fibrillation. Heart Rhythm. 2017;14:801–7.

    Article  PubMed  Google Scholar 

  31. Piccini JP, Passman R, Turakhia M, Connolly AT, Nabutovsky Y, Varma N. Atrial fibrillation burden, progression, and the risk of death: a case-crossover analysis in patients with cardiac implantable electronic devices. Europace. 2019;21:404–13.

    Article  PubMed  Google Scholar 

  32. de Vos CB, Pisters R, Nieuwlaat R, Prins MH, Tieleman RG, Coelen RJ, et al. Progression from paroxysmal to persistent atrial fibrillation clinical correlates and prognosis. J Am Coll Cardiol. 2010;55:725–31.

    Article  PubMed  Google Scholar 

  33. Kerr CR, Humphries KH, Talajic M, Klein GJ, Connolly SJ, Green M, et al. Progression to chronic atrial fibrillation after the initial diagnosis of paroxysmal atrial fibrillation: results from the Canadian Registry of Atrial Fibrillation. Am Heart J. 2005;149:489–96.

    Article  PubMed  Google Scholar 

  34. Parkash R, Green MS, Kerr CR, Connolly SJ, Klein GJ, Sheldon R, et al. The association of left atrial size and occurrence of atrial fibrillation: a prospective cohort study from the Canadian Registry of Atrial Fibrillation. Am Heart J. 2004;148:649–54.

    Article  PubMed  Google Scholar 

  35. Tsang TS, Barnes ME, Miyasaka Y, Cha SS, Bailey KR, Verzosa GC, et al. Obesity as a risk factor for the progression of paroxysmal to permanent atrial fibrillation: a longitudinal cohort study of 21 years. Eur Heart J. 2008;29:2227–33.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Vitolo M, Proietti M, Imberti JF, Bonini N, Romiti GF, Mei DA, et al. Factors associated with progression of atrial fibrillation and impact on all-cause mortality in a cohort of European patients. J Clin Med. 2023;12:768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. De With RR, Marcos EG, Dudink E, Spronk HM, Crijns H, Rienstra M, et al. Atrial fibrillation progression risk factors and associated cardiovascular outcome in well-phenotyped patients: data from the AF-RISK study. Europace. 2020;22:352–60.

    Article  PubMed  Google Scholar 

  38. Ellinor PT, Yoerger DM, Ruskin JN, MacRae CA. Familial aggregation in lone atrial fibrillation. Hum Genet. 2005;118:179–84.

    Article  PubMed  Google Scholar 

  39. Arnar DO, Thorvaldsson S, Manolio TA, Thorgeirsson G, Kristjansson K, Hakonarson H, et al. Familial aggregation of atrial fibrillation in Iceland. Eur Heart J. 2006;27:708–12.

    Article  PubMed  Google Scholar 

  40. Lubitz SA, Yin X, Fontes JD, Magnani JW, Rienstra M, Pai M, et al. Association between familial atrial fibrillation and risk of new-onset atrial fibrillation. JAMA. 2010;304:2263–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen YH, Xu SJ, Bendahhou S, Wang XL, Wang Y, Xu WY, et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science. 2003;299:251–4.

    Article  CAS  PubMed  Google Scholar 

  42. Olesen MS, Bentzen BH, Nielsen JB, Steffensen AB, David JP, Jabbari J, et al. Mutations in the potassium channel subunit KCNE1 are associated with early-onset familial atrial fibrillation. BMC Med Genet. 2012;13:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang Y, Xia M, Jin Q, Bendahhou S, Shi J, Chen Y, et al. Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am J Hum Genet. 2004;75:899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mann SA, Otway R, Guo G, Soka M, Karlsdotter L, Trivedi G, et al. Epistatic effects of potassium channel variation on cardiac repolarization and atrial fibrillation risk. J Am Coll Cardiol. 2012;59:1017–25.

    Article  CAS  PubMed  Google Scholar 

  45. Sinner MF, Pfeufer A, Akyol M, Beckmann BM, Hinterseer M, Wacker A, et al. The non-synonymous coding IKr-channel variant KCNH2-K897T is associated with atrial fibrillation: results from a systematic candidate gene-based analysis of KCNH2 (HERG). Eur Heart J. 2008;29:907–14.

    Article  CAS  PubMed  Google Scholar 

  46. Olesen MS, Refsgaard L, Holst AG, Larsen AP, Grubb S, Haunso S, et al. A novel KCND3 gain-of-function mutation associated with early-onset of persistent lone atrial fibrillation. Cardiovasc Res. 2013;98:488–95.

    Article  CAS  PubMed  Google Scholar 

  47. Christophersen IE, Olesen MS, Liang B, Andersen MN, Larsen AP, Nielsen JB, et al. Genetic variation in KCNA5: impact on the atrial-specific potassium current IKur in patients with lone atrial fibrillation. Eur Heart J. 2013;34:1517–25.

    Article  CAS  PubMed  Google Scholar 

  48. Tsai CT, Hsieh CS, Chang SN, Chuang EY, Juang JM, Lin LY, et al. Next-generation sequencing of nine atrial fibrillation candidate genes identified novel de novo mutations in patients with extreme trait of atrial fibrillation. J Med Genet. 2015;52:28–36.

    Article  CAS  PubMed  Google Scholar 

  49. Olesen MS, Yuan L, Liang B, Holst AG, Nielsen N, Nielsen JB, et al. High prevalence of long QT syndrome-associated SCN5A variants in patients with early-onset lone atrial fibrillation. Circ Cardiovasc Genet. 2012;5:450–9.

    Article  PubMed  Google Scholar 

  50. Watanabe H, Darbar D, Kaiser DW, Jiramongkolchai K, Chopra S, Donahue BS, et al. Mutations in sodium channel beta1- and beta2-subunits associated with atrial fibrillation. Circ Arrhythm Electrophysiol. 2009;2:268–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li RG, Wang Q, Xu YJ, Zhang M, Qu XK, Liu X, et al. Mutations of the SCN4B-encoded sodium channel beta4 subunit in familial atrial fibrillation. Int J Mol Med. 2013;32:144–50.

    Article  PubMed  Google Scholar 

  52. Feghaly J, Zakka P, London B, MacRae CA, Refaat MM. Genetics of atrial fibrillation. J Am Heart Assoc. 2018;7: e009884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pessente GD, Sacilotto L, Calil ZO, Olivetti NQS, Wulkan F, de Oliveira TGM, et al. Effect of occurrence of Lamin A/C (LMNA) genetic variants in a cohort of 101 consecutive apparent “Lone AF” patients: results and insights. Front Cardiovasc Med. 2022;9: 823717.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gudbjartsson DF, Arnar DO, Helgadottir A, Gretarsdottir S, Holm H, Sigurdsson A, et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature. 2007;448:353–7.

    Article  CAS  PubMed  Google Scholar 

  55. Roselli C, Chaffin MD, Weng LC, Aeschbacher S, Ahlberg G, Albert CM, et al. Multi-ethnic genome-wide association study for atrial fibrillation. Nat Genet. 2018;50:1225–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Roselli C, Rienstra M, Ellinor PT. Genetics of atrial fibrillation in 2020: GWAS, genome sequencing, polygenic risk, and beyond. Circ Res. 2020;127:21–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee JY, Kim TH, Yang PS, Lim HE, Choi EK, Shim J, et al. Korean atrial fibrillation network genome-wide association study for early-onset atrial fibrillation identifies novel susceptibility loci. Eur Heart J. 2017;38:2586–94.

    Article  CAS  PubMed  Google Scholar 

  58. Low SK, Takahashi A, Ebana Y, Ozaki K, Christophersen IE, Ellinor PT, et al. Identification of six new genetic loci associated with atrial fibrillation in the Japanese population. Nat Genet. 2017;49:953–8.

    Article  CAS  PubMed  Google Scholar 

  59. Weng LC, Choi SH, Klarin D, Smith JG, Loh PR, Chaffin M, et al. Heritability of atrial fibrillation. Circ Cardiovasc Genet. 2017;10: e001838.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shoemaker MB, Shah RL, Roden DM, Perez MV. How will genetics inform the clinical care of atrial fibrillation? Circ Res. 2020;127:111–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wilde AAM, Semsarian C, Márquez MF, Shamloo AS, Ackerman MJ, Ashley EA, et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus statement on the state of genetic testing for cardiac diseases. Europace. 2022;24:1307–67.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Weiss JN, Garfinkel A, Karagueuzian HS, Chen PS, Qu Z. Early afterdepolarizations and cardiac arrhythmias. Heart Rhythm. 2010;7:1891–9.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nattel S, Heijman J, Zhou L, Dobrev D. Molecular basis of atrial fibrillation pathophysiology and therapy: a translational perspective. Circ Res. 2020;127:51–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Andrade J, Khairy P, Dobrev D, Nattel S. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ Res. 2014;114:1453–68.

    Article  CAS  PubMed  Google Scholar 

  65. Haïssaguerre M, Jaïs P, Shah DC, Takahashi A, Hocini M, Quiniou G, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339:659–66.

    Article  PubMed  Google Scholar 

  66. Ehrlich JR, Cha TJ, Zhang L, Chartier D, Melnyk P, Hohnloser SH, et al. Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties. J Physiol. 2003;551:801–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Teh AW, Kistler PM, Lee G, Medi C, Heck PM, Spence S, et al. Electroanatomic properties of the pulmonary veins: slowed conduction, low voltage and altered refractoriness in AF patients. J Cardiovasc Electrophysiol. 2011;22:1083–91.

    Article  PubMed  Google Scholar 

  68. Elbatran AI, Anderson RH, Mori S, Saba MM. The rationale for isolation of the left atrial pulmonary venous component to control atrial fibrillation: a review article. Heart Rhythm. 2019;16:1392–8.

    Article  PubMed  Google Scholar 

  69. Santangeli P, Marchlinski FE. Techniques for the provocation, localization, and ablation of non-pulmonary vein triggers for atrial fibrillation. Heart Rhythm. 2017;14:1087–96.

    Article  PubMed  Google Scholar 

  70. Mansour M, Mandapati R, Berenfeld O, Chen J, Samie FH, Jalife J. Left-to-right gradient of atrial frequencies during acute atrial fibrillation in the isolated sheep heart. Circulation. 2001;103:2631–6.

    Article  CAS  PubMed  Google Scholar 

  71. Lazar S, Dixit S, Marchlinski FE, Callans DJ, Gerstenfeld EP. Presence of left-to-right atrial frequency gradient in paroxysmal but not persistent atrial fibrillation in humans. Circulation. 2004;110:3181–6.

    Article  PubMed  Google Scholar 

  72. Mandapati R, Skanes A, Chen J, Berenfeld O, Jalife J. Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation. 2000;101:194–9.

    Article  CAS  PubMed  Google Scholar 

  73. Davidenko JM, Pertsov AV, Salomonsz R, Baxter W, Jalife J. Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature. 1992;355:349–51.

    Article  CAS  PubMed  Google Scholar 

  74. Hansen BJ, Zhao J, Csepe TA, Moore BT, Li N, Jayne LA, et al. Atrial fibrillation driven by micro-anatomic intramural reentry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. Eur Heart J. 2015;36:2390–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Narayan SM, Wright M, Derval N, Jadidi A, Forclaz A, Nault I, et al. Classifying fractionated electrograms in human atrial fibrillation using monophasic action potentials and activation mapping: evidence for localized drivers, rate acceleration, and nonlocal signal etiologies. Heart Rhythm. 2011;8:244–53.

    Article  PubMed  Google Scholar 

  76. Zaman JAB, Sauer WH, Alhusseini MI, Baykaner T, Borne RT, Kowalewski CAB, et al. Identification and characterization of sites where persistent atrial fibrillation is terminated by localized ablation. Circ Arrhythm Electrophysiol. 2018;11: e005258.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Baykaner T, Rogers AJ, Meckler GL, Zaman J, Navara R, Rodrigo M, et al. Clinical implications of ablation of drivers for atrial fibrillation: a systematic review and metaanalysis. Circ Arrhythm Electrophysiol. 2018;11: e006119.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Garrey WE. Auricular fibrillation. Physiol Rev. 1924;4:215–50.

    Article  Google Scholar 

  79. Moe GK, Rheinboldt WC, Abildskov JA. A computer model of atrial fibrillation. Am Heart J. 1964;67:200–20.

    Article  CAS  PubMed  Google Scholar 

  80. Kirchhof C, Chorro F, Scheffer GJ, Brugada J, Konings K, Zetelaki Z, et al. Regional entrainment of atrial fibrillation studied by high-resolution mapping in open-chest dogs. Circulation. 1993;88:736–49.

    Article  CAS  PubMed  Google Scholar 

  81. Lee S, Sahadevan J, Khrestian CM, Cakulev I, Markowitz A, Waldo AL. Simultaneous biatrial high-density (510–512 electrodes) epicardial mapping of persistent and long-standing persistent atrial fibrillation in patients: new insights into the mechanism of its maintenance. Circulation. 2015;132:2108–17.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kamali R, Kump J, Ghafoori E, Lange M, Hu N, Bunch TJ, et al. Area available for atrial fibrillation to propagate is an important determinant of recurrence after ablation. JACC Clin Electrophysiol. 2021;7:896–908.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Eckstein J, Maesen B, Linz D, Zeemering S, van Hunnik A, Verheule S, et al. Time course and mechanisms of endo-epicardial electrical dissociation during atrial fibrillation in the goat. Cardiovasc Res. 2011;89:816–24.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang L, van Schie MS, Knops P, Taverne Y, de Groot NMS. A novel diagnostic tool to identify atrial endo-epicardial asynchrony using signal fingerprinting. Hellenic J Cardiol. 2024;75:9–20.

    Article  PubMed  Google Scholar 

  85. Lee G, Kumar S, Teh A, Madry A, Spence S, Larobina M, et al. Epicardial wave mapping in human long-lasting persistent atrial fibrillation: transient rotational circuits, complex wavefronts, and disorganized activity. Eur Heart J. 2014;35:86–97.

    Article  PubMed  Google Scholar 

  86. Allessie MA, de Groot NM, Houben RP, Schotten U, Boersma E, Smeets JL, et al. Electropathological substrate of long-standing persistent atrial fibrillation in patients with structural heart disease: longitudinal dissociation. Circ Arrhythm Electrophysiol. 2010;3:606–15.

    Article  PubMed  Google Scholar 

  87. Parameswaran R, Teuwen CP, Watts T, Nalliah CJ, Royse A, Goldblatt J, et al. Functional atrial endocardial-epicardial dissociation in patients with structural heart disease undergoing cardiac surgery. JACC Clin Electrophysiol. 2020;6:34–44.

    Article  PubMed  Google Scholar 

  88. Parameswaran R, Kalman JM, Royse A, Goldblatt J, Larobina M, Watts T, et al. Endocardial-epicardial phase mapping of prolonged persistent atrial fibrillation recordings: high prevalence of dissociated activation patterns. Circ Arrhythm Electrophysiol. 2020;13: e008512.

    Article  CAS  PubMed  Google Scholar 

  89. Hong KL, Baley J, Baranchuk A, Bisleri G, Glover BM. Epicardial electrical activation during atrial fibrillation: looking at the other side of the coin. JACC Case Rep. 2019;1:401–2.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Jiang R, Buch E, Gima J, Upadhyay GA, Nayak HM, Beaser AD, et al. Feasibility of percutaneous epicardial mapping and ablation for refractory atrial fibrillation: insights into substrate and lesion transmurality. Heart Rhythm. 2019;16:1151–9.

    Article  PubMed  Google Scholar 

  91. Hoit BD. Left atrial size and function: role in prognosis. J Am Coll Cardiol. 2014;63:493–505.

    Article  PubMed  Google Scholar 

  92. Mahnkopf C, Badger TJ, Burgon NS, Daccarett M, Haslam TS, Badger CT, et al. Evaluation of the left atrial substrate in patients with lone atrial fibrillation using delayed-enhanced MRI: implications for disease progression and response to catheter ablation. Heart Rhythm. 2010;7:1475–81.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Platonov PG, Mitrofanova LB, Orshanskaya V, Ho SY. Structural abnormalities in atrial walls are associated with presence and persistency of atrial fibrillation but not with age. J Am Coll Cardiol. 2011;58:2225–32.

    Article  PubMed  Google Scholar 

  94. Kottkamp H. Fibrotic atrial cardiomyopathy: a specific disease/syndrome supplying substrates for atrial fibrillation, atrial tachycardia, sinus node disease, AV node disease, and thromboembolic complications. J Cardiovasc Electrophysiol. 2012;23:797–9.

    Article  PubMed  Google Scholar 

  95. Cochet H, Mouries A, Nivet H, Sacher F, Derval N, Denis A, et al. Age, atrial fibrillation, and structural heart disease are the main determinants of left atrial fibrosis detected by delayed-enhanced magnetic resonance imaging in a general cardiology population. J Cardiovasc Electrophysiol. 2015;26:484–92.

    Article  PubMed  Google Scholar 

  96. Chrispin J, Ipek EG, Habibi M, Yang E, Spragg D, Marine JE, et al. Clinical predictors of cardiac magnetic resonance late gadolinium enhancement in patients with atrial fibrillation. Europace. 2017;19:371–7.

    PubMed  Google Scholar 

  97. Ben Amar B, Bianca C. Towards a unified approach in the modeling of fibrosis: a review with research perspectives. Phys Life Rev. 2016;17:61–85.

    Article  PubMed  Google Scholar 

  98. Jalife J. Mechanisms of persistent atrial fibrillation. Curr Opin Cardiol. 2014;29:20–7.

    Article  PubMed  Google Scholar 

  99. Xintarakou A, Tzeis S, Psarras S, Asvestas D, Vardas P. Atrial fibrosis as a dominant factor for the development of atrial fibrillation: facts and gaps. Europace. 2020;22:342–51.

    Article  PubMed  Google Scholar 

  100. Allessie M, Ausma J, Schotten U. Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res. 2002;54:230–46.

    Article  CAS  PubMed  Google Scholar 

  101. Yue L, Xie J, Nattel S. Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovasc Res. 2011;89:744–53.

    Article  CAS  PubMed  Google Scholar 

  102. Fedorov VV, Hansen BJ. A secret marriage between fibrosis and atrial fibrillation drivers. JACC Clin Electrophysiol. 2018;4:30–2.

    Article  PubMed  Google Scholar 

  103. Marrouche NF, Wilber D, Hindricks G, Jais P, Akoum N, Marchlinski F, et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA. 2014;311:498–506.

    Article  CAS  PubMed  Google Scholar 

  104. Spragg DD, Khurram I, Zimmerman SL, Yarmohammadi H, Barcelon B, Needleman M, et al. Initial experience with magnetic resonance imaging of atrial scar and co-registration with electroanatomic voltage mapping during atrial fibrillation: success and limitations. Heart Rhythm. 2012;9:2003–9.

    Article  PubMed  Google Scholar 

  105. Oakes RS, Badger TJ, Kholmovski EG, Akoum N, Burgon NS, Fish EN, et al. Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation. 2009;119:1758–67.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Chen J, Arentz T, Cochet H, Müller-Edenborn B, Kim S, Moreno-Weidmann Z, et al. Extent and spatial distribution of left atrial arrhythmogenic sites, late gadolinium enhancement at magnetic resonance imaging, and low-voltage areas in patients with persistent atrial fibrillation: comparison of imaging vs. electrical parameters of fibrosis and arrhythmogenesis. Europace. 2019;21:1484–93.

    Article  PubMed  Google Scholar 

  107. Haemers P, Hamdi H, Guedj K, Suffee N, Farahmand P, Popovic N, et al. Atrial fibrillation is associated with the fibrotic remodelling of adipose tissue in the subepicardium of human and sheep atria. Eur Heart J. 2017;38:53–61.

    Article  CAS  PubMed  Google Scholar 

  108. Nalliah CJ, Bell JR, Raaijmakers AJA, Waddell HM, Wells SP, Bernasochi GB, et al. Epicardial adipose tissue accumulation confers atrial conduction abnormality. J Am Coll Cardiol. 2020;76:1197–211.

    Article  CAS  PubMed  Google Scholar 

  109. Mahajan R, Lau DH, Brooks AG, Shipp NJ, Manavis J, Wood JP, et al. Electrophysiological, electroanatomical, and structural remodeling of the atria as consequences of sustained obesity. J Am Coll Cardiol. 2015;66:1–11.

    Article  CAS  PubMed  Google Scholar 

  110. Wong CX, Ganesan AN, Selvanayagam JB. Epicardial fat and atrial fibrillation: current evidence, potential mechanisms, clinical implications, and future directions. Eur Heart J. 2017;38:1294–302.

    CAS  PubMed  Google Scholar 

  111. Rocken C, Peters B, Juenemann G, Saeger W, Klein HU, Huth C, et al. Atrial amyloidosis: an arrhythmogenic substrate for persistent atrial fibrillation. Circulation. 2002;106:2091–7.

    Article  PubMed  Google Scholar 

  112. Leone O, Boriani G, Chiappini B, Pacini D, Cenacchi G, Martin Suarez S, et al. Amyloid deposition as a cause of atrial remodelling in persistent valvular atrial fibrillation. Eur Heart J. 2004;25:1237–41.

    Article  CAS  PubMed  Google Scholar 

  113. Steiner I, Hajkova P. Patterns of isolated atrial amyloid: a study of 100 hearts on autopsy. Cardiovasc Pathol. 2006;15:287–90.

    Article  CAS  PubMed  Google Scholar 

  114. Heijman J, Voigt N, Nattel S, Dobrev D. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ Res. 2014;114:1483–99.

    Article  CAS  PubMed  Google Scholar 

  115. Nattel S, Burstein B, Dobrev D. Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol. 2008;1:62–73.

    Article  PubMed  Google Scholar 

  116. Caballero R, de la Fuente MG, Gomez R, Barana A, Amoros I, Dolz-Gaiton P, et al. In humans, chronic atrial fibrillation decreases the transient outward current and ultrarapid component of the delayed rectifier current differentially on each atria and increases the slow component of the delayed rectifier current in both. J Am Coll Cardiol. 2010;55:2346–54.

    Article  PubMed  Google Scholar 

  117. Voigt N, Trausch A, Knaut M, Matschke K, Varro A, Van Wagoner DR, et al. Left-to-right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3:472–80.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Van Wagoner DR, Pond AL, Lamorgese M, Rossie SS, McCarthy PM, Nerbonne JM. Atrial L-type Ca2+ currents and human atrial fibrillation. Circ Res. 1999;85:428–36.

    Article  PubMed  Google Scholar 

  119. Martins RP, Kaur K, Hwang E, Ramirez RJ, Willis BC, Filgueiras-Rama D, et al. Dominant frequency increase rate predicts transition from paroxysmal to long-term persistent atrial fibrillation. Circulation. 2014;129:1472–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Deshmukh A, Barnard J, Sun H, Newton D, Castel L, Pettersson G, et al. Left atrial transcriptional changes associated with atrial fibrillation susceptibility and persistence. Circ Arrhythm Electrophysiol. 2015;8:32–41.

    Article  CAS  PubMed  Google Scholar 

  121. Burstein B, Qi XY, Yeh YH, Calderone A, Nattel S. Atrial cardiomyocyte tachycardia alters cardiac fibroblast function: a novel consideration in atrial remodeling. Cardiovasc Res. 2007;76:442–52.

    Article  CAS  PubMed  Google Scholar 

  122. Amar D, Zhang H, Miodownik S, Kadish AH. Competing autonomic mechanisms precedethe onset of postoperative atrial fibrillation. J Am Coll Cardiol. 2003;42:1262–8.

    Article  PubMed  Google Scholar 

  123. Bettoni M, Zimmermann M. Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation. 2002;105:2753–9.

    Article  PubMed  Google Scholar 

  124. Tomita T, Takei M, Saikawa Y, Hanaoka T, Uchikawa S, Tsutsui H, et al. Role of autonomic tone in the initiation and termination of paroxysmal atrial fibrillation in patients without structural heart disease. J Cardiovasc Electrophysiol. 2003;14:559–64.

    Article  PubMed  Google Scholar 

  125. Scherlag BJ, Yamanashi W, Patel U, Lazzara R, Jackman WM. Autonomically induced conversion of pulmonary vein focal firing into atrial fibrillation. J Am Coll Cardiol. 2005;45:1878–86.

    Article  PubMed  Google Scholar 

  126. Patterson E, Po SS, Scherlag BJ, Lazzara R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm. 2005;2:624–31.

    Article  PubMed  Google Scholar 

  127. Zhou J, Scherlag BJ, Edwards J, Jackman WM, Lazzara R, Po SS. Gradients of atrial refractoriness and inducibility of atrial fibrillation due to stimulation of ganglionated plexi. J Cardiovasc Electrophysiol. 2007;18:83–90.

    Article  PubMed  Google Scholar 

  128. Patterson E, Jackman WM, Beckman KJ, Lazzara R, Lockwood D, Scherlag BJ, et al. Spontaneous pulmonary vein firing in man: relationship to tachycardia-pause early afterdepolarizations and triggered arrhythmia in canine pulmonary veins in vitro. J Cardiovasc Electrophysiol. 2007;18:1067–75.

    Article  PubMed  Google Scholar 

  129. Jayachandran JV, Sih HJ, Winkle W, Zipes DP, Hutchins GD, Olgin JE. Atrial fibrillation produced by prolonged rapid atrial pacing is associated with heterogeneous changes in atrial sympathetic innervation. Circulation. 2000;101:1185–91.

    Article  CAS  PubMed  Google Scholar 

  130. Lu Z, Scherlag BJ, Lin J, Niu G, Fung KM, Zhao L, et al. Atrial fibrillation begets atrial fibrillation: autonomic mechanism for atrial electrical remodeling induced by short-term rapid atrial pacing. Circ Arrhythm Electrophysiol. 2008;1:184–92.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Stavrakis S, Stoner JA, Humphrey MB, Morris L, Filiberti A, Reynolds JC, et al. TREAT AF (transcutaneous electrical vagus nerve stimulation to suppress atrial fibrillation): a randomized clinical trial. JACC Clin Electrophysiol. 2020;6:282–91.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Shen MJ, Hao-Che C, Park HW, George Akingba A, Chang PC, Zheng Z, et al. Low-level vagus nerve stimulation upregulates small conductance calcium-activated potassium channels in the stellate ganglion. Heart Rhythm. 2013;10:910–5.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Bernstein SA, Wong B, Vasquez C, Rosenberg SP, Rooke R, Kuznekoff LM, et al. Spinal cord stimulation protects against atrial fibrillation induced by tachypacing. Heart Rhythm. 2012;9:1426-33.e3.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Pokushalov E, Romanov A, Shugayev P, Artyomenko S, Shirokova N, Turov A, et al. Selective ganglionated plexi ablation for paroxysmal atrial fibrillation. Heart Rhythm. 2009;6:1257–64.

    Article  PubMed  Google Scholar 

  135. Katritsis D, Giazitzoglou E, Sougiannis D, Goumas N, Paxinos G, Camm AJ. Anatomic approach for ganglionic plexi ablation in patients with paroxysmal atrial fibrillation. Am J Cardiol. 2008;102:330–4.

    Article  PubMed  Google Scholar 

  136. Katritsis DG, Giazitzoglou E, Zografos T, Pokushalov E, Po SS, Camm AJ. Rapid pulmonary vein isolation combined with autonomic ganglia modification: a randomized study. Heart Rhythm. 2011;8:672–8.

    Article  PubMed  Google Scholar 

  137. Nakagawa H, Scherlag BJ, Wu R, Po S, Lockwood D, Yokoyama K, et al. Addition of selective ablation of autonomic ganglia to pulmonary vein antrum isolation for treatment of paroxysmal and persistent atrial fibrillation. Circulation. 2004;110:543.

  138. Chen SA, Hsieh MH, Tai CT, Tsai CF, Prakash VS, Yu WC, et al. Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablation. Circulation. 1999;100:1879–86.

    Article  CAS  PubMed  Google Scholar 

  139. Jaïs P, Hocini M, Macle L, Choi KJ, Deisenhofer I, Weerasooriya R, et al. Distinctive electrophysiological properties of pulmonary veins in patients with atrial fibrillation. Circulation. 2002;106:2479–85.

    Article  PubMed  Google Scholar 

  140. Cherry EM, Ehrlich JR, Nattel S, Fenton FH. Pulmonary vein reentry–properties and size matter: insights from a computational analysis. Heart Rhythm. 2007;4:1553–62.

    Article  PubMed  Google Scholar 

  141. Bonczar M, Piątek-Koziej K, Wolska J, Tomala O, Stitou EA, Pękala J, et al. Variations in human pulmonary vein ostia morphology: a systematic review with metaanalysis. Clin Anat. 2022;35:906–26.

    Article  PubMed  Google Scholar 

  142. Anselmino M, Blandino A, Beninati S, Rovera C, Boffano C, Belletti M, et al. Morphologic analysis of left atrial anatomy by magnetic resonance angiography in patients with atrial fibrillation: a large single center experience. J Cardiovasc Electrophysiol. 2011;22:1–7.

    Article  PubMed  Google Scholar 

  143. Cheruiyot I, Munguti J, Olabu B, Gichangi P. A metaanalysis of the relationship between anatomical variations of pulmonary veins and atrial fibrillation. Acta Cardiol. 2020;75:1–9.

    Article  PubMed  Google Scholar 

  144. Nathan H, Eliakim M. The junction between the left atrium and the pulmonary veins. An anatomic study of human hearts. Circulation. 1966;34:412–22.

    Article  CAS  PubMed  Google Scholar 

  145. Rivaud MR, Blok M, Jongbloed MRM, Boukens BJ. How Cardiac Embryology Translates into Clinical Arrhythmias. J Cardiovasc Dev Dis. 2021;8:70.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Teres C, Soto-Iglesias D, Penela D, Jáuregui B, Ordoñez A, Chauca A, et al. Left atrial wall thickness of the pulmonary vein reconnection sites during atrial fibrillation redo procedures. Pacing Clin Electrophysiol. 2021;44:824–34.

    Article  PubMed  Google Scholar 

  147. Barrio-Lopez MT, Sanchez-Quintana D, Garcia-Martinez J, Betancur A, Castellanos E, Arceluz M, et al. Epicardial connections involving pulmonary veins: the prevalence, predictors, and implications for ablation outcome. Circ Arrhythm Electrophysiol. 2020;13: e007544.

    Article  PubMed  Google Scholar 

  148. Perez-Castellano N, Villacastin J, Salinas J, Vega M, Moreno J, Doblado M, et al. Epicardial connections between the pulmonary veins and left atrium: relevance for atrial fibrillation ablation. J Cardiovasc Electrophysiol. 2011;22:149–59.

    PubMed  Google Scholar 

  149. Barrio-Lopez MT, Castellanos E, Ortiz M, Arceluz M, Lazaro C, Salas J, et al. Atrial mapping during pulmonary vein pacing to detect conduction gaps in a second pulmonary vein isolation procedure. J Interv Card Electrophysiol. 2018;53:195–205.

    Article  PubMed  Google Scholar 

  150. Yoshida K, Baba M, Shinoda Y, Harunari T, Tsumagari Y, Koda N, et al. Epicardial connection between the right-sided pulmonary venous carina and the right atrium in patients with atrial fibrillation: a possible mechanism for preclusion of pulmonary vein isolation without carina ablation. Heart Rhythm. 2019;16:671–8.

    Article  PubMed  Google Scholar 

  151. Cabrera JA, Ho SY, Climent V, Fuertes B, Murillo M, Sanchez-Quintana D. Morphological evidence of muscular connections between contiguous pulmonary venous orifices: relevance of the interpulmonary isthmus for catheter ablation in atrial fibrillation. Heart Rhythm. 2009;6:1192–8.

    Article  PubMed  Google Scholar 

  152. Cabrera JA, Ho SY, Climent V, Sanchez-Quintana D. The architecture of the left lateral atrial wall: a particular anatomic region with implications for ablation of atrial fibrillation. Eur Heart J. 2008;29:356–62.

    Article  PubMed  Google Scholar 

  153. Ho SY, Cabrera JA, Sanchez-Quintana D. Left atrial anatomy revisited. Circ Arrhythm Electrophysiol. 2012;5:220–8.

    Article  PubMed  Google Scholar 

  154. Ho SY, Anderson RH, Sanchez-Quintana D. Atrial structure and fibres: morphologic bases of atrial conduction. Cardiovasc Res. 2002;54:325–36.

    Article  CAS  PubMed  Google Scholar 

  155. Ho SY, Sanchez-Quintana D. The importance of atrial structure and fibers. Clin Anat. 2009;22:52–63.

    Article  CAS  PubMed  Google Scholar 

  156. Patel PJ, D’Souza B, Saha P, Chik WW, Riley MP, Garcia FC. Electroanatomic mapping of the intercaval bundle in atrial fibrillation. Circ Arrhythm Electrophysiol. 2014;7:1262–7.

    Article  PubMed  Google Scholar 

  157. Anderson RH, Spicer DE, Brown NA, Mohun TJ. The development of septation in the four-chambered heart. Anat Rec. 2014;297:1414–29.

    Article  Google Scholar 

  158. Klimek-Piotrowska W, Hołda MK, Koziej M, Piątek K, Hołda J. Anatomy of the true interatrial septum for transseptal access to the left atrium. Ann Anat. 2016;205:60–4.

    Article  PubMed  Google Scholar 

  159. Tzeis S, Andrikopoulos G, Deisenhofer I, Ho SY, Theodorakis G. Transseptal catheterization: considerations and caveats. Pacing Clin Electrophysiol. 2010;33:231–42.

    Article  PubMed  Google Scholar 

  160. Meier D, Antiochos P, Herrera-Siklody C, Eeckhout E, Delabays A, Tzimas G, et al. Interatrial septum dissection and atrial wall hematoma following transseptal puncture: a systematic review of the literature. Catheter Cardiovasc Interv. 2020;96:424–31.

    Article  PubMed  Google Scholar 

  161. Kerut EK, Norfleet WT, Plotnick GD, Giles TD. Patent foramen ovale: a review of associated conditions and the impact of physiological size. J Am Coll Cardiol. 2001;38:613–23.

    Article  CAS  PubMed  Google Scholar 

  162. Hagen PT, Scholz DG, Edwards WD. Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc. 1984;59:17–20.

    Article  CAS  PubMed  Google Scholar 

  163. Benvenuti F, Meucci F, Vuolo L, Nistri R, Pracucci G, Picchioni A, et al. Relation between the size of patent foramen ovale and the volume of acute cerebral ischemic lesion in young patients with cryptogenic ischemic stroke. Neurol Sci. 2022;43:453–8.

    Article  PubMed  Google Scholar 

  164. Knecht S, Wright M, Lellouche N, Nault I, Matsuo S, O’Neill MD, et al. Impact of a patent foramen ovale on paroxysmal atrial fibrillation ablation. J Cardiovasc Electrophysiol. 2008;19:1236–41.

    Article  PubMed  Google Scholar 

  165. Miyazaki S, Shah AJ, Nault I, Wright M, Jadidi AS, Forclaz A, et al. Impact of patent foramen ovale on left atrial linear lesions in the context of atrial fibrillation ablation. J Cardiovasc Electrophysiol. 2011;22:846–50.

    Article  PubMed  Google Scholar 

  166. Barrio-Lopez MT, Castellanos E, Betancur A, Zorita B, Medina J, Losada N, et al. The presence of a large patent foramen ovale reduces acute and chronic success in atrial fibrillation ablation. J Interv Card Electrophysiol. 2022;64:705–13.

    Article  PubMed  Google Scholar 

  167. Almendarez M, Alvarez-Velasco R, Pascual I, Alperi A, Moris C, Avanzas P. Transseptal puncture: review of anatomy, techniques, complications and challenges, a critical view. Int J Cardiol. 2022;351:32–8.

    Article  PubMed  Google Scholar 

  168. De Ponti R, Cappato R, Curnis A, Della Bella P, Padeletti L, Raviele A, et al. Trans-septal catheterization in the electrophysiology laboratory: data from a multicenter survey spanning 12 years. J Am Coll Cardiol. 2006;47:1037–42.

    Article  PubMed  Google Scholar 

  169. Li X, Wissner E, Kamioka M, Makimoto H, Rausch P, Metzner A, et al. Safety and feasibility of transseptal puncture for atrial fibrillation ablation in patients with atrial septal defect closure devices. Heart Rhythm. 2014;11:330–5.

    Article  PubMed  Google Scholar 

  170. Santangeli P, Di Biase L, Burkhardt JD, Horton R, Sanchez J, Bailey S, et al. Transseptal access and atrial fibrillation ablation guided by intracardiac echocardiography in patients with atrial septal closure devices. Heart Rhythm. 2011;8:1669–75.

    Article  PubMed  Google Scholar 

  171. Wang K, Ho SY, Gibson DG, Anderson RH. Architecture of atrial musculature in humans. Br Heart J. 1995;73:559–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Jais P, Hocini M, Hsu LF, Sanders P, Scavee C, Weerasooriya R, et al. Technique and results of linear ablation at the mitral isthmus. Circulation. 2004;110:2996–3002.

    Article  PubMed  Google Scholar 

  173. Derval N, Takigawa M, Frontera A, Mahida S, Konstantinos V, Denis A, et al. Characterization of complex atrial tachycardia in patients with previous atrial interventions using high-resolution mapping. JACC Clin Electrophysiol. 2020;6:815–26.

    Article  PubMed  Google Scholar 

  174. Hocini M, Jais P, Sanders P, Takahashi Y, Rotter M, Rostock T, et al. Techniques, evaluation, and consequences of linear block at the left atrial roof in paroxysmal atrial fibrillation: a prospective randomized study. Circulation. 2005;112:3688–96.

    Article  PubMed  Google Scholar 

  175. Ho SY. Normal and abnormal atrial anatomy relevant to atrial flutters: areas of physiological and acquired conduction blocks and delays predisposing to reentry. Card Electrophysiol Clin. 2022;14:375–84.

    Article  PubMed  Google Scholar 

  176. van Campenhout MJ, Yaksh A, Kik C, de Jaegere PP, Ho SY, Allessie MA, et al. Bachmann’s bundle: a key player in the development of atrial fibrillation? Circ Arrhythm Electrophysiol. 2013;6:1041–6.

    Article  PubMed  Google Scholar 

  177. Papez J. Heart musculature of the atria. Am J Anat. 1920;27:255–85.

    Article  Google Scholar 

  178. Ho SY, Sanchez-Quintana D, Cabrera JA, Anderson RH. Anatomy of the left atrium: implications for radiofrequency ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 1999;10:1525–33.

    Article  CAS  PubMed  Google Scholar 

  179. Pambrun T, Duchateau J, Delgove A, Denis A, Constantin M, Ramirez FD, et al. Epicardial course of the septopulmonary bundle: anatomical considerations and clinical implications for roof line completion. Heart Rhythm. 2021;18:349–57.

    Article  PubMed  Google Scholar 

  180. Chauvin M, Shah DC, Haissaguerre M, Marcellin L, Brechenmacher C. The anatomic basis of connections between the coronary sinus musculature and the left atrium in humans. Circulation. 2000;101:647–52.

    Article  CAS  PubMed  Google Scholar 

  181. von Ludinghausen M, Ohmachi N, Besch S, Mettenleiter A. Atrial veins of the human heart. Clin Anat. 1995;8:169–89.

    Article  Google Scholar 

  182. Kim DT, Lai AC, Hwang C, Fan LT, Karagueuzian HS, Chen PS, et al. The ligament of Marshall: a structural analysis in human hearts with implications for atrial arrhythmias. J Am Coll Cardiol. 2000;36:1324–7.

    Article  CAS  PubMed  Google Scholar 

  183. Makino M, Inoue S, Matsuyama TA, Ogawa G, Sakai T, Kobayashi Y, et al. Diverse myocardial extension and autonomic innervation on ligament of Marshall in humans. J Cardiovasc Electrophysiol. 2006;17:594–9.

    Article  PubMed  Google Scholar 

  184. Von Lüdinghausen M, Ohmachi N, Boot C. Myocardial coverage of the coronary sinus and related veins. Clin Anat. 1992;5:1–15.

    Article  Google Scholar 

  185. Marshall J. On the development of the great anterior veins in man and mammalia; including an account of certain remnants of foetal structure found in the adult, a comparative view of these great veins in the different mammalia, and an analysis of their occasional peculiarities in the human subject. Philos Trans Roy Soc Lond. 1850;140:133–70.

    Article  Google Scholar 

  186. DeSimone CV, Noheria A, Lachman N, Edwards WD, Gami AS, Maleszewski JJ, et al. Myocardium of the superior vena cava, coronary sinus, vein of Marshall, and the pulmonary vein ostia: gross anatomic studies in 620 hearts. J Cardiovasc Electrophysiol. 2012;23:1304–9.

    Article  PubMed  Google Scholar 

  187. Baez-Escudero JL, Keida T, Dave AS, Okishige K, Valderrabano M. Ethanol infusion in the vein of Marshall leads to parasympathetic denervation of the human left atrium: implications for atrial fibrillation. J Am Coll Cardiol. 2014;63:1892–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Hwang C, Chen PS. Ligament of Marshall: why it is important for atrial fibrillation ablation. Heart Rhythm. 2009;6:S35-40.

    Article  PubMed  Google Scholar 

  189. Hwang C, Wu TJ, Doshi RN, Peter CT, Chen PS. Vein of Marshall cannulation for the analysis of electrical activity in patients with focal atrial fibrillation. Circulation. 2000;101:1503–5.

    Article  CAS  PubMed  Google Scholar 

  190. Ulphani JS, Arora R, Cain JH, Villuendas R, Shen S, Gordon D, et al. The ligament of Marshall as a parasympathetic conduit. Am J Physiol Heart Circ Physiol. 2007;293:H1629-35.

    Article  CAS  PubMed  Google Scholar 

  191. Hwang C, Karagueuzian HS, Chen PS. Idiopathic paroxysmal atrial fibrillation induced by a focal discharge mechanism in the left superior pulmonary vein: possible roles of the ligament of Marshall. J Cardiovasc Electrophysiol. 1999;10:636–48.

    Article  CAS  PubMed  Google Scholar 

  192. Wittkampf FH, van Oosterhout MF, Loh P, Derksen R, Vonken EJ, Slootweg PJ, et al. Where to draw the mitral isthmus line in catheter ablation of atrial fibrillation: histological analysis. Eur Heart J. 2005;26:689–95.

    Article  PubMed  Google Scholar 

  193. Pambrun T, Denis A, Duchateau J, Sacher F, Hocini M, Jaïs P, et al. Marshall bundles elimination, pulmonary veins isolation and Lines completion for anatomical ablation of persistent atrial fibrillation: Marshall-PLAN case series. J Cardiovasc Electrophysiol. 2019;30:7–15.

    Article  PubMed  Google Scholar 

  194. Becker AE. Left atrial isthmus: anatomic aspects relevant for linear catheter ablation procedures in humans. J Cardiovasc Electrophysiol. 2004;15:809–12.

    Article  PubMed  Google Scholar 

  195. Baez-Escudero JL, Morales PF, Dave AS, Sasaridis CM, Kim YH, Okishige K, et al. Ethanol infusion in the vein of Marshall facilitates mitral isthmus ablation. Heart Rhythm. 2012;9:1207–15.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Takigawa M, Vlachos K, Martin CA, Bourier F, Denis A, Kitamura T, et al. Acute and mid-term outcome of ethanol infusion of vein of Marshall for the treatment of perimitral flutter. Europace. 2020;22:1252–60.

    Article  PubMed  Google Scholar 

  197. Pambrun T, Derval N, Duchateau J, Denis A, Chauvel R, Tixier R, et al. Epicardial course of the musculature related to the great cardiac vein: anatomical considerations and clinical implications for mitral isthmus block after vein of Marshall ethanol infusion. Heart Rhythm. 2021;18:1951–8.

    Article  PubMed  Google Scholar 

  198. Tsai CF, Tai CT, Hsieh MH, Lin WS, Yu WC, Ueng KC, et al. Initiation of atrial fibrillation by ectopic beats originating from the superior vena cava: electrophysiological characteristics and results of radiofrequency ablation. Circulation. 2000;102:67–74.

    Article  CAS  PubMed  Google Scholar 

  199. Nyuta E, Takemoto M, Sakai T, Mito T, Masumoto A, Todoroki W, et al. Importance of the length of the myocardial sleeve in the superior vena cava in patients with atrial fibrillation. J Arrhythm. 2021;37:43–51.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Depes D, Mennander A, Paavonen T, Kholová I. Autonomic nerves in myocardial sleeves around caval veins: potential role in cardiovascular mortality? Cardiovasc Pathol. 2022;59: 107426.

    Article  PubMed  Google Scholar 

  201. Miyazaki S, Taniguchi H, Kusa S, Ichihara N, Nakamura H, Hachiya H, et al. Factors predicting an arrhythmogenic superior vena cava in atrial fibrillation ablation: insight into the mechanism. Heart Rhythm. 2014;11:1560–6.

    Article  PubMed  Google Scholar 

  202. Corradi D, Callegari S, Gelsomino S, Lorusso R, Macchi E. Morphology and pathophysiology of target anatomical sites for ablation procedures in patients with atrial fibrillation: part II: pulmonary veins, caval veins, ganglionated plexi, and ligament of Marshall. Int J Cardiol. 2013;168:1769–78.

    Article  PubMed  Google Scholar 

  203. Wickramasinghe SR, Patel VV. Local innervation and atrial fibrillation. Circulation. 2013;128:1566–75.

    Article  PubMed  Google Scholar 

  204. Kusayama T, Wan J, Yuan Y, Chen PS. Neural mechanisms and therapeutic opportunities for atrial fibrillation. Methodist Debakey Cardiovasc J. 2021;17:43–7.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Kawashima T. The autonomic nervous system of the human heart with special reference to its origin, course, and peripheral distribution. Anat Embryol. 2005;209:425–38.

    Article  Google Scholar 

  206. Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res. 2014;114:1004–21.

    Article  CAS  PubMed  Google Scholar 

  207. Hou Y, Zhou Q, Po SS. Neuromodulation for cardiac arrhythmia. Heart Rhythm. 2016;13:584–92.

    Article  PubMed  Google Scholar 

  208. Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec. 1997;247:289–98.

    Article  CAS  PubMed  Google Scholar 

  209. Kim MY, Sandler BC, Sikkel MB, Cantwell CD, Leong KM, Luther V, et al. Anatomical distribution of ectopy-triggering plexuses in patients with atrial fibrillation. Circ Arrhythm Electrophysiol. 2020;13: e008715.

    Article  PubMed  Google Scholar 

  210. Po SS, Nakagawa H, Jackman WM. Localization of left atrial ganglionated plexi in patients with atrial fibrillation. J Cardiovasc Electrophysiol. 2009;20:1186–9.

    Article  PubMed  Google Scholar 

  211. Scherlag BJ, Nakagawa H, Jackman WM, Yamanashi WS, Patterson E, Po S, et al. Electrical stimulation to identify neural elements on the heart: their role in atrial fibrillation. J Interv Card Electrophysiol. 2005;13:37–42.

    Article  PubMed  Google Scholar 

  212. Lemery R, Birnie D, Tang AS, Green M, Gollob M. Feasibility study of endocardial mapping of ganglionated plexuses during catheter ablation of atrial fibrillation. Heart Rhythm. 2006;3:387–96.

    Article  PubMed  Google Scholar 

  213. Stirrup J, Gregg S, Baavour R, Roth N, Breault C, Agostini D, et al. Hybrid solid-state SPECT/CT left atrial innervation imaging for identification of left atrial ganglionated plexi: technique and validation in patients with atrial fibrillation. J Nucl Cardiol. 2020;27:1939–50.

    Article  CAS  PubMed  Google Scholar 

  214. Lemoine MD, Mencke C, Nies M, Obergassel J, Scherschel K, Wieboldt H, et al. Pulmonary vein isolation by pulsed-field ablation induces less neurocardiac damage than cryoballoon ablation. Circ Arrhythm Electrophysiol. 2023;16: e011598.

    Article  PubMed  Google Scholar 

  215. Musikantow DR, Neuzil P, Petru J, Koruth JS, Kralovec S, Miller MA, et al. Pulsed field ablation to treat atrial fibrillation: autonomic nervous system effects. JACC Clin Electrophysiol. 2023;9:481–93.

    Article  PubMed  Google Scholar 

  216. von Olshausen G, Saluveer O, Schwieler J, Drca N, Bastani H, Tapanainen J, et al. Sinus heart rate post pulmonary vein ablation and long-term risk of recurrences. Clin Res Cardiol. 2021;110:851–60.

    Article  Google Scholar 

  217. Yu HT, Kim TH, Uhm JS, Kim JY, Joung B, Lee MH, et al. Prognosis of high sinus heart rate after catheter ablation for atrial fibrillation. Europace. 2017;19:1132–9.

    PubMed  Google Scholar 

  218. Goff ZD, Laczay B, Yenokyan G, Sivasambu B, Sinha SK, Marine JE, et al. Heart rate increase after pulmonary vein isolation predicts freedom from atrial fibrillation at 1 year. J Cardiovasc Electrophysiol. 2019;30:2818–22.

    Article  PubMed  Google Scholar 

  219. DeLurgio DB, Crossen KJ, Gill J, Blauth C, Oza SR, Magnano AR, et al. Hybrid convergent procedure for the treatment of persistent and long-standing persistent atrial fibrillation: results of CONVERGE clinical trial. Circ Arrhythm Electrophysiol. 2020;13: e009288.

    Article  CAS  PubMed  Google Scholar 

  220. Makati KJ, Sood N, Lee LS, Yang F, Shults CC, DeLurgio DB, et al. Combined epicardial and endocardial ablation for atrial fibrillation: best practices and guide to hybrid convergent procedures. Heart Rhythm. 2021;18:303–12.

    Article  PubMed  Google Scholar 

  221. Kress DC, Erickson L, Choudhuri I, Zilinski J, Mengesha T, Krum D, et al. Comparative effectiveness of hybrid ablation versus endocardial catheter ablation alone in patients with persistent atrial fibrillation. JACC Clin Electrophysiol. 2017;3:341–9.

    Article  PubMed  Google Scholar 

  222. Reddy VY, Neuzil P, D’Avila A, Ruskin JN. Isolating the posterior left atrium and pulmonary veins with a “box” lesion set: use of epicardial ablation to complete electrical isolation. J Cardiovasc Electrophysiol. 2008;19:326–9.

    Article  PubMed  Google Scholar 

  223. Piorkowski C, Kronborg M, Hourdain J, Piorkowski J, Kirstein B, Neudeck S, et al. Endo-/epicardial catheter ablation of atrial fibrillation: feasibility, outcome, and insights into arrhythmia mechanisms. Circ Arrhythm Electrophysiol. 2018;11: e005748.

    Article  PubMed  Google Scholar 

  224. Tung R. Percutaneous epicardial ablation of atrial fibrillation. Card Electrophysiol Clin. 2020;12:371–81.

    Article  PubMed  Google Scholar 

  225. D’Avila A, Scanavacca M, Sosa E, Ruskin JN, Reddy VY. Pericardial anatomy for the interventional electrophysiologist. J Cardiovasc Electrophysiol. 2003;14:422–30.

    Article  PubMed  Google Scholar 

  226. Smith NM, Segars L, Kauffman T, Olinger AB. Using anatomical landmark to avoid phrenic nerve injury during balloon-based procedures in atrial fibrillation patients. Surg Radiol Anat. 2017;39:1369–75.

    Article  PubMed  Google Scholar 

  227. Okumura Y, Henz BD, Bunch TJ, Dalegrave C, Johnson SB, Packer DL. Distortion of right superior pulmonary vein anatomy by balloon catheters as a contributor to phrenic nerve injury. J Cardiovasc Electrophysiol. 2009;20:1151–7.

    Article  PubMed  Google Scholar 

  228. Ströker E, de Asmundis C, Saitoh Y, Velagić V, Mugnai G, Irfan G, et al. Anatomic predictors of phrenic nerve injury in the setting of pulmonary vein isolation using the 28-mm second-generation cryoballoon. Heart Rhythm. 2016;13:342–51.

    Article  PubMed  Google Scholar 

  229. Romero J, Natale A, Lakkireddy D, Cerna L, Diaz JC, Alviz I, et al. Mapping and localization of the left phrenic nerve during left atrial appendage electrical isolation to avoid inadvertent injury in patients undergoing catheter ablation of atrial fibrillation. Heart Rhythm. 2020;17:527–34.

    Article  PubMed  Google Scholar 

  230. Gupta T, Cheema N, Randhawa A, Sahni D. Translational anatomy of the left atrium and esophagus as relevant to the pulmonary vein antral isolation for atrial fibrillation. Surg Radiol Anat. 2020;42:367–76.

    Article  PubMed  Google Scholar 

  231. Bunch TJ, May HT, Crandall BG, Weiss JP, Bair TL, Osborn JS, et al. Intracardiac ultrasound for esophageal anatomic assessment and localization during left atrial ablation for atrial fibrillation. J Cardiovasc Electrophysiol. 2013;24:33–9.

    Article  PubMed  Google Scholar 

  232. Jang SW, Kwon BJ, Choi MS, Kim DB, Shin WS, Cho EJ, et al. Computed tomographic analysis of the esophagus, left atrium, and pulmonary veins: implications for catheter ablation of atrial fibrillation. J Interv Card Electrophysiol. 2011;32:1–6.

    Article  PubMed  Google Scholar 

  233. Sarairah SY, Woodbury B, Methachittiphan N, Tregoning DM, Sridhar AR, Akoum N. Esophageal thermal injury following cryoballoon ablation for atrial fibrillation. JACC Clin Electrophysiol. 2020;6:262–8.

    Article  PubMed  Google Scholar 

  234. Lemola K, Sneider M, Desjardins B, Case I, Han J, Good E, et al. Computed tomographic analysis of the anatomy of the left atrium and the esophagus: implications for left atrial catheter ablation. Circulation. 2004;110:3655–60.

    Article  PubMed  Google Scholar 

  235. Good E, Oral H, Lemola K, Han J, Tamirisa K, Igic P, et al. Movement of the esophagus during left atrial catheter ablation for atrial fibrillation. J Am Coll Cardiol. 2005;46:2107–10.

    Article  PubMed  Google Scholar 

  236. Wilber DJ, Pappone C, Neuzil P, De Paola A, Marchlinski F, Natale A, et al. Comparison of antiarrhythmic drug therapy and radiofrequency catheter ablation in patients with paroxysmal atrial fibrillation: a randomized controlled trial. JAMA. 2010;303:333–40.

    Article  CAS  PubMed  Google Scholar 

  237. Calkins H, Reynolds MR, Spector P, Sondhi M, Xu Y, Martin A, et al. Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation: two systematic literature reviews and metaanalyses. Circ Arrhythm Electrophysiol. 2009;2:349–61.

    Article  CAS  PubMed  Google Scholar 

  238. Jaïs P, Cauchemez B, Macle L, Daoud E, Khairy P, Subbiah R, et al. Catheter ablation versus antiarrhythmic drugs for atrial fibrillation: the A4 study. Circulation. 2008;118:2498–505.

    Article  PubMed  Google Scholar 

  239. Packer DL, Kowal RC, Wheelan KR, Irwin JM, Champagne J, Guerra PG, et al. Cryoballoon ablation of pulmonary veins for paroxysmal atrial fibrillation: first results of the North American Arctic Front (STOP AF) pivotal trial. J Am Coll Cardiol. 2013;61:1713–23.

    Article  PubMed  Google Scholar 

  240. Poole JE, Bahnson TD, Monahan KH, Johnson G, Rostami H, Silverstein AP, et al. Recurrence of atrial fibrillation after catheter ablation or antiarrhythmic drug therapy in the CABANA trial. J Am Coll Cardiol. 2020;75:3105–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Mont L, Bisbal F, Hernández-Madrid A, Pérez-Castellano N, Viñolas X, Arenal A, et al. Catheter ablation vs. antiarrhythmic drug treatment of persistent atrial fibrillation: a multicentre, randomized, controlled trial (SARA study). Eur Heart J. 2014;35:501–7.

    Article  PubMed  Google Scholar 

  242. Scherr D, Khairy P, Miyazaki S, Aurillac-Lavignolle V, Pascale P, Wilton SB, et al. Five-year outcome of catheter ablation of persistent atrial fibrillation using termination of atrial fibrillation as a procedural endpoint. Circ Arrhythm Electrophysiol. 2015;8:18–24.

    Article  CAS  PubMed  Google Scholar 

  243. Wazni OM, Dandamudi G, Sood N, Hoyt R, Tyler J, Durrani S, et al. Cryoballoon ablation as initial therapy for atrial fibrillation. N Engl J Med. 2021;384:316–24.

    Article  CAS  PubMed  Google Scholar 

  244. Andrade JG, Wells GA, Deyell MW, Bennett M, Essebag V, Champagne J, et al. Cryoablation or drug therapy for initial treatment of atrial fibrillation. N Engl J Med. 2021;384:305–15.

    Article  CAS  PubMed  Google Scholar 

  245. Kuniss M, Pavlovic N, Velagic V, Hermida JS, Healey S, Arena G, et al. Cryoballoon ablation vs. antiarrhythmic drugs: first-line therapy for patients with paroxysmal atrial fibrillation. Europace. 2021;23:1033–41.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Cosedis Nielsen C, Johannessen A, Raatikainen P, Hindricks G, Walfridsson H, Kongstad O, et al. Radiofrequency ablation as initial therapy in paroxysmal atrial fibrillation. N Engl J Med. 2012;367:1587–95.

    Article  PubMed  Google Scholar 

  247. Morillo CA, Verma A, Connolly SJ, Kuck KH, Nair GM, Champagne J, et al. Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of paroxysmal atrial fibrillation (RAAFT-2): a randomized trial. JAMA. 2014;311:692–700.

    Article  CAS  PubMed  Google Scholar 

  248. Wazni OM, Marrouche NF, Martin DO, Verma A, Bhargava M, Saliba W, et al. Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of symptomatic atrial fibrillation: a randomized trial. JAMA. 2005;293:2634–40.

    Article  CAS  PubMed  Google Scholar 

  249. Hakalahti A, Biancari F, Nielsen JC, Raatikainen MJ. Radiofrequency ablation vs. antiarrhythmic drug therapy as first line treatment of symptomatic atrial fibrillation: systematic review and metaanalysis. Europace. 2015;17:370–8.

    Article  PubMed  Google Scholar 

  250. Prabhu S, Taylor AJ, Costello BT, Kaye DM, McLellan AJA, Voskoboinik A, et al. Catheter ablation versus medical rate control in atrial fibrillation and systolic dysfunction: the CAMERA-MRI study. J Am Coll Cardiol. 2017;70:1949–61.

    Article  PubMed  Google Scholar 

  251. Sugumar H, Prabhu S, Costello B, Chieng D, Azzopardi S, Voskoboinik A, et al. Catheter ablation versus medication in atrial fibrillation and systolic dysfunction: late outcomes of CAMERA-MRI study. JACC Clin Electrophysiol. 2020;6:1721–31.

    Article  PubMed  Google Scholar 

  252. Hunter RJ, Berriman TJ, Diab I, Kamdar R, Richmond L, Baker V, et al. A randomized controlled trial of catheter ablation versus medical treatment of atrial fibrillation in heart failure (the CAMTAF trial). Circ Arrhythm Electrophysiol. 2014;7:31–8.

    Article  CAS  PubMed  Google Scholar 

  253. Parkash R, Wells GA, Rouleau J, Talajic M, Essebag V, Skanes A, et al. Randomized ablation-based rhythm-control versus rate-control trial in patients with heart failure and atrial fibrillation: results from the RAFT-AF trial. Circulation. 2022;145:1693–704.

    Article  CAS  PubMed  Google Scholar 

  254. Romero J, Gabr M, Alviz I, Briceno D, Diaz JC, Rodriguez D, et al. Improved survival in patients with atrial fibrillation and heart failure undergoing catheter ablation compared to medical treatment: a systematic review and metaanalysis of randomized controlled trials. J Cardiovasc Electrophysiol. 2022;33:2356–66.

    Article  PubMed  Google Scholar 

  255. Di Biase L, Mohanty P, Mohanty S, Santangeli P, Trivedi C, Lakkireddy D, et al. Ablation versus amiodarone for treatment of persistent atrial fibrillation in patients with congestive heart failure and an implanted device: results from the AATAC multicenter randomized trial. Circulation. 2016;133:1637–44.

    Article  PubMed  Google Scholar 

  256. Sohns C, Zintl K, Zhao Y, Dagher L, Andresen D, Siebels J, et al. Impact of left ventricular function and heart failure symptoms on outcomes post ablation of atrial fibrillation in heart failure: CASTLE-AF trial. Circ Arrhythm Electrophysiol. 2020;13: e008461.

    Article  PubMed  Google Scholar 

  257. Packer DL, Piccini JP, Monahan KH, Al-Khalidi HR, Silverstein AP, Noseworthy PA, et al. Ablation versus drug therapy for atrial fibrillation in heart failure: results from the CABANA trial. Circulation. 2021;143:1377–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Asad ZUA, Yousif A, Khan MS, Al-Khatib SM, Stavrakis S. Catheter ablation versus medical therapy for atrial fibrillation: a systematic review and metaanalysis of randomized controlled trials. Circ Arrhythm Electrophysiol. 2019;12: e007414.

    Article  PubMed  Google Scholar 

  259. Briceño DF, Markman TM, Lupercio F, Romero J, Liang JJ, Villablanca PA, et al. Catheter ablation versus conventional treatment of atrial fibrillation in patients with heart failure with reduced ejection fraction: a systematic review and metaanalysis of randomized controlled trials. J Interv Card Electrophysiol. 2018;53:19–29.

    Article  PubMed  Google Scholar 

  260. Sohns C, Fox H, Marrouche NF, Crijns H, Costard-Jaeckle A, Bergau L, et al. Catheter ablation in end-stage heart failure with atrial fibrillation. N Engl J Med. 2023;389:1380–9.

    Article  CAS  PubMed  Google Scholar 

  261. Sciarra L, Rebecchi M, De Ruvo E, De Luca L, Zuccaro LM, Fagagnini A, et al. How many atrial fibrillation ablation candidates have an underlying supraventricular tachycardia previously unknown? Efficacy of isolated triggering arrhythmia ablation. Europace. 2010;12:1707–12.

    Article  PubMed  Google Scholar 

  262. Katritsis DG, Giazitzoglou E, Wood MA, Shepard RK, Parvez B, Ellenbogen KA. Inducible supraventricular tachycardias in patients referred for catheter ablation of atrial fibrillation. Europace. 2007;9:785–9.

    Article  PubMed  Google Scholar 

  263. Delise P, Gianfranchi L, Paparella N, Brignole M, Menozzi C, Themistoclakis S, et al. Clinical usefulness of slow pathway ablation in patients with both paroxysmal atrioventricular nodal reentrant tachycardia and atrial fibrillation. Am J Cardiol. 1997;79:1421–3.

    Article  CAS  PubMed  Google Scholar 

  264. Torbey E, Karam B, Sleiman E, Tabet R, Kirk M, Donaldson D, et al. Incidence and risk factors for atrial fibrillation recurrence after ablation of nodal and atrioventricular reentrant tachycardia: a metaanalysis. Cureus. 2020;12: e7824.

    PubMed  PubMed Central  Google Scholar 

  265. Inada K, Yamane T, Tokutake K, Yokoyama K, Mishima T, Hioki M, et al. The role of successful catheter ablation in patients with paroxysmal atrial fibrillation and prolonged sinus pauses: outcome during a 5-year follow-up. Europace. 2014;16:208–13.

    Article  PubMed  Google Scholar 

  266. Chen YW, Bai R, Lin T, Salim M, Sang CH, Long DY, et al. Pacing or ablation: which is better for paroxysmal atrial fibrillation-related tachycardia-bradycardia syndrome? Pacing Clin Electrophysiol. 2014;37:403–11.

    Article  PubMed  Google Scholar 

  267. Scharf C, Veerareddy S, Ozaydin M, Chugh A, Hall B, Cheung P, et al. Clinical significance of inducible atrial flutter during pulmonary vein isolation in patients with atrial fibrillation. J Am Coll Cardiol. 2004;43:2057–62.

    Article  PubMed  Google Scholar 

  268. Wazni O, Marrouche NF, Martin DO, Gillinov AM, Saliba W, Saad E, et al. Randomized study comparing combined pulmonary vein-left atrial junction disconnection and cavotricuspid isthmus ablation versus pulmonary vein-left atrial junction disconnection alone in patients presenting with typical atrial flutter and atrial fibrillation. Circulation. 2003;108:2479–83.

    Article  PubMed  Google Scholar 

  269. Pérez FJ, Schubert CM, Parvez B, Pathak V, Ellenbogen KA, Wood MA. Long-term outcomes after catheter ablation of cavo-tricuspid isthmus dependent atrial flutter: a metaanalysis. Circ Arrhythm Electrophysiol. 2009;2:393–401.

    Article  PubMed  Google Scholar 

  270. Prasitlumkum N, Tokavanich N, Trongtorsak A, Cheungpasitporn W, Kewcharoen J, Chokesuwattanaskul R, et al. Catheter ablation for atrial fibrillation in the elderly >75 years old: systematic review and metaanalysis. J Cardiovasc Electrophysiol. 2022;33:1435–49.

    Article  PubMed  Google Scholar 

  271. Kawamura I, Aikawa T, Yokoyama Y, Takagi H, Kuno T. Catheter ablation for atrial fibrillation in elderly patients: systematic review and a metaanalysis. Pacing Clin Electrophysiol. 2022;45:59–71.

    Article  PubMed  Google Scholar 

  272. Nielsen J, Kragholm KH, Christensen SB, Johannessen A, Torp-Pedersen C, Kristiansen SB, et al. Periprocedural complications and one-year outcomes after catheter ablation for treatment of atrial fibrillation in elderly patients: a nationwide Danish cohort study. J Geriatr Cardiol. 2021;18:897–907.

    PubMed  PubMed Central  Google Scholar 

  273. Providencia R, Elliott P, Patel K, McCready J, Babu G, Srinivasan N, et al. Catheter ablation for atrial fibrillation in hypertrophic cardiomyopathy: a systematic review and metaanalysis. Heart. 2016;102:1533–43.

    Article  CAS  PubMed  Google Scholar 

  274. Zhao DS, Shen Y, Zhang Q, Lin G, Lu YH, Chen BT, et al. Outcomes of catheter ablation of atrial fibrillation in patients with hypertrophic cardiomyopathy: a systematic review and metaanalysis. Europace. 2016;18:508–20.

    Article  PubMed  Google Scholar 

  275. Dinshaw L, Münkler P, Schäffer B, Klatt N, Jungen C, Dickow J, et al. Ablation of atrial fibrillation in patients with hypertrophic cardiomyopathy: treatment strategy, characteristics of consecutive atrial tachycardia and long-term outcome. J Am Heart Assoc. 2021;10: e017451.

    Article  PubMed  PubMed Central  Google Scholar 

  276. Creta A, Elliott P, Earley MJ, Dhinoja M, Finlay M, Sporton S, et al. Catheter ablation of atrial fibrillation in patients with hypertrophic cardiomyopathy: a European observational multicentre study. Europace. 2021;23:1409–17.

    Article  PubMed  Google Scholar 

  277. Santangeli P, Di Biase L, Themistoclakis S, Raviele A, Schweikert RA, Lakkireddy D, et al. Catheter ablation of atrial fibrillation in hypertrophic cardiomyopathy: long-term outcomes and mechanisms of arrhythmia recurrence. Circ Arrhythm Electrophysiol. 2013;6:1089–94.

    Article  PubMed  Google Scholar 

  278. Rozen G, Elbaz-Greener G, Marai I, Andria N, Hosseini SM, Biton Y, et al. Utilization and complications of catheter ablation for atrial fibrillation in patients with hypertrophic cardiomyopathy. J Am Heart Assoc. 2020;9: e015721.

    Article  PubMed  PubMed Central  Google Scholar 

  279. Ezzeddine FM, Agboola KM, Hassett LC, Killu AM, Del-Carpio Munoz F, DeSimone CV, et al. Catheter ablation of atrial fibrillation in patients with and without hypertrophic cardiomyopathy: systematic review and metaanalysis. Europace. 2023;25.

  280. Dorian P, Guerra PG, Kerr CR, O’Donnell SS, Crystal E, Gillis AM, et al. Validation of a new simple scale to measure symptoms in atrial fibrillation: the Canadian Cardiovascular Society Severity in Atrial Fibrillation scale. Circ Arrhythm Electrophysiol. 2009;2:218–24.

    Article  PubMed  Google Scholar 

  281. Kirchhof P, Auricchio A, Bax J, Crijns H, Camm J, Diener HC, et al. Outcome parameters for trials in atrial fibrillation: recommendations from a consensus conference organized by the German Atrial Fibrillation Competence NETwork and the European Heart Rhythm Association. Europace. 2007;9:1006–23.

    Article  PubMed  Google Scholar 

  282. Rienstra M, Lubitz SA, Mahida S, Magnani JW, Fontes JD, Sinner MF, et al. Symptoms and functional status of patients with atrial fibrillation: state of the art and future research opportunities. Circulation. 2012;125:2933–43.

    Article  PubMed  PubMed Central  Google Scholar 

  283. Sugishita K, Shiono E, Sugiyama T, Ashida T. Diabetes influences the cardiac symptoms related to atrial fibrillation. Circ J. 2003;67:835–8.

    Article  PubMed  Google Scholar 

  284. Hermans ANL, Gawalko M, Slegers DPJ, Andelfinger N, Pluymaekers N, Verhaert DVM, et al. Mobile app-based symptom-rhythm correlation assessment in patients with persistent atrial fibrillation. Int J Cardiol. 2022;367:29–37.

    Article  PubMed  Google Scholar 

  285. Kirchhof P, Camm AJ, Goette A, Brandes A, Eckardt L, Elvan A, et al. Early rhythm-control therapy in patients with atrial fibrillation. N Engl J Med. 2020;383:1305–16.

    Article  PubMed  Google Scholar 

  286. Freemantle N, Lafuente-Lafuente C, Mitchell S, Eckert L, Reynolds M. Mixed treatment comparison of dronedarone, amiodarone, sotalol, flecainide, and propafenone, for the management of atrial fibrillation. Europace. 2011;13:329–45.

    Article  PubMed  Google Scholar 

  287. Valembois L, Audureau E, Takeda A, Jarzebowski W, Belmin J, Lafuente-Lafuente C. Antiarrhythmics for maintaining sinus rhythm after cardioversion of atrial fibrillation. Cochrane Database Syst Rev. 2019;9:Cd005049.

    PubMed  Google Scholar 

  288. Chew DS, Black-Maier E, Loring Z, Noseworthy PA, Packer DL, Exner DV, et al. Diagnosis-to-ablation time and recurrence of atrial fibrillation following catheter ablation: a systematic review and metaanalysis of observational studies. Circ Arrhythm Electrophysiol. 2020;13: e008128.

    Article  PubMed  PubMed Central  Google Scholar 

  289. Kawaji T, Shizuta S, Yamagami S, Aizawa T, Komasa A, Yoshizawa T, et al. Early choice for catheter ablation reduced readmission in management of atrial fibrillation: impact of diagnosis-to-ablation time. Int J Cardiol. 2019;291:69–76.

    Article  PubMed  Google Scholar 

  290. Bisbal F, Alarcón F, Ferrero-De-Loma-Osorio A, González-Ferrer JJ, Alonso-Martín C, Pachón M, et al. Diagnosis-to-ablation time in atrial fibrillation: a modifiable factor relevant to clinical outcome. J Cardiovasc Electrophysiol. 2019;30:1483–90.

    Article  PubMed  Google Scholar 

  291. Kalman JM, Al-Kaisey AM, Parameswaran R, Hawson J, Anderson RD, Lim M, et al. Impact of early vs. delayed atrial fibrillation catheter ablation on atrial arrhythmia recurrences. Eur Heart J. 2023;44:2447–54.

    Article  CAS  PubMed  Google Scholar 

  292. Andrade JG, Wazni OM, Kuniss M, Hawkins NM, Deyell MW, Chierchia GB, et al. Cryoballoon ablation as initial treatment for atrial fibrillation: JACC state-of-the-art review. J Am Coll Cardiol. 2021;78:914–30.

    Article  PubMed  Google Scholar 

  293. Andrade JG, Champagne J, Dubuc M, Deyell MW, Verma A, Macle L, et al. Cryoballoon or radiofrequency ablation for atrial fibrillation assessed by continuous monitoring: a randomized clinical trial. Circulation. 2019;140:1779–88.

    Article  PubMed  Google Scholar 

  294. Kuck KH, Brugada J, Fürnkranz A, Metzner A, Ouyang F, Chun KR, et al. Cryoballoon or radiofrequency ablation for paroxysmal atrial fibrillation. N Engl J Med. 2016;374:2235–45.

    Article  PubMed  Google Scholar 

  295. Walters TE, Wick K, Tan G, Mearns M, Joseph SA, Morton JB, et al. Psychological distress and suicidal ideation in patients with atrial fibrillation: prevalence and response to management strategy. J Am Heart Assoc. 2018;7: e005502.

    Article  PubMed  PubMed Central  Google Scholar 

  296. Al-Kaisey AM, Parameswaran R, Bryant C, Anderson RD, Hawson J, Chieng D, et al. Atrial fibrillation catheter ablation vs medical therapy and psychological distress: a randomized clinical trial. JAMA. 2023;330:925–33.

    Article  PubMed  PubMed Central  Google Scholar 

  297. Providencia R, Defaye P, Lambiase PD, Pavin D, Cebron JP, Halimi F, et al. Results from a multicentre comparison of cryoballoon vs. radiofrequency ablation for paroxysmal atrial fibrillation: is cryoablation more reproducible? Europace. 2017;19:48–57.

    PubMed  Google Scholar 

  298. Deshmukh A, Patel NJ, Pant S, Shah N, Chothani A, Mehta K, et al. In-hospital complications associated with catheter ablation of atrial fibrillation in the United States between 2000 and 2010: analysis of 93 801 procedures. Circulation. 2013;128:2104–12.

    Article  PubMed  Google Scholar 

  299. Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2017;14:e275-444.

    Article  PubMed  PubMed Central  Google Scholar 

  300. Monahan KH, Bunch TJ, Mark DB, Poole JE, Bahnson TD, Al-Khalidi HR, et al. Influence of atrial fibrillation type on outcomes of ablation vs. drug therapy: results from CABANA. Europace. 2022;24:1430–40.

    Article  PubMed  Google Scholar 

  301. Khan MN, Jaïs P, Cummings J, Di Biase L, Sanders P, Martin DO, et al. Pulmonary-vein isolation for atrial fibrillation in patients with heart failure. N Engl J Med. 2008;359:1778–85.

    Article  CAS  PubMed  Google Scholar 

  302. MacDonald MR, Connelly DT, Hawkins NM, Steedman T, Payne J, Shaw M, et al. Radiofrequency ablation for persistent atrial fibrillation in patients with advanced heart failure and severe left ventricular systolic dysfunction: a randomised controlled trial. Heart. 2011;97:740–7.

    Article  PubMed  Google Scholar 

  303. Jones DG, Haldar SK, Hussain W, Sharma R, Francis DP, Rahman-Haley SL, et al. A randomized trial to assess catheter ablation versus rate control in the management of persistent atrial fibrillation in heart failure. J Am Coll Cardiol. 2013;61:1894–903.

    Article  PubMed  Google Scholar 

  304. Kuck KH, Merkely B, Zahn R, Arentz T, Seidl K, Schlüter M, et al. Catheter ablation versus best medical therapy in patients with persistent atrial fibrillation and congestive heart failure: the randomized AMICA trial. Circ Arrhythm Electrophysiol. 2019;12: e007731.

    Article  PubMed  Google Scholar 

  305. Chen S, Pürerfellner H, Meyer C, Acou WJ, Schratter A, Ling Z, et al. Rhythm control for patients with atrial fibrillation complicated with heart failure in the contemporary era of catheter ablation: a stratified pooled analysis of randomized data. Eur Heart J. 2020;41:2863–73.

    Article  PubMed  Google Scholar 

  306. Marrouche NF, Brachmann J, Andresen D, Siebels J, Boersma L, Jordaens L, et al. Catheter ablation for atrial fibrillation with heart failure. N Engl J Med. 2018;378:417–27.

    Article  PubMed  Google Scholar 

  307. Bergonti M, Spera F, Tijskens M, Bonomi A, Saenen J, Huybrechts W, et al. A new prediction model for left ventricular systolic function recovery after catheter ablation of atrial fibrillation in patients with heart failure: the ANTWOORD Study. Int J Cardiol. 2022;358:45–50.

    Article  PubMed  Google Scholar 

  308. Bergonti M, Ascione C, Marcon L, Pambrun T, Della Rocca DG, Ferrero TG, et al. Left ventricular functional recovery after atrial fibrillation catheter ablation in heart failure: a prediction model. Eur Heart J. 2023;44:3327–5.

    Article  PubMed  Google Scholar 

  309. Kawaji T, Shizuta S, Aizawa T, Yamagami S, Kato M, Yokomatsu T, et al. Impact of catheter ablation for atrial fibrillation on cardiac disorders in patients with coexisting heart failure. ESC Heart Fail. 2021;8:670–9.

    Article  PubMed  Google Scholar 

  310. Okada M, Tanaka N, Oka T, Tanaka K, Ninomiya Y, Hirao Y, et al. Clinical significance of left ventricular reverse remodeling after catheter ablation of atrial fibrillation in patients with left ventricular systolic dysfunction. J Cardiol. 2021;77:500–8.

    Article  PubMed  Google Scholar 

  311. Kirstein B, Neudeck S, Gaspar T, Piorkowski J, Wechselberger S, Kronborg MB, et al. Left atrial fibrosis predicts left ventricular ejection fraction response after atrial fibrillation ablation in heart failure patients: the Fibrosis-HF study. Europace. 2020;22:1812–21.

    Article  PubMed  Google Scholar 

  312. Tsuji A, Masuda M, Asai M, Iida O, Okamoto S, Ishihara T, et al. Impact of the temporal relationship between atrial fibrillation and heart failure on prognosis after ablation. Circ J. 2020;84:1467–74.

    Article  PubMed  Google Scholar 

  313. Ishiguchi H, Yoshiga Y, Shimizu A, Ueyama T, Fukuda M, Kato T, et al. Long-term events following catheter-ablation for atrial fibrillation in heart failure with preserved ejection fraction. ESC Heart Fail. 2022;9:3505–18.

    Article  PubMed  PubMed Central  Google Scholar 

  314. Smit MD, Moes ML, Maass AH, Achekar ID, Van Geel PP, Hillege HL, et al. The importance of whether atrial fibrillation or heart failure develops first. Eur J Heart Fail. 2012;14:1030–40.

    Article  PubMed  Google Scholar 

  315. von Olshausen G, Benson L, Dahlström U, Lund LH, Savarese G, Braunschweig F. Catheter ablation for patients with atrial fibrillation and heart failure: insights from the Swedish Heart Failure Registry. Eur J Heart Fail. 2022;24:1636–46.

    Article  Google Scholar 

  316. Shiraishi Y, Kohsaka S, Ikemura N, Kimura T, Katsumata Y, Tanimoto K, et al. Catheter ablation for patients with atrial fibrillation and heart failure with reduced and preserved ejection fraction: insights from the KiCS-AF multicentre cohort study. Europace. 2023;25:83–91.

    Article  PubMed  Google Scholar 

  317. Gu G, Wu J, Gao X, Liu M, Jin C, Xu Y. Catheter ablation of atrial fibrillation in patients with heart failure and preserved ejection fraction: a metaanalysis. Clin Cardiol. 2022;45:786–93.

    Article  PubMed  PubMed Central  Google Scholar 

  318. Yamauchi R, Morishima I, Okumura K, Kanzaki Y, Morita Y, Takagi K, et al. Catheter ablation for non-paroxysmal atrial fibrillation accompanied by heart failure with preserved ejection fraction: feasibility and benefits in functions and B-type natriuretic peptide. Europace. 2021;23:1252–61.

    Article  PubMed  Google Scholar 

  319. Rordorf R, Scazzuso F, Chun KRJ, Khelae SK, Kueffer FJ, Braegelmann KM, et al. Cryoballoon ablation for the treatment of atrial fibrillation in patients with concomitant heart failure and either reduced or preserved left ventricular ejection fraction: results from the Cryo AF Global Registry. J Am Heart Assoc. 2021;10: e021323.

    Article  PubMed  PubMed Central  Google Scholar 

  320. Aldaas OM, Lupercio F, Darden D, Mylavarapu PS, Malladi CL, Han FT, et al. Metaanalysis of the usefulness of catheter ablation of atrial fibrillation in patients with heart failure with preserved ejection fraction. Am J Cardiol. 2021;142:66–73.

    Article  CAS  PubMed  Google Scholar 

  321. Black-Maier E, Ren X, Steinberg BA, Green CL, Barnett AS, Rosa NS, et al. Catheter ablation of atrial fibrillation in patients with heart failure and preserved ejection fraction. Heart Rhythm. 2018;15:651–7.

    Article  PubMed  Google Scholar 

  322. Chieng D, Sugumar H, Segan L, Tan C, Vizi D, Nanayakkara S, et al. Atrial fibrillation ablation for heart failure with preserved ejection fraction. JACC Heart Fail. 2023;11:646–58.

    Article  PubMed  Google Scholar 

  323. Ganapathy AV, Monjazeb S, Ganapathy KS, Shanoon F, Razavi M. “Asymptomatic” persistent or permanent atrial fibrillation: a misnomer in selected patients. Int J Cardiol. 2015;185:112–3.

    Article  PubMed  Google Scholar 

  324. Shin DI, Jaekel K, Schley P, Sause A, Müller M, Fueth R, et al. Plasma levels of NT-pro-BNP in patients with atrial fibrillation before and after electrical cardioversion. Z Kardiol. 2005;94:795–800.

    Article  CAS  PubMed  Google Scholar 

  325. Stojadinović P, Deshraju A, Wichterle D, Fukunaga M, Peichl P, Kautzner J, et al. The hemodynamic effect of simulated atrial fibrillation on left ventricular function. J Cardiovasc Electrophysiol. 2022;33:2569–77.

    Article  PubMed  Google Scholar 

  326. Clark DM, Plumb VJ, Epstein AE, Kay GN. Hemodynamic effects of an irregular sequence of ventricular cycle lengths during atrial fibrillation. J Am Coll Cardiol. 1997;30:1039–45.

    Article  CAS  PubMed  Google Scholar 

  327. Ganesan AN, Chew DP, Hartshorne T, Selvanayagam JB, Aylward PE, Sanders P, et al. The impact of atrial fibrillation type on the risk of thromboembolism, mortality, and bleeding: a systematic review and metaanalysis. Eur Heart J. 2016;37:1591–602.

    Article  PubMed  Google Scholar 

  328. Link MS, Giugliano RP, Ruff CT, Scirica BM, Huikuri H, Oto A, et al. Stroke and mortality risk in patients with various patterns of atrial fibrillation: results from the ENGAGE AF-TIMI 48 trial (effective anticoagulation with factor Xa next generation in atrial fibrillation-thrombolysis in myocardial infarction 48). Circ Arrhythm Electrophysiol. 2017;10: e004267.

    Article  CAS  PubMed  Google Scholar 

  329. Kuck KH, Lebedev DS, Mikhaylov EN, Romanov A, Gellér L, Kalējs O, et al. Catheter ablation or medical therapy to delay progression of atrial fibrillation: the randomized controlled atrial fibrillation progression trial (ATTEST). Europace. 2021;23:362–9.

    Article  PubMed  Google Scholar 

  330. Mark DB, Anstrom KJ, Sheng S, Piccini JP, Baloch KN, Monahan KH, et al. Effect of catheter ablation vs medical therapy on quality of life among patients with atrial fibrillation: the CABANA randomized clinical trial. JAMA. 2019;321:1275–85.

    Article  PubMed  PubMed Central  Google Scholar 

  331. Bahnson TD, Giczewska A, Mark DB, Russo AM, Monahan KH, Al-Khalidi HR, et al. Association between age and outcomes of catheter ablation versus medical therapy for atrial fibrillation: results from the CABANA trial. Circulation. 2022;145:796–804.

    Article  PubMed  Google Scholar 

  332. Willems S, Borof K, Brandes A, Breithardt G, Camm AJ, Crijns H, et al. Systematic, early rhythm control strategy for atrial fibrillation in patients with or without symptoms: the EAST-AFNET 4 trial. Eur Heart J. 2022;43:1219–30.

    Article  CAS  PubMed  Google Scholar 

  333. Sauer WH, Alonso C, Zado E, Cooper JM, Lin D, Dixit S, et al. Atrioventricular nodal reentrant tachycardia in patients referred for atrial fibrillation ablation: response to ablation that incorporates slow-pathway modification. Circulation. 2006;114:191–5.

    Article  PubMed  Google Scholar 

  334. Hamer ME, Wilkinson WE, Clair WK, Page RL, McCarthy EA, Pritchett EL. Incidence of symptomatic atrial fibrillation in patients with paroxysmal supraventricular tachycardia. J Am Coll Cardiol. 1995;25:984–8.

    Article  CAS  PubMed  Google Scholar 

  335. Dagres N, Clague JR, Lottkamp H, Hindricks G, Breithardt G, Borggrefe M. Impact of radiofrequency catheter ablation of accessory pathways on the frequency of atrial fibrillation during long-term follow-up; high recurrence rate of atrial fibrillation in patients older than 50 years of age. Eur Heart J. 2001;22:423–7.

    Article  CAS  PubMed  Google Scholar 

  336. Hocini M, Sanders P, Deisenhofer I, Jaïs P, Hsu LF, Scavée C, et al. Reverse remodeling of sinus node function after catheter ablation of atrial fibrillation in patients with prolonged sinus pauses. Circulation. 2003;108:1172–5.

    Article  PubMed  Google Scholar 

  337. Akoum N, McGann C, Vergara G, Badger T, Ranjan R, Mahnkopf C, et al. Atrial fibrosis quantified using late gadolinium enhancement MRI is associated with sinus node dysfunction requiring pacemaker implant. J Cardiovasc Electrophysiol. 2012;23:44–50.

    Article  PubMed  Google Scholar 

  338. Calkins H. Should catheter ablation be the preferred approach for treatment of atrial fibrillation related symptomatic sinus node dysfunction? Pacing Clin Electrophysiol. 2014;37:401–2.

    Article  PubMed  Google Scholar 

  339. Merino JL. Slow conduction and flutter following atrial fibrillation ablation: proarrhythmia or unmasking effect of radiofrequency application? J Cardiovasc Electrophysiol. 2006;17:516–9.

    Article  PubMed  Google Scholar 

  340. Hwang TH, Yu HT, Kim TH, Uhm JS, Kim JY, Joung B, et al. Permanent pacemaker implantations after catheter ablation in patients with atrial fibrillation associated with underlying sinus node dysfunction. Korean Circ J. 2020;50:346–57.

    Article  PubMed  Google Scholar 

  341. Waldo AL, Feld GK. Inter-relationships of atrial fibrillation and atrial flutter mechanisms and clinical implications. J Am Coll Cardiol. 2008;51:779–86.

    Article  PubMed  Google Scholar 

  342. Gupta D, Ding WY, Calvert P, Williams E, Das M, Tovmassian L, et al. Cryoballoon pulmonary vein isolation as first-line treatment for typical atrial flutter. Heart. 2023;109:364–71.

    PubMed  Google Scholar 

  343. Chugh A, Oral H, Lemola K, Hall B, Cheung P, Good E, et al. Prevalence, mechanisms, and clinical significance of macroreentrant atrial tachycardia during and following left atrial ablation for atrial fibrillation. Heart Rhythm. 2005;2:464–71.

    Article  PubMed  Google Scholar 

  344. Chen J, Hocini M, Larsen TB, Proclemer A, Sciaraffia E, Blomström-Lundqvist C. Clinical management of arrhythmias in elderly patients: results of the European Heart Rhythm Association survey. Europace. 2015;17:314–7.

    Article  PubMed  Google Scholar 

  345. Ikenouchi T, Nitta J, Nitta G, Kato S, Iwasaki T, Murata K, et al. Propensity-matched comparison of cryoballoon and radiofrequency ablation for atrial fibrillation in elderly patients. Heart Rhythm. 2019;16:838–45.

    Article  PubMed  Google Scholar 

  346. Guttmann OP, Rahman MS, O’Mahony C, Anastasakis A, Elliott PM. Atrial fibrillation and thromboembolism in patients with hypertrophic cardiomyopathy: systematic review. Heart. 2014;100:465–72.

    Article  PubMed  Google Scholar 

  347. Rowin EJ, Orfanos A, Estes NAM, Wang W, Link MS, Maron MS, et al. Occurrence and natural history of clinically silent episodes of atrial fibrillation in hypertrophic cardiomyopathy. Am J Cardiol. 2017;119:1862–5.

    Article  PubMed  Google Scholar 

  348. Rowin EJ, Hausvater A, Link MS, Abt P, Gionfriddo W, Wang W, et al. Clinical profile and consequences of atrial fibrillation in hypertrophic cardiomyopathy. Circulation. 2017;136:2420–36.

    Article  PubMed  Google Scholar 

  349. Asad Z, Abbas M, Javed I, Korantzopoulos P, Stavrakis S. Obesity is associated with incident atrial fibrillation independent of gender: a metaanalysis. J Cardiovasc Electrophysiol. 2018;29:725–32.

    Article  PubMed  Google Scholar 

  350. Sivasambu B, Balouch MA, Zghaib T, Bajwa RJ, Chrispin J, Berger RD, et al. Increased rates of atrial fibrillation recurrence following pulmonary vein isolation in overweight and obese patients. J Cardiovasc Electrophysiol. 2018;29:239–45.

    Article  PubMed  Google Scholar 

  351. Glover BM, Hong KL, Dagres N, Arbelo E, Laroche C, Riahi S, et al. Impact of body mass index on the outcome of catheter ablation of atrial fibrillation. Heart. 2019;105:244–50.

    Article  PubMed  Google Scholar 

  352. Shoemaker MB, Muhammad R, Farrell M, Parvez B, White BW, Streur M, et al. Relation of morbid obesity and female gender to risk of procedural complications in patients undergoing atrial fibrillation ablation. Am J Cardiol. 2013;111:368–73.

    Article  PubMed  Google Scholar 

  353. Pathak RK, Middeldorp ME, Lau DH, Mehta AB, Mahajan R, Twomey D, et al. Aggressive risk factor reduction study for atrial fibrillation and implications for the outcome of ablation: the ARREST-AF cohort study. J Am Coll Cardiol. 2014;64:2222–31.

    Article  PubMed  Google Scholar 

  354. Pathak RK, Middeldorp ME, Meredith M, Mehta AB, Mahajan R, Wong CX, et al. Long-term effect of goal-directed weight management in an atrial fibrillation cohort: a long-term follow-up study (LEGACY). J Am Coll Cardiol. 2015;65:2159–69.

    Article  PubMed  Google Scholar 

  355. Zhang D, Ma Y, Xu J, Yi F. Association between obstructive sleep apnea (OSA) and atrial fibrillation (AF): a dose-response metaanalysis. Medicine. 2022;101: e29443.

    Article  PubMed  PubMed Central  Google Scholar 

  356. Szymanski FM, Filipiak KJ, Platek AE, Hrynkiewicz-Szymanska A, Kotkowski M, Kozluk E, et al. Presence and severity of obstructive sleep apnea and remote outcomes of atrial fibrillation ablations—a long-term prospective, cross-sectional cohort study. Sleep Breath. 2015;19:849–56.

    Article  PubMed  PubMed Central  Google Scholar 

  357. Li L, Wang ZW, Li J, Ge X, Guo LZ, Wang Y, et al. Efficacy of catheter ablation of atrial fibrillation in patients with obstructive sleep apnoea with and without continuous positive airway pressure treatment: a metaanalysis of observational studies. Europace. 2014;16:1309–14.

    Article  PubMed  Google Scholar 

  358. Kawakami H, Nagai T, Fujii A, Uetani T, Nishimura K, Inoue K, et al. Apnea-hypopnea index as a predictor of atrial fibrillation recurrence following initial pulmonary vein isolation: usefulness of type-3 portable monitor for sleep-disordered breathing. J Interv Card Electrophysiol. 2016;47:237–44.

    Article  PubMed  Google Scholar 

  359. Ng CY, Liu T, Shehata M, Stevens S, Chugh SS, Wang X. Metaanalysis of obstructive sleep apnea as predictor of atrial fibrillation recurrence after catheter ablation. Am J Cardiol. 2011;108:47–51.

    Article  PubMed  Google Scholar 

  360. Naruse Y, Tada H, Satoh M, Yanagihara M, Tsuneoka H, Hirata Y, et al. Concomitant obstructive sleep apnea increases the recurrence of atrial fibrillation following radiofrequency catheter ablation of atrial fibrillation: clinical impact of continuous positive airway pressure therapy. Heart Rhythm. 2013;10:331–7.

    Article  PubMed  Google Scholar 

  361. Li X, Zhou X, Xu X, Dai J, Chen C, Ma L, et al. Effects of continuous positive airway pressure treatment in obstructive sleep apnea patients with atrial fibrillation: a metaanalysis. Medicine. 2021;100: e25438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Nalliah CJ, Wong GR, Lee G, Voskoboinik A, Kee K, Goldin J, et al. Impact of CPAP on the atrial fibrillation substrate in obstructive sleep apnea: the SLEEP-AF study. JACC Clin Electrophysiol. 2022;8:869–77.

    Article  PubMed  Google Scholar 

  363. Hunt TE, Traaen GM, Aakerøy L, Bendz C, Øverland B, Akre H, et al. Effect of continuous positive airway pressure therapy on recurrence of atrial fibrillation after pulmonary vein isolation in patients with obstructive sleep apnea: a randomized controlled trial. Heart Rhythm. 2022;19:1433–41.

    Article  PubMed  Google Scholar 

  364. Donnellan E, Aagaard P, Kanj M, Jaber W, Elshazly M, Hoosien M, et al. Association between preablation glycemic control and outcomes among patients with diabetes undergoing atrial fibrillation ablation. JACC Clin Electrophysiol. 2019;5:897–903.

    Article  PubMed  Google Scholar 

  365. Takahashi Y, Nitta J, Kobori A, Sakamoto Y, Nagata Y, Tanimoto K, et al. Alcohol consumption reduction and clinical outcomes of catheter ablation for atrial fibrillation. Circ Arrhythm Electrophysiol. 2021;14: e009770.

    Article  PubMed  Google Scholar 

  366. Cheng WH, Lo LW, Lin YJ, Chang SL, Hu YF, Hung Y, et al. Cigarette smoking causes a worse long-term outcome in persistent atrial fibrillation following catheter ablation. J Cardiovasc Electrophysiol. 2018;29:699–706.

    Article  PubMed  Google Scholar 

  367. Bertaglia E, Anselmino M, Zorzi A, Russo V, Toso E, Peruzza F, et al. NOACs and atrial fibrillation: incidence and predictors of left atrial thrombus in the real world. Int J Cardiol. 2017;249:179–83.

    Article  PubMed  Google Scholar 

  368. Lurie A, Wang J, Hinnegan KJ, McIntyre WF, Belley-Côté EP, Amit G, et al. Prevalence of left atrial thrombus in anticoagulated patients with atrial fibrillation. J Am Coll Cardiol. 2021;77:2875–86.

    Article  PubMed  Google Scholar 

  369. Lip GY, Frison L, Grind M. Stroke event rates in anticoagulated patients with paroxysmal atrial fibrillation. J Intern Med. 2008;264:50–61.

    Article  CAS  PubMed  Google Scholar 

  370. Al-Khatib SM, Thomas L, Wallentin L, Lopes RD, Gersh B, Garcia D, et al. Outcomes of apixaban vs. warfarin by type and duration of atrial fibrillation: results from the ARISTOTLE trial. Eur Heart J. 2013;34:2464–71.

    Article  CAS  PubMed  Google Scholar 

  371. Steinberg BA, Hellkamp AS, Lokhnygina Y, Patel MR, Breithardt G, Hankey GJ, et al. Higher risk of death and stroke in patients with persistent vs. paroxysmal atrial fibrillation: results from the ROCKET-AF Trial. Eur Heart J. 2015;36:288–96.

    Article  PubMed  Google Scholar 

  372. Jung H, Sung JH, Yang PS, Jang E, Yu HT, Kim TH, et al. Stroke risk stratification for atrial fibrillation patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2018;72:2409–11.

    Article  PubMed  Google Scholar 

  373. Manjunath CN, Srinivasa KH, Panneerselvam A, Prabhavathi B, Ravindranath KS, Rangan K, et al. Incidence and predictors of left atrial thrombus in patients with rheumatic mitral stenosis and sinus rhythm: a transesophageal echocardiographic study. Echocardiography. 2011;28:457–60.

    Article  PubMed  Google Scholar 

  374. Saidi SJ, Motamedi MH. Incidence and factors influencing left atrial clot in patients with mitral stenosis and normal sinus rhythm. Heart. 2004;90:1342–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Ahmed K, Rehman Memon A, Liaquat H Sr, Mujtaba M, Parkash C, Sultan FAT, et al. The frequency of left atrial thrombus on transthoracic echocardiogram in patients with mitral stenosis. Cureus. 2020;12: e7453.

    PubMed  PubMed Central  Google Scholar 

  376. Feng D, Edwards WD, Oh JK, Chandrasekaran K, Grogan M, Martinez MW, et al. Intracardiac thrombosis and embolism in patients with cardiac amyloidosis. Circulation. 2007;116:2420–6.

    Article  PubMed  Google Scholar 

  377. Feng D, Syed IS, Martinez M, Oh JK, Jaffe AS, Grogan M, et al. Intracardiac thrombosis and anticoagulation therapy in cardiac amyloidosis. Circulation. 2009;119:2490–7.

    Article  CAS  PubMed  Google Scholar 

  378. El-Am EA, Dispenzieri A, Melduni RM, Ammash NM, White RD, Hodge DO, et al. Direct current cardioversion of atrial arrhythmias in adults with cardiac amyloidosis. J Am Coll Cardiol. 2019;73:589–97.

    Article  PubMed  PubMed Central  Google Scholar 

  379. Touboul O, Algalarrondo V, Oghina S, Elbaz N, Rouffiac S, Hamon D, et al. Electrical cardioversion of atrial arrhythmias with cardiac amyloidosis in the era of direct oral anticogulants. ESC Heart Fail. 2022;9:3556–64.

    Article  PubMed  PubMed Central  Google Scholar 

  380. Burczak DR, Julakanti RR, Kara Balla A, Scott CG, Geske JB, Ommen SR, et al. Risk of left atrial thrombus in patients with hypertrophic cardiomyopathy and atrial fibrillation. J Am Coll Cardiol. 2023;82:278–9.

    Article  PubMed  Google Scholar 

  381. Di Biase L, Burkhardt JD, Mohanty P, Sanchez J, Horton R, Gallinghouse GJ, et al. Periprocedural stroke and management of major bleeding complications in patients undergoing catheter ablation of atrial fibrillation: the impact of periprocedural therapeutic international normalized ratio. Circulation. 2010;121:2550–6.

    Article  PubMed  Google Scholar 

  382. Santangeli P, Di Biase L, Horton R, Burkhardt JD, Sanchez J, Al-Ahmad A, et al. Ablation of atrial fibrillation under therapeutic warfarin reduces periprocedural complications: evidence from a metaanalysis. Circ Arrhythm Electrophysiol. 2012;5:302–11.

    Article  CAS  PubMed  Google Scholar 

  383. Wazni OM, Beheiry S, Fahmy T, Barrett C, Hao S, Patel D, et al. Atrial fibrillation ablation in patients with therapeutic international normalized ratio: comparison of strategies of anticoagulation management in the periprocedural period. Circulation. 2007;116:2531–4.

    Article  PubMed  Google Scholar 

  384. Di Biase L, Burkhardt JD, Santangeli P, Mohanty P, Sanchez JE, Horton R, et al. Periprocedural stroke and bleeding complications in patients undergoing catheter ablation of atrial fibrillation with different anticoagulation management: results from the role of coumadin in preventing thromboembolism in atrial fibrillation (AF) patients undergoing catheter ablation (COMPARE) randomized trial. Circulation. 2014;129:2638–44.

    Article  PubMed  Google Scholar 

  385. Cappato R, Marchlinski FE, Hohnloser SH, Naccarelli GV, Xiang J, Wilber DJ, et al. Uninterrupted rivaroxaban vs. uninterrupted vitamin K antagonists for catheter ablation in non-valvular atrial fibrillation. Eur Heart J. 2015;36:1805–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Calkins H, Willems S, Gerstenfeld EP, Verma A, Schilling R, Hohnloser SH, et al. Uninterrupted dabigatran versus warfarin for ablation in atrial fibrillation. N Engl J Med. 2017;376:1627–36.

    Article  CAS  PubMed  Google Scholar 

  387. Kirchhof P, Haeusler KG, Blank B, De Bono J, Callans D, Elvan A, et al. Apixaban in patients at risk of stroke undergoing atrial fibrillation ablation. Eur Heart J. 2018;39:2942–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Hohnloser SH, Camm J, Cappato R, Diener HC, Heidbüchel H, Mont L, et al. Uninterrupted edoxaban vs. vitamin K antagonists for ablation of atrial fibrillation: the ELIMINATE-AF trial. Eur Heart J. 2019;40:3013–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Cardoso R, Knijnik L, Bhonsale A, Miller J, Nasi G, Rivera M, et al. An updated metaanalysis of novel oral anticoagulants versus vitamin K antagonists for uninterrupted anticoagulation in atrial fibrillation catheter ablation. Heart Rhythm. 2018;15:107–15.

    Article  PubMed  Google Scholar 

  390. Romero J, Cerrud-Rodriguez RC, Alviz I, Diaz JC, Rodriguez D, Arshad S, et al. Significant benefit of uninterrupted DOACs versus VKA during catheter ablation of atrial fibrillation. JACC Clin Electrophysiol. 2019;5:1396–405.

    Article  PubMed  Google Scholar 

  391. Di Biase L, Callans D, Haeusler KG, Hindricks G, Al-Khalidi H, Mont L, et al. Rationale and design of AXAFA-AFNET 5: an investigator-initiated, randomized, open, blinded outcome assessment, multi-centre trial to comparing continuous apixaban to vitamin K antagonists in patients undergoing atrial fibrillation catheter ablation. Europace. 2017;19:132–8.

    Article  PubMed  Google Scholar 

  392. Romero J, Cerrud-Rodriguez RC, Diaz JC, Michaud GF, Taveras J, Alviz I, et al. Uninterrupted direct oral anticoagulants vs. uninterrupted vitamin K antagonists during catheter ablation of non-valvular atrial fibrillation: a systematic review and metaanalysis of randomized controlled trials. Europace. 2018;20:1612–20.

    Article  PubMed  Google Scholar 

  393. Di Biase L, Lakkireddy D, Trivedi C, Deneke T, Martinek M, Mohanty S, et al. Feasibility and safety of uninterrupted periprocedural apixaban administration in patients undergoing radiofrequency catheter ablation for atrial fibrillation: results from a multicenter study. Heart Rhythm. 2015;12:1162–8.

    Article  PubMed  Google Scholar 

  394. Yu HT, Shim J, Park J, Kim TH, Uhm JS, Kim JY, et al. When is it appropriate to stop non-vitamin K antagonist oral anticoagulants before catheter ablation of atrial fibrillation? A multicentre prospective randomized study. Eur Heart J. 2019;40:1531–7.

    Article  CAS  PubMed  Google Scholar 

  395. Reynolds MR, Allison JS, Natale A, Weisberg IL, Ellenbogen KA, Richards M, et al. A Prospective randomized trial of apixaban dosing during atrial fibrillation ablation: the AEIOU trial. JACC Clin Electrophysiol. 2018;4:580–8.

    Article  PubMed  Google Scholar 

  396. Nakamura K, Naito S, Sasaki T, Take Y, Minami K, Kitagawa Y, et al. Uninterrupted vs. interrupted periprocedural direct oral anticoagulants for catheter ablation of atrial fibrillation: a prospective randomized single-centre study on postablation thromboembolic and haemorrhagic events. Europace. 2019;21:259–67.

    Article  PubMed  Google Scholar 

  397. Ando M, Inden Y, Yoshida Y, Sairaku A, Yanagisawa S, Suzuki H, et al. Differences in prothrombotic response between the uninterrupted and interrupted apixaban therapies in patients undergoing cryoballoon ablation for paroxysmal atrial fibrillation: a randomized controlled study. Heart Vessels. 2019;34:1533–41.

    Article  PubMed  Google Scholar 

  398. Nagao T, Suzuki H, Matsunaga S, Nishikawa Y, Harada K, Mamiya K, et al. Impact of periprocedural anticoagulation therapy on the incidence of silent stroke after atrial fibrillation ablation in patients receiving direct oral anticoagulants: uninterrupted vs. interrupted by one dose strategy. Europace. 2019;21:590–7.

    Article  PubMed  Google Scholar 

  399. Patel K, Natale A, Yang R, Trivedi C, Romero J, Briceno D, et al. Is transesophageal echocardiography necessary in patients undergoing ablation of atrial fibrillation on an uninterrupted direct oral anticoagulant regimen? Results from a prospective multicenter registry. Heart Rhythm. 2020;17:2093–9.

    Article  PubMed  Google Scholar 

  400. Wang Y, Zhao Y, Zhou K, Zei PC, Wang Y, Cheng H, et al. Intracardiac echocardiography is a safe and effective alternative to transesophageal echocardiography for left atrial appendage thrombus evaluation at the time of atrial fibrillation ablation: the ICE-TEE study. Pacing Clin Electrophysiol. 2023;46:3–10.

    Article  PubMed  Google Scholar 

  401. Morton JB, Sanders P, Sparks PB, Morgan J, Kalman JM. Usefulness of phased-array intracardiac echocardiography for the assessment of left atrial mechanical “stunning” in atrial flutter and comparison with multiplane transesophageal echocardiography(*). Am J Cardiol. 2002;90:741–6.

    Article  PubMed  Google Scholar 

  402. Baran J, Stec S, Pilichowska-Paszkiet E, Zaborska B, Sikora-Frąc M, Kryński T, et al. Intracardiac echocardiography for detection of thrombus in the left atrial appendage: comparison with transesophageal echocardiography in patients undergoing ablation for atrial fibrillation: the Action-Ice I study. Circ Arrhythm Electrophysiol. 2013;6:1074–81.

    Article  PubMed  Google Scholar 

  403. Tsyganov A, Shapieva A, Sandrikov V, Fedulova S, Mironovich S, Dzeranova A, et al. Transesophageal vs. intracardiac echocardiographic screening in patients undergoing atrial fibrillation ablation with uninterrupted rivaroxaban. BMC Cardiovasc Disord. 2017;17:171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. Saksena S, Sra J, Jordaens L, Kusumoto F, Knight B, Natale A, et al. A prospective comparison of cardiac imaging using intracardiac echocardiography with transesophageal echocardiography in patients with atrial fibrillation: the intracardiac echocardiography guided cardioversion helps interventional procedures study. Circ Arrhythm Electrophysiol. 2010;3:571–7.

    Article  PubMed  Google Scholar 

  405. Sriram CS, Banchs JE, Moukabary T, Moradkhan R, Gonzalez MD. Detection of left atrial thrombus by intracardiac echocardiography in patients undergoing ablation of atrial fibrillation. J Interv Card Electrophysiol. 2015;43:227–36.

    Article  PubMed  Google Scholar 

  406. Yu S, Zhang H, Li H. Cardiac computed tomography versus transesophageal echocardiography for the detection of left atrial appendage thrombus: a systemic review and metaanalysis. J Am Heart Assoc. 2021;10: e022505.

    Article  PubMed  PubMed Central  Google Scholar 

  407. Vira T, Pechlivanoglou P, Connelly K, Wijeysundera HC, Roifman I. Cardiac computed tomography and magnetic resonance imaging vs. transoesophageal echocardiography for diagnosing left atrial appendage thrombi. Europace. 2019;21:e1-10.

    Article  PubMed  Google Scholar 

  408. Spagnolo P, Giglio M, Di Marco D, Cannaò PM, Agricola E, Della Bella PE, et al. Diagnosis of left atrial appendage thrombus in patients with atrial fibrillation: delayed contrast-enhanced cardiac CT. Eur Radiol. 2021;31:1236–44.

    Article  PubMed  Google Scholar 

  409. Berruezo A, Tamborero D, Mont L, Benito B, Tolosana JM, Sitges M, et al. Preprocedural predictors of atrial fibrillation recurrence after circumferential pulmonary vein ablation. Eur Heart J. 2007;28:836–41.

    Article  PubMed  Google Scholar 

  410. Wokhlu A, Hodge DO, Monahan KH, Asirvatham SJ, Friedman PA, Munger TM, et al. Long-term outcome of atrial fibrillation ablation: impact and predictors of very late recurrence. J Cardiovasc Electrophysiol. 2010;21:1071–8.

    Article  PubMed  Google Scholar 

  411. Arya A, Hindricks G, Sommer P, Huo Y, Bollmann A, Gaspar T, et al. Long-term results and the predictors of outcome of catheter ablation of atrial fibrillation using steerable sheath catheter navigation after single procedure in 674 patients. Europace. 2010;12:173–80.

    Article  PubMed  Google Scholar 

  412. Santoro F, Di Biase L, Trivedi C, Burkhardt JD, Paoletti Perini A, Sanchez J, et al. Impact of uncontrolled hypertension on atrial fibrillation ablation outcome. JACC Clin Electrophysiol. 2015;1:164–73.

    Article  PubMed  Google Scholar 

  413. Anselmino M, Matta M, D’Ascenzo F, Pappone C, Santinelli V, Bunch TJ, et al. Catheter ablation of atrial fibrillation in patients with diabetes mellitus: a systematic review and metaanalysis. Europace. 2015;17:1518–25.

    Article  PubMed  Google Scholar 

  414. Bogossian H, Frommeyer G, Brachmann J, Lewalter T, Hoffmann E, Kuck KH, et al. Catheter ablation of atrial fibrillation and atrial flutter in patients with diabetes mellitus: who benefits and who does not? Data from the German ablation registry. Int J Cardiol. 2016;214:25–30.

    Article  PubMed  Google Scholar 

  415. Creta A, Providencia R, Adragao P, de Asmundis C, Chun J, Chierchia G, et al. Impact of type-2 diabetes mellitus on the outcomes of catheter ablation of atrial fibrillation (European observational multicentre study). Am J Cardiol. 2020;125:901–6.

    Article  PubMed  Google Scholar 

  416. Wang A, Truong T, Black-Maier E, Green C, Campbell KB, Barnett AS, et al. Catheter ablation of atrial fibrillation in patients with diabetes mellitus. Heart Rhythm. 2020;O2(1):180–8.

    Article  Google Scholar 

  417. Deshmukh A, Ghannam M, Liang J, Saeed M, Cunnane R, Ghanbari H, et al. Effect of metformin on outcomes of catheter ablation for atrial fibrillation. J Cardiovasc Electrophysiol. 2021;32:1232–9.

    Article  PubMed  Google Scholar 

  418. De Maat GE, Mulder BA, Berretty WL, Al-Jazairi MIH, Tan ES, Wiesfeld ACP, et al. Obesity is associated with impaired long-term success of pulmonary vein isolation: a plea for risk factor management before ablation. Open Heart. 2018;5: e000771.

    Article  PubMed  PubMed Central  Google Scholar 

  419. Winkle RA, Mead RH, Engel G, Kong MH, Fleming W, Salcedo J, et al. Impact of obesity on atrial fibrillation ablation: patient characteristics, long-term outcomes, and complications. Heart Rhythm. 2017;14:819–27.

    Article  PubMed  Google Scholar 

  420. Chang SL, Tuan TC, Tai CT, Lin YJ, Lo LW, Hu YF, et al. Comparison of outcome in catheter ablation of atrial fibrillation in patients with versus without the metabolic syndrome. Am J Cardiol. 2009;103:67–72.

    Article  PubMed  Google Scholar 

  421. Tang RB, Dong JZ, Liu XP, Long DY, Yu RH, Kalifa J, et al. Metabolic syndrome and risk of recurrence of atrial fibrillation after catheter ablation. Circ J. 2009;73:438–43.

    Article  PubMed  Google Scholar 

  422. Mohanty S, Mohanty P, Di Biase L, Bai R, Pump A, Santangeli P, et al. Impact of metabolic syndrome on procedural outcomes in patients with atrial fibrillation undergoing catheter ablation. J Am Coll Cardiol. 2012;59:1295–301.

    Article  PubMed  Google Scholar 

  423. Donnellan E, Wazni OM, Harb S, Kanj M, Saliba WI, Jaber WA. Higher baseline cardiorespiratory fitness is associated with lower arrhythmia recurrence and death after atrial fibrillation ablation. Heart Rhythm. 2020;17:1687–93.

    Article  PubMed  Google Scholar 

  424. Mandsager KT, Phelan DM, Diab M, Baranowski B, Saliba WI, Tarakji KG, et al. Outcomes of pulmonary vein isolation in athletes. JACC Clin Electrophysiol. 2020;6:1265–74.

    Article  PubMed  Google Scholar 

  425. Liu MB, Lee JZ, Klooster L, Petty SA, Scott LR. Influence of endurance sports on atrial fibrillation ablation outcomes. J Arrhythm. 2022;38:1–16.

    Article  Google Scholar 

  426. Koopman P, Nuyens D, Garweg C, La Gerche A, De Buck S, Van Casteren L, et al. Efficacy of radiofrequency catheter ablation in athletes with atrial fibrillation. Europace. 2011;13:1386–93.

    Article  PubMed  Google Scholar 

  427. Kato M, Ogano M, Mori Y, Kochi K, Morimoto D, Kito K, et al. Exercise-based cardiac rehabilitation for patients with catheter ablation for persistent atrial fibrillation: a randomized controlled clinical trial. Eur J Prev Cardiol. 2019;26:1931–40.

    Article  PubMed  Google Scholar 

  428. Congrete S, Bintvihok M, Thongprayoon C, Bathini T, Boonpheng B, Sharma K, et al. Effect of obstructive sleep apnea and its treatment of atrial fibrillation recurrence after radiofrequency catheter ablation: a metaanalysis. J Evid Based Med. 2018;11:145–51.

    Article  PubMed  Google Scholar 

  429. Matiello M, Nadal M, Tamborero D, Berruezo A, Montserrat J, Embid C, et al. Low efficacy of atrial fibrillation ablation in severe obstructive sleep apnoea patients. Europace. 2010;12:1084–9.

    Article  PubMed  Google Scholar 

  430. Takigawa M, Takahashi A, Kuwahara T, Takahashi Y, Okubo K, Nakashima E, et al. Impact of alcohol consumption on the outcome of catheter ablation in patients with paroxysmal atrial fibrillation. J Am Heart Assoc. 2016;5: e004149.

    Article  PubMed  PubMed Central  Google Scholar 

  431. Qiao Y, Shi R, Hou B, Wu L, Zheng L, Ding L, et al. Impact of alcohol consumption on substrate remodeling and ablation outcome of paroxysmal atrial fibrillation. J Am Heart Assoc. 2015;4: e002349.

    Article  PubMed  PubMed Central  Google Scholar 

  432. Fukamizu S, Sakurada H, Takano M, Hojo R, Nakai M, Yuba T, et al. Effect of cigarette smoking on the risk of atrial fibrillation recurrence after pulmonary vein isolation. J Arrhythm. 2010;26:21–9.

    Article  Google Scholar 

  433. Elliott AD, Middeldorp ME, Van Gelder IC, Albert CM, Sanders P. Author correction: epidemiology and modifiable risk factors for atrial fibrillation. Nat Rev Cardiol. 2023;20:429.

    Article  PubMed  Google Scholar 

  434. Benjamin EJ, Levy D, Vaziri SM, D’Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study JAMA. 1994;271:840–4.

    CAS  PubMed  Google Scholar 

  435. Kim D, Yang PS, Kim TH, Jang E, Shin H, Kim HY, et al. Ideal blood pressure in patients with atrial fibrillation. J Am Coll Cardiol. 2018;72:1233–45.

    Article  PubMed  Google Scholar 

  436. Okin PM, Hille DA, Larstorp AC, Wachtell K, Kjeldsen SE, Dahlof B, et al. Effect of lower on-treatment systolic blood pressure on the risk of atrial fibrillation in hypertensive patients. Hypertension. 2015;66:368–73.

    Article  CAS  PubMed  Google Scholar 

  437. Verdecchia P, Angeli F, Reboldi G. Hypertension and atrial fibrillation: doubts and certainties from basic and clinical studies. Circ Res. 2018;122:352–68.

    Article  CAS  PubMed  Google Scholar 

  438. Zylla MM, Hochadel M, Andresen D, Brachmann J, Eckardt L, Hoffmann E, et al. Ablation of atrial fibrillation in patients with hypertension-an analysis from the German Ablation Registry. J Clin Med. 2020;9:2402.

    Article  PubMed  PubMed Central  Google Scholar 

  439. Parkash R, Wells GA, Sapp JL, Healey JS, Tardif JC, Greiss I, et al. Effect of aggressive blood pressure control on the recurrence of atrial fibrillation after catheter ablation: a randomized, open-label clinical trial (SMAC-AF [substrate modification with aggressive blood pressure control]). Circulation. 2017;135:1788–98.

    Article  CAS  PubMed  Google Scholar 

  440. Pokushalov E, Romanov A, Corbucci G, Artyomenko S, Baranova V, Turov A, et al. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol. 2012;60:1163–70.

    Article  PubMed  Google Scholar 

  441. Steinberg JS, Shabanov V, Ponomarev D, Losik D, Ivanickiy E, Kropotkin E, et al. Effect of renal denervation and catheter ablation vs catheter ablation alone on atrial fibrillation recurrence among patients with paroxysmal atrial fibrillation and hypertension: the ERADICATE-AF randomized clinical trial. JAMA. 2020;323:248–55.

    Article  PubMed  PubMed Central  Google Scholar 

  442. Hohl M, Selejan SR, Wintrich J, Lehnert U, Speer T, Schneider C, et al. Renal denervation prevents atrial arrhythmogenic substrate development in CKD. Circ Res. 2022;130:814–28.

    Article  CAS  PubMed  Google Scholar 

  443. Al-Kaisey AM, Kalman JM. Obesity and atrial fibrillation: epidemiology, pathogenesis and effect of weight loss. Arrhythm Electrophysiol Rev. 2021;10:159–64.

    Article  PubMed  PubMed Central  Google Scholar 

  444. Wong CX, Sullivan T, Sun MT, Mahajan R, Pathak RK, Middeldorp M, et al. Obesity and the risk of incident, postoperative, and postablation atrial fibrillation: a metaanalysis of 626,603 individuals in 51 studies. JACC Clin Electrophysiol. 2015;1:139–52.

    Article  PubMed  Google Scholar 

  445. Abed HS, Samuel CS, Lau DH, Kelly DJ, Royce SG, Alasady M, et al. Obesity results in progressive atrial structural and electrical remodeling: implications for atrial fibrillation. Heart Rhythm. 2013;10:90–100.

    Article  PubMed  Google Scholar 

  446. Munger TM, Dong YX, Masaki M, Oh JK, Mankad SV, Borlaug BA, et al. Electrophysiological and hemodynamic characteristics associated with obesity in patients with atrial fibrillation. J Am Coll Cardiol. 2012;60:851–60.

    Article  PubMed  Google Scholar 

  447. Wong CX, Abed HS, Molaee P, Nelson AJ, Brooks AG, Sharma G, et al. Pericardial fat is associated with atrial fibrillation severity and ablation outcome. J Am Coll Cardiol. 2011;57:1745–51.

    Article  PubMed  Google Scholar 

  448. Hatem SN, Sanders P. Epicardial adipose tissue and atrial fibrillation. Cardiovasc Res. 2014;102:205–13.

    Article  CAS  PubMed  Google Scholar 

  449. Mohanty S, Mohanty P, Natale V, Trivedi C, Gianni C, Burkhardt JD, et al. Impact of weight loss on ablation outcome in obese patients with longstanding persistent atrial fibrillation. J Cardiovasc Electrophysiol. 2018;29:246–53.

    Article  PubMed  Google Scholar 

  450. Gessler N, Willems S, Steven D, Aberle J, Akbulak RO, Gosau N, et al. Supervised obesity reduction trial for AF ablation patients: results from the SORT-AF trial. Europace. 2021;23:1548–58.

    Article  PubMed  PubMed Central  Google Scholar 

  451. Donnellan E, Wazni OM, Kanj M, Baranowski B, Cremer P, Harb S, et al. Association between preablation bariatric surgery and atrial fibrillation recurrence in morbidly obese patients undergoing atrial fibrillation ablation. Europace. 2019;21:1476–83.

    Article  PubMed  Google Scholar 

  452. Youssef I, Kamran H, Yacoub M, Patel N, Goulbourne C, Kumar S, et al. Obstructive sleep apnea as a risk factor for atrial fibrillation: a metaanalysis. J Sleep Disord Ther. 2018;7:282.

    Article  PubMed  PubMed Central  Google Scholar 

  453. Linz D, Schotten U, Neuberger HR, Bohm M, Wirth K. Negative tracheal pressure during obstructive respiratory events promotes atrial fibrillation by vagal activation. Heart Rhythm. 2011;8:1436–43.

    Article  PubMed  Google Scholar 

  454. Holtstrand Hjalm H, Fu M, Hansson PO, Zhong Y, Caidahl K, Mandalenakis Z, et al. Association between left atrial enlargement and obstructive sleep apnea in a general population of 71-year-old men. J Sleep Res. 2018;27:252–8.

    Article  PubMed  Google Scholar 

  455. Iwasaki YK, Kato T, Xiong F, Shi YF, Naud P, Maguy A, et al. Atrial fibrillation promotion with long-term repetitive obstructive sleep apnea in a rat model. J Am Coll Cardiol. 2014;64:2013–23.

    Article  PubMed  Google Scholar 

  456. Qureshi WT, Nasir UB, Alqalyoobi S, O’Neal WT, Mawri S, Sabbagh S, et al. Metaanalysis of continuous positive airway pressure as a therapy of atrial fibrillation in obstructive sleep apnea. Am J Cardiol. 2015;116:1767–73.

    Article  PubMed  Google Scholar 

  457. Linz D, McEvoy RD, Cowie MR, Somers VK, Nattel S, Lévy P, et al. Associations of obstructive sleep apnea with atrial fibrillation and continuous positive airway pressure treatment: a review. JAMA Cardiol. 2018;3:532–40.

    Article  PubMed  Google Scholar 

  458. Gallagher C, Hendriks JML, Elliott AD, Wong CX, Rangnekar G, Middeldorp ME, et al. Alcohol and incident atrial fibrillation—a systematic review and metaanalysis. Int J Cardiol. 2017;246:46–52.

    Article  PubMed  Google Scholar 

  459. Voskoboinik A, Wong G, Lee G, Nalliah C, Hawson J, Prabhu S, et al. Moderate alcohol consumption is associated with atrial electrical and structural changes: insights from high-density left atrial electroanatomic mapping. Heart Rhythm. 2019;16:251–9.

    Article  PubMed  Google Scholar 

  460. Mandyam MC, Vedantham V, Scheinman MM, Tseng ZH, Badhwar N, Lee BK, et al. Alcohol and vagal tone as triggers for paroxysmal atrial fibrillation. Am J Cardiol. 2012;110:364–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  461. Khawaja O, Bartz TM, Ix JH, Heckbert SR, Kizer JR, Zieman SJ, et al. Plasma free fatty acids and risk of atrial fibrillation (from the cardiovascular health study). Am J Cardiol. 2012;110:212–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  462. McManus DD, Yin X, Gladstone R, Vittinghoff E, Vasan RS, Larson MG, et al. Alcohol consumption, left atrial diameter, and atrial fibrillation. J Am Heart Assoc. 2016;5: e004060.

    Article  PubMed  PubMed Central  Google Scholar 

  463. Sagawa Y, Nagata Y, Miwa N, Yamaguchi T, Watanabe K, Kaneko M, et al. Alcohol consumption is associated with postablation recurrence but not changes in atrial substrate in patients with atrial fibrillation: insight from a high-density mapping study. J Am Heart Assoc. 2022;11: e025697.

    Article  PubMed  PubMed Central  Google Scholar 

  464. Barmano N, Charitakis E, Kronstrand R, Walfridsson U, Karlsson JE, Walfridsson H, et al. The association between alcohol consumption, cardiac biomarkers, left atrial size and reablation in patients with atrial fibrillation referred for catheter ablation. PLoS One. 2019;14: e0215121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  465. Mohanty S, Mohanty P, Tamaki M, Natale V, Gianni C, Trivedi C, et al. Differential association of exercise intensity with risk of atrial fibrillation in men and women: evidence from a metaanalysis. J Cardiovasc Electrophysiol. 2016;27:1021–9.

    Article  PubMed  Google Scholar 

  466. Mozaffarian D, Furberg CD, Psaty BM, Siscovick D. Physical activity and incidence of atrial fibrillation in older adults: the cardiovascular health study. Circulation. 2008;118:800–7.

    Article  PubMed  PubMed Central  Google Scholar 

  467. Jin MN, Yang PS, Song C, Yu HT, Kim TH, Uhm JS, et al. Physical activity and risk of atrial fibrillation: a nationwide cohort study in general population. Sci Rep. 2019;9:13270.

    Article  PubMed  PubMed Central  Google Scholar 

  468. Morseth B, Graff-Iversen S, Jacobsen BK, Jørgensen L, Nyrnes A, Thelle DS, et al. Physical activity, resting heart rate, and atrial fibrillation: the Tromsø study. Eur Heart J. 2016;37:2307–13.

    Article  PubMed  PubMed Central  Google Scholar 

  469. Pathak RK, Elliott A, Middeldorp ME, Meredith M, Mehta AB, Mahajan R, et al. Impact of CARDIOrespiratory FITness on arrhythmia recurrence in obese individuals with atrial fibrillation: the CARDIO-FIT study. J Am Coll Cardiol. 2015;66:985–96.

    Article  PubMed  Google Scholar 

  470. Elliott AD, Verdicchio CV, Mahajan R, Middeldorp ME, Gallagher C, Mishima RS, et al. An exercise and physical activity program in patients with atrial fibrillation: the ACTIVE-AF randomized controlled trial. JACC Clin Electrophysiol. 2023;9:455–65.

    Article  PubMed  Google Scholar 

  471. Calvo N, Mont L, Tamborero D, Berruezo A, Viola G, Guasch E, et al. Efficacy of circumferential pulmonary vein ablation of atrial fibrillation in endurance athletes. Europace. 2010;12:30–6.

    Article  PubMed  Google Scholar 

  472. Decroocq M, Ninni S, Klein C, Machuron F, Verbrugge E, Klug D, et al. No impact of sports practice before or after atrial fibrillation ablation on procedure efficacy in athletes: a case-control study. Europace. 2019;21:1833–42.

    Article  PubMed  Google Scholar 

  473. Aune D, Feng T, Schlesinger S, Janszky I, Norat T, Riboli E. Diabetes mellitus, blood glucose and the risk of atrial fibrillation: a systematic review and metaanalysis of cohort studies. J Diabetes Complicat. 2018;32:501–11.

    Article  Google Scholar 

  474. Liu C, Fu H, Li J, Yang W, Cheng L, Liu T, et al. Hyperglycemia aggravates atrial interstitial fibrosis, ionic remodeling and vulnerability to atrial fibrillation in diabetic rabbits. Anadolu Kardiyol Derg. 2012;12:543–50.

    PubMed  Google Scholar 

  475. Chamberlain AM, Agarwal SK, Folsom AR, Duval S, Soliman EZ, Ambrose M, et al. Smoking and incidence of atrial fibrillation: results from the atherosclerosis risk in communities (ARIC) study. Heart Rhythm. 2011;8:1160–6.

    Article  PubMed  PubMed Central  Google Scholar 

  476. Smith JG, Platonov PG, Hedblad B, Engstrom G, Melander O. Atrial fibrillation in the Malmo diet and cancer study: a study of occurrence, risk factors and diagnostic validity. Eur J Epidemiol. 2010;25:95–102.

    Article  PubMed  Google Scholar 

  477. Zhu W, Yuan P, Shen Y, Wan R, Hong K. Association of smoking with the risk of incident atrial fibrillation: a metaanalysis of prospective studies. Int J Cardiol. 2016;218:259–66.

    Article  PubMed  Google Scholar 

  478. Albertsen IE, Rasmussen LH, Lane DA, Overvad TF, Skjoth F, Overvad K, et al. The impact of smoking on thromboembolism and mortality in patients with incident atrial fibrillation: insights from the Danish diet, cancer, and health study. Chest. 2014;145:559–66.

    Article  PubMed  Google Scholar 

  479. Kwon S, Kim TJ, Choi EK, Ahn HJ, Lee E, Lee SR, et al. Predictors of ischemic stroke for low-risk patients with atrial fibrillation: a matched case-control study. Heart Rhythm. 2021;18:702–8.

    Article  PubMed  Google Scholar 

  480. Pathak RK, Middeldorp ME, Stolcman S, Willoughby S, Mahajan R, Lau D, et al. Aggressive risk factor REduction STudy: implications for the substrate for atrial fibrillation (ARREST-AF substrate study). Circ J. 2015;132:S115–6.

  481. John B, Stiles MK, Kuklik P, Brooks AG, Chandy ST, Kalman JM, et al. Reverse remodeling of the atria after treatment of chronic stretch in humans: implications for the atrial fibrillation substrate. J Am Coll Cardiol. 2010;55:1217–26.

    Article  PubMed  Google Scholar 

  482. Rienstra M, Hobbelt AH, Alings M, Tijssen JGP, Smit MD, Brügemann J, et al. Targeted therapy of underlying conditions improves sinus rhythm maintenance in patients with persistent atrial fibrillation: results of the RACE 3 trial. Eur Heart J. 2018;39:2987–96.

    Article  CAS  PubMed  Google Scholar 

  483. Pandey AK, Okaj I, Kaur H, Belley-Cote EP, Wang J, Oraii A, et al. Sodium-glucose co-transporter inhibitors and atrial fibrillation: a systematic review and metaanalysis of randomized controlled trials. J Am Heart Assoc. 2021;10: e022222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  484. Olsson LG, Swedberg K, Ducharme A, Granger CB, Michelson EL, McMurray JJ, et al. Atrial fibrillation and risk of clinical events in chronic heart failure with and without left ventricular systolic dysfunction: results from the Candesartan in heart failure-assessment of reduction in mortality and morbidity (CHARM) program. J Am Coll Cardiol. 2006;47:1997–2004.

    Article  PubMed  Google Scholar 

  485. Cheng WH, Lo LW, Lin YJ, Chang SL, Hu YF, Hung Y, et al. Ten-year ablation outcomes of patients with paroxysmal atrial fibrillation undergoing pulmonary vein isolation. Heart Rhythm. 2019;16:1327–33.

    Article  PubMed  Google Scholar 

  486. Sawhney N, Anousheh R, Chen WC, Narayan S, Feld GK. Five-year outcomes after segmental pulmonary vein isolation for paroxysmal atrial fibrillation. Am J Cardiol. 2009;104:366–72.

    Article  PubMed  PubMed Central  Google Scholar 

  487. Uchiyama T, Miyazaki S, Taniguchi H, Komatsu Y, Kusa S, Nakamura H, et al. Six-year follow-up of catheter ablation in paroxysmal atrial fibrillation. Circ J. 2013;77:2722–7.

    Article  PubMed  Google Scholar 

  488. Gokoglan Y, Mohanty S, Gunes MF, Trivedi C, Santangeli P, Gianni C, et al. Pulmonary vein antrum isolation in patients with paroxysmal atrial fibrillation: more than a decade of follow-up. Circ Arrhythm Electrophysiol. 2016;9: e003660.

    Article  PubMed  Google Scholar 

  489. Hung Y, Lo LW, Lin YJ, Chang SL, Hu YF, Chung FP, et al. Characteristics and long-term catheter ablation outcome in long-standing persistent atrial fibrillation patients with non-pulmonary vein triggers. Int J Cardiol. 2017;241:205–11.

    Article  PubMed  Google Scholar 

  490. Wynn GJ, El-Kadri M, Haq I, Das M, Modi S, Snowdon R, et al. Long-term outcomes after ablation of persistent atrial fibrillation: an observational study over 6 years. Open Heart. 2016;3: e000394.

    Article  PubMed  PubMed Central  Google Scholar 

  491. Chew DS, Jones KA, Loring Z, Black-Maier E, Noseworthy PA, Exner DV, et al. Diagnosis-to-ablation time predicts recurrent atrial fibrillation and rehospitalization following catheter ablation. Heart Rhythm. 2022;O2(3):23–31.

    Article  Google Scholar 

  492. De Greef Y, Schwagten B, Chierchia GB, de Asmundis C, Stockman D, Buysschaert I. Diagnosis-to-ablation time as a predictor of success: early choice for pulmonary vein isolation and long-term outcome in atrial fibrillation: results from the Middelheim-PVI Registry. Europace. 2018;20:589–95.

    Article  PubMed  Google Scholar 

  493. Baysal E, Okşul M, Burak C, Yalin K, Soysal AU, Yalman H, et al. Decreasing time between first diagnosis of paroxysmal atrial fibrillation and cryoballoon ablation positively affects long-term consequences. J Interv Card Electrophysiol. 2022;65:365–72.

    Article  PubMed  Google Scholar 

  494. Takamiya T, Nitta J, Inaba O, Sato A, Inamura Y, Murata K, et al. Impact of diagnosis-to-ablation time on non-pulmonary vein triggers and ablation outcomes in persistent atrial fibrillation. J Cardiovasc Electrophysiol. 2021;32:1251–8.

    Article  PubMed  Google Scholar 

  495. D’Ascenzo F, Corleto A, Biondi-Zoccai G, Anselmino M, Ferraris F, di Biase L, et al. Which are the most reliable predictors of recurrence of atrial fibrillation after transcatheter ablation?: a metaanalysis. Int J Cardiol. 2013;167:1984–9.

    Article  PubMed  Google Scholar 

  496. Njoku A, Kannabhiran M, Arora R, Reddy P, Gopinathannair R, Lakkireddy D, et al. Left atrial volume predicts atrial fibrillation recurrence after radiofrequency ablation: a metaanalysis. Europace. 2018;20:33–42.

    Article  PubMed  Google Scholar 

  497. Costa FM, Ferreira AM, Oliveira S, Santos PG, Durazzo A, Carmo P, et al. Left atrial volume is more important than the type of atrial fibrillation in predicting the long-term success of catheter ablation. Int J Cardiol. 2015;184:56–61.

    Article  PubMed  Google Scholar 

  498. Zhuang J, Wang Y, Tang K, Li X, Peng W, Liang C, et al. Association between left atrial size and atrial fibrillation recurrence after single circumferential pulmonary vein isolation: a systematic review and metaanalysis of observational studies. Europace. 2012;14:638–45.

    Article  PubMed  Google Scholar 

  499. Blanche C, Tran N, Rigamonti F, Burri H, Zimmermann M. Value of P-wave signal averaging to predict atrial fibrillation recurrences after pulmonary vein isolation. Europace. 2013;15:198–204.

    Article  PubMed  Google Scholar 

  500. Yugo D, Kuo MJ, Hu YF, Liu CM, Lin YJ, Chang SL, et al. Dynamic changes in signal-averaged P wave after catheter ablation of atrial fibrillation. J Chin Med Assoc. 2022;85:549–53.

    Article  PubMed  Google Scholar 

  501. Salah A, Zhou S, Liu Q, Yan H. P wave indices to predict atrial fibrillation recurrences post pulmonary vein isolation. Arq Bras Cardiol. 2013;101:519–27.

    PubMed  PubMed Central  Google Scholar 

  502. Pranata R, Yonas E, Vania R. Prolonged P-wave duration in sinus rhythm preablation is associated with atrial fibrillation recurrence after pulmonary vein isolation-a systematic review and metaanalysis. Ann Noninvasive Electrocardiol. 2019;24: e12653.

    Article  PubMed  PubMed Central  Google Scholar 

  503. Nakatani Y, Sakamoto T, Yamaguchi Y, Tsujino Y, Kataoka N, Kinugawa K. P-wave vector magnitude predicts recurrence of atrial fibrillation after catheter ablation in patients with persistent atrial fibrillation. Ann Noninvasive Electrocardiol. 2019;24: e12646.

    Article  PubMed  PubMed Central  Google Scholar 

  504. Müller-Edenborn B, Chen J, Allgeier J, Didenko M, Moreno-Weidmann Z, Neumann FJ, et al. Amplified sinus-P-wave reveals localization and extent of left atrial low-voltage substrate: implications for arrhythmia freedom following pulmonary vein isolation. Europace. 2020;22:240–9.

    Article  PubMed  Google Scholar 

  505. Moreno-Weidmann Z, Müller-Edenborn B, Jadidi AS, Bazan-Gelizo V, Chen J, Park CI, et al. Easily available ECG and echocardiographic parameters for prediction of left atrial remodeling and atrial fibrillation recurrence after pulmonary vein isolation: a multicenter study. J Cardiovasc Electrophysiol. 2021;32:1584–93.

    Article  PubMed  Google Scholar 

  506. Liu P, Lv T, Yang Y, Gao Q, Zhang P. Use of P wave indices to evaluate efficacy of catheter ablation and atrial fibrillation recurrence: a systematic review and metaanalysis. J Interv Card Electrophysiol. 2022;65:827–40.

    Article  PubMed  Google Scholar 

  507. Jadidi A, Müller-Edenborn B, Chen J, Keyl C, Weber R, Allgeier J, et al. The duration of the amplified sinus-P-wave identifies presence of left atrial low voltage substrate and predicts outcome after pulmonary vein isolation in patients with persistent atrial fibrillation. JACC Clin Electrophysiol. 2018;4:531–43.

    Article  PubMed  Google Scholar 

  508. Koutalas E, Kallergis E, Nedios S, Kochiadakis G, Kanoupakis E. P-wave duration as a marker of atrial remodeling in patients referred to ablation for atrial fibrillation: a new stratification tool emerging? Hellenic J Cardiol. 2023.

  509. Okumura Y, Watanabe I, Ohkubo K, Ashino S, Kofune M, Hashimoto K, et al. Prediction of the efficacy of pulmonary vein isolation for the treatment of atrial fibrillation by the signal-averaged P-wave duration. Pacing Clin Electrophysiol. 2007;30:304–13.

    Article  PubMed  Google Scholar 

  510. Kuppahally SS, Akoum N, Badger TJ, Burgon NS, Haslam T, Kholmovski E, et al. Echocardiographic left atrial reverse remodeling after catheter ablation of atrial fibrillation is predicted by preablation delayed enhancement of left atrium by magnetic resonance imaging. Am Heart J. 2010;160:877–84.

    Article  PubMed  PubMed Central  Google Scholar 

  511. Akkaya M, Higuchi K, Koopmann M, Burgon N, Erdogan E, Damal K, et al. Relationship between left atrial tissue structural remodelling detected using late gadolinium enhancement MRI and left ventricular hypertrophy in patients with atrial fibrillation. Europace. 2013;15:1725–32.

    Article  PubMed  Google Scholar 

  512. McGann C, Akoum N, Patel A, Kholmovski E, Revelo P, Damal K, et al. Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI. Circ Arrhythm Electrophysiol. 2014;7:23–30.

    Article  PubMed  Google Scholar 

  513. Ambale-Venkatesh B, Lima JA. Cardiac MRI: a central prognostic tool in myocardial fibrosis. Nat Rev Cardiol. 2015;12:18–29.

    Article  CAS  PubMed  Google Scholar 

  514. Nairn D, Eichenlaub M, Müller-Edenborn B, Huang T, Lehrmann H, Nagel C, et al. Differences in atrial substrate localization using late gadolinium enhancement-magnetic resonance imaging, electrogram voltage, and conduction velocity: a cohort study using a consistent anatomical reference frame in patients with persistent atrial fibrillation. Europace. 2023;25:euad278.

    Article  PubMed  PubMed Central  Google Scholar 

  515. Nakahara S, Hori Y, Kobayashi S, Sakai Y, Taguchi I, Takayanagi K, et al. Epicardial adipose tissue-based defragmentation approach to persistent atrial fibrillation: its impact on complex fractionated electrograms and ablation outcome. Heart Rhythm. 2014;11:1343–51.

    Article  PubMed  Google Scholar 

  516. Chao TF, Hung CL, Tsao HM, Lin YJ, Yun CH, Lai YH, et al. Epicardial adipose tissue thickness and ablation outcome of atrial fibrillation. PLoS One. 2013;8: e74926.

    Article  PubMed  PubMed Central  Google Scholar 

  517. Masuda M, Mizuno H, Enchi Y, Minamiguchi H, Konishi S, Ohtani T, et al. Abundant epicardial adipose tissue surrounding the left atrium predicts early rather than late recurrence of atrial fibrillation after catheter ablation. J Interv Card Electrophysiol. 2015;44:31–7.

    Article  PubMed  Google Scholar 

  518. Sepehri Shamloo A, Dagres N, Dinov B, Sommer P, Husser-Bollmann D, Bollmann A, et al. Is epicardial fat tissue associated with atrial fibrillation recurrence after ablation? A systematic review and metaanalysis. Int J Cardiol Heart Vasc. 2019;22:132–8.

    PubMed  PubMed Central  Google Scholar 

  519. Nagashima K, Okumura Y, Watanabe I, Nakai T, Ohkubo K, Kofune T, et al. Association between epicardial adipose tissue volumes on 3-dimensional reconstructed CT images and recurrence of atrial fibrillation after catheter ablation. Circ J. 2011;75:2559–65.

    Article  CAS  PubMed  Google Scholar 

  520. Vroomen M, Olsthoorn JR, Maesen B, L’Espoir V, La Meir M, Das M, et al. Quantification of epicardial adipose tissue in patients undergoing hybrid ablation for atrial fibrillation. Eur J Cardiothorac Surg. 2019;56:79–86.

    Article  PubMed  Google Scholar 

  521. El Mahdiui M, Simon J, Smit JM, Kuneman JH, van Rosendael AR, Steyerberg EW, et al. Posterior left atrial adipose tissue attenuation assessed by computed tomography and recurrence of atrial fibrillation after catheter ablation. Circ Arrhythm Electrophysiol. 2021;14: e009135.

    Article  PubMed  Google Scholar 

  522. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the task force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42:373–498.

    Article  PubMed  Google Scholar 

  523. van Vugt SPG, Westra SW, Volleberg R, Hannink G, Nakamura R, de Asmundis C, et al. Metaanalysis of controlled studies on minimally interrupted vs. continuous use of non-vitamin K antagonist oral anticoagulants in catheter ablation for atrial fibrillation. Europace. 2021;23:1961–9.

    Article  PubMed  PubMed Central  Google Scholar 

  524. Yadav R, Brilliant J, Akhtar T, Milstein J, Sampognaro JR, Marine J, et al. Relationship between amiodarone response prior to ablation and 1-year outcomes of catheter ablation for atrial fibrillation. J Cardiovasc Electrophysiol. 2023;34:860–8.

    Article  PubMed  Google Scholar 

  525. Dukes JW, Chilukuri K, Scherr D, Marine JE, Berger RD, Nazarian S, et al. The effect of antiarrhythmic medication management on atrial fibrillation ablation outcomes. J Cardiovasc Electrophysiol. 2013;24:882–7.

    Article  PubMed  Google Scholar 

  526. Miwa Y, Minamiguchi H, Bhandari AK, Cannom DS, Ho IC. Amiodarone reduces the amount of ablation during catheter ablation for persistent atrial fibrillation. Europace. 2014;16:1007–14.

    Article  PubMed  Google Scholar 

  527. Mohanty S, Di Biase L, Mohanty P, Trivedi C, Santangeli P, Bai R, et al. Effect of periprocedural amiodarone on procedure outcome in patients with longstanding persistent atrial fibrillation undergoing extended pulmonary vein antrum isolation: results from a randomized study (SPECULATE). Heart Rhythm. 2015;12:477–83.

    Article  PubMed  Google Scholar 

  528. Efremidis M, Bazoukis G, Vlachos K, Prappa E, Megarisiotou A, Dragasis S, et al. Safety of catheter ablation of atrial fibrillation without pre- or periprocedural imaging for the detection of left atrial thrombus in the era of uninterrupted anticoagulation. J Arrhythm. 2021;37:28–32.

    Article  PubMed  Google Scholar 

  529. Diab M, Wazni OM, Saliba WI, Tarakji KG, Ballout JA, Hutt E, et al. Ablation of atrial fibrillation without left atrial appendage imaging in patients treated with direct oral anticoagulants. Circ Arrhythm Electrophysiol. 2020;13: e008301.

    Article  PubMed  Google Scholar 

  530. Puwanant S, Varr BC, Shrestha K, Hussain SK, Tang WH, Gabriel RS, et al. Role of the CHADS2 score in the evaluation of thromboembolic risk in patients with atrial fibrillation undergoing transesophageal echocardiography before pulmonary vein isolation. J Am Coll Cardiol. 2009;54:2032–9.

    Article  PubMed  Google Scholar 

  531. Manning WJ, Weintraub RM, Waksmonski CA, Haering JM, Rooney PS, Maslow AD, et al. Accuracy of transesophageal echocardiography for identifying left atrial thrombi. A prospective, intraoperative study. Ann Intern Med. 1995;123:817–22.

    Article  CAS  PubMed  Google Scholar 

  532. Hahn RT, Abraham T, Adams MS, Bruce CJ, Glas KE, Lang RM, et al. Guidelines for performing a comprehensive transesophageal echocardiographic examination: recommendations from the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J Am Soc Echocardiogr. 2013;26:921–64.

    Article  PubMed  Google Scholar 

  533. Daniel WG, Erbel R, Kasper W, Visser CA, Engberding R, Sutherland GR, et al. Safety of transesophageal echocardiography. A multicenter survey of 10,419 examinations. Circulation. 1991;83:817–21.

    Article  CAS  PubMed  Google Scholar 

  534. Davenport MS, Perazella MA, Yee J, Dillman JR, Fine D, McDonald RJ, et al. Use of intravenous iodinated contrast media in patients with kidney disease: consensus statements from the American College of Radiology and the National Kidney Foundation. Kidney Med. 2020;2:85–93.

    Article  PubMed  PubMed Central  Google Scholar 

  535. Stocker TJ, Deseive S, Leipsic J, Hadamitzky M, Chen MY, Rubinshtein R, et al. Reduction in radiation exposure in cardiovascular computed tomography imaging: results from the PROspective multicenter registry on radiaTion dose Estimates of cardiac CT angIOgraphy iN daily practice in 2017 (PROTECTION VI). Eur Heart J. 2018;39:3715–23.

    Article  PubMed  PubMed Central  Google Scholar 

  536. Kitkungvan D, Nabi F, Ghosn MG, Dave AS, Quinones M, Zoghbi WA, et al. Detection of LA and LAA thrombus by CMR in patients referred for pulmonary vein isolation. JACC Cardiovasc Imaging. 2016;9:809–18.

    Article  PubMed  Google Scholar 

  537. Rathi VK, Reddy ST, Anreddy S, Belden W, Yamrozik JA, Williams RB, et al. Contrast-enhanced CMR is equally effective as TEE in the evaluation of left atrial appendage thrombus in patients with atrial fibrillation undergoing pulmonary vein isolation procedure. Heart Rhythm. 2013;10:1021–7.

    Article  PubMed  Google Scholar 

  538. Ohyama H, Hosomi N, Takahashi T, Mizushige K, Osaka K, Kohno M, et al. Comparison of magnetic resonance imaging and transesophageal echocardiography in detection of thrombus in the left atrial appendage. Stroke. 2003;34:2436–9.

    Article  PubMed  Google Scholar 

  539. Brooks AG, Wilson L, Chia NH, Lau DH, Alasady M, Leong DP, et al. Accuracy and clinical outcomes of CT image integration with Carto-Sound compared to electro-anatomical mapping for atrial fibrillation ablation: a randomized controlled study. Int J Cardiol. 2013;168:2774–82.

    Article  PubMed  Google Scholar 

  540. Di Biase L, Zou F, Lin AN, Grupposo V, Marazzato J, Tarantino N, et al. Feasibility of three-dimensional artificial intelligence algorithm integration with intracardiac echocardiography for left atrial imaging during atrial fibrillation catheter ablation. Europace. 2023;25:euad211.

    Article  PubMed  PubMed Central  Google Scholar 

  541. Vicera JJB, Lin YJ, Lee PT, Chang SL, Lo LW, Hu YF, et al. Identification of critical isthmus using coherent mapping in patients with scar-related atrial tachycardia. J Cardiovasc Electrophysiol. 2020;31:1436–7.

    Article  PubMed  PubMed Central  Google Scholar 

  542. Deno DC, Bhaskaran A, Morgan DJ, Goksu F, Batman K, Olson GK, et al. High-resolution, live, directional mapping. Heart Rhythm. 2020;17:1621–8.

    Article  PubMed  Google Scholar 

  543. Unland R, Bergau L, El Hamriti M, Guckel D, Piran M, Fink T, et al. Find me if you can: first clinical experience using the novel CARTOFINDER algorithm in a routine workflow for atrial fibrillation ablation. J Clin Med. 2021;10:2979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  544. Honarbakhsh S, Schilling RJ, Dhillon G, Ullah W, Keating E, Providencia R, et al. A novel mapping system for panoramic mapping of the left atrium: application to detect and characterize localized sources maintaining atrial fibrillation. JACC Clin Electrophysiol. 2018;4:124–34.

    Article  PubMed  PubMed Central  Google Scholar 

  545. Chang TY, Lin CY, Lin YJ, Wu CI, Chang SL, Lo LW, et al. Long-term outcome of patients with long-standing persistent atrial fibrillation undergoing ablation guided by a novel high-density panoramic mapping system: a propensity score matching study. Heart Rhythm. 2022;O2(3):269–78.

    Article  Google Scholar 

  546. Sporton SC, Earley MJ, Nathan AW, Schilling RJ. Electroanatomic versus fluoroscopic mapping for catheter ablation procedures: a prospective randomized study. J Cardiovasc Electrophysiol. 2004;15:310–5.

    Article  PubMed  Google Scholar 

  547. Estner HL, Deisenhofer I, Luik A, Ndrepepa G, von Bary C, Zrenner B, et al. Electrical isolation of pulmonary veins in patients with atrial fibrillation: reduction of fluoroscopy exposure and procedure duration by the use of a non-fluoroscopic navigation system (NavX). Europace. 2006;8:583–7.

    Article  PubMed  Google Scholar 

  548. Scaglione M, Biasco L, Caponi D, Anselmino M, Negro A, Di Donna P, et al. Visualization of multiple catheters with electroanatomical mapping reduces X-ray exposure during atrial fibrillation ablation. Europace. 2011;13:955–62.

    Article  PubMed  Google Scholar 

  549. Martinek M, Nesser HJ, Aichinger J, Boehm G, Purerfellner H. Impact of integration of multislice computed tomography imaging into three-dimensional electroanatomic mapping on clinical outcomes, safety, and efficacy using radiofrequency ablation for atrial fibrillation. Pacing Clin Electrophysiol. 2007;30:1215–23.

    Article  PubMed  Google Scholar 

  550. Caponi D, Corleto A, Scaglione M, Blandino A, Biasco L, Cristoforetti Y, et al. Ablation of atrial fibrillation: does the addition of three-dimensional magnetic resonance imaging of the left atrium to electroanatomic mapping improve the clinical outcome?: a randomized comparison of Carto-Merge vs. Carto-XP three-dimensional mapping ablation in patients with paroxysmal and persistent atrial fibrillation. Europace. 2010;12:1098–104.

    Article  PubMed  Google Scholar 

  551. Bertaglia E, Bella PD, Tondo C, Proclemer A, Bottoni N, De Ponti R, et al. Image integration increases efficacy of paroxysmal atrial fibrillation catheter ablation: results from the CartoMerge Italian Registry. Europace. 2009;11:1004–10.

    Article  PubMed  Google Scholar 

  552. Della Bella P, Fassini G, Cireddu M, Riva S, Carbucicchio C, Giraldi F, et al. Image integration-guided catheter ablation of atrial fibrillation: a prospective randomized study. J Cardiovasc Electrophysiol. 2009;20:258–65.

    Article  PubMed  Google Scholar 

  553. Kistler PM, Rajappan K, Harris S, Earley MJ, Richmond L, Sporton SC, et al. The impact of image integration on catheter ablation of atrial fibrillation using electroanatomic mapping: a prospective randomized study. Eur Heart J. 2008;29:3029–36.

    Article  PubMed  Google Scholar 

  554. Duytschaever M, Vijgen J, De Potter T, Scherr D, Van Herendael H, Knecht S, et al. Standardized pulmonary vein isolation workflow to enclose veins with contiguous lesions: the multicentre VISTAX trial. Europace. 2020;22:1645–52.

    Article  PubMed  Google Scholar 

  555. Duytschaever M, De Pooter J, Demolder A, El Haddad M, Phlips T, Strisciuglio T, et al. Long-term impact of catheter ablation on arrhythmia burden in low-risk patients with paroxysmal atrial fibrillation: the CLOSE to CURE study. Heart Rhythm. 2020;17:535–43.

    Article  PubMed  Google Scholar 

  556. De Pooter J, Strisciuglio T, El Haddad M, Wolf M, Phlips T, Vandekerckhove Y, et al. Pulmonary vein reconnection no longer occurs in the majority of patients after a single pulmonary vein isolation procedure. JACC Clin Electrophysiol. 2019;5:295–305.

    Article  PubMed  Google Scholar 

  557. Hussein A, Das M, Riva S, Morgan M, Ronayne C, Sahni A, et al. Use of ablation index-guided ablation results in high rates of durable pulmonary vein isolation and freedom from arrhythmia in persistent atrial fibrillation patients: the PRAISE study results. Circ Arrhythm Electrophysiol. 2018;11: e006576.

    Article  PubMed  Google Scholar 

  558. Taghji P, El Haddad M, Phlips T, Wolf M, Knecht S, Vandekerckhove Y, et al. Evaluation of a strategy aiming to enclose the pulmonary veins with contiguous and optimized radiofrequency lesions in paroxysmal atrial fibrillation: a pilot study. JACC Clin Electrophysiol. 2018;4:99–108.

    Article  PubMed  Google Scholar 

  559. Phlips T, Taghji P, El Haddad M, Wolf M, Knecht S, Vandekerckhove Y, et al. Improving procedural and one-year outcome after contact force-guided pulmonary vein isolation: the role of interlesion distance, ablation index, and contact force variability in the ‘CLOSE’-protocol. Europace. 2018;20:f419-27.

    Article  PubMed  Google Scholar 

  560. Grace A, Willems S, Meyer C, Verma A, Heck P, Zhu M, et al. High-resolution noncontact charge-density mapping of endocardial activation. JCI Insight. 2019;4: e126422.

    Article  PubMed  PubMed Central  Google Scholar 

  561. Willems S, Verma A, Betts TR, Murray S, Neuzil P, Ince H, et al. Targeting nonpulmonary vein sources in persistent atrial fibrillation identified by noncontact charge density mapping: UNCOVER AF trial. Circ Arrhythm Electrophysiol. 2019;12: e007233.

    Article  PubMed  Google Scholar 

  562. Shi R, Parikh P, Chen Z, Angel N, Norman M, Hussain W, et al. Validation of dipole density mapping during atrial fibrillation and sinus rhythm in human left atrium. JACC Clin Electrophysiol. 2020;6:171–81.

    Article  PubMed  Google Scholar 

  563. Haines DE, Kong MH, Ruppersberg P, Haeusser P, Avitall B, Szili Torok T, et al. Electrographic flow mapping for atrial fibrillation: theoretical basis and preliminary observations. J Interv Card Electrophysiol. 2022;66:1015–28.

    Article  PubMed  PubMed Central  Google Scholar 

  564. Reddy VY, Neuzil P, Langbein A, Petru J, Funasako M, Dinshaw L, et al. AB-453070-2 FLOW-AF: a randomized controlled trial of electrographic flow-guided ablation in redo patients with non-paroxysmal atrial fibrillation. Heart Rhythm. 2023;20:S1-2.

    Article  Google Scholar 

  565. Nademanee K, Schwab MC, Kosar EM, Karwecki M, Moran MD, Visessook N, et al. Clinical outcomes of catheter substrate ablation for high-risk patients with atrial fibrillation. J Am Coll Cardiol. 2008;51:843–9.

    Article  PubMed  Google Scholar 

  566. Verma A, Jiang CY, Betts TR, Chen J, Deisenhofer I, Mantovan R, et al. Approaches to catheter ablation for persistent atrial fibrillation. N Engl J Med. 2015;372:1812–22.

    Article  PubMed  Google Scholar 

  567. Seitz J, Bars C, Theodore G, Beurtheret S, Lellouche N, Bremondy M, et al. AF ablation guided by spatiotemporal electrogram dispersion without pulmonary vein isolation: a wholly patient-tailored approach. J Am Coll Cardiol. 2017;69:303–21.

    Article  PubMed  PubMed Central  Google Scholar 

  568. Lin R, Zeng C, Xu K, Wu S, Qin M, Liu X. Dispersion-guided ablation in conjunction with circumferential pulmonary vein isolation is superior to stepwise ablation approach for persistent atrial fibrillation. Int J Cardiol. 2019;278:97–103.

    Article  PubMed  Google Scholar 

  569. Jadidi AS, Lehrmann H, Keyl C, Sorrel J, Markstein V, Minners J, et al. Ablation of persistent atrial fibrillation targeting low-voltage areas with selective activation characteristics. Circ Arrhythm Electrophysiol. 2016;9: e002962.

    Article  PubMed  Google Scholar 

  570. Seitz J, Durdez TM, Albenque JP, Pisapia A, Gitenay E, Durand C, et al. Artificial intelligence software standardizes electrogram-based ablation outcome for persistent atrial fibrillation. J Cardiovasc Electrophysiol. 2022;33:2250–60.

    Article  PubMed  PubMed Central  Google Scholar 

  571. Narayan SM, Krummen DE, Shivkumar K, Clopton P, Rappel WJ, Miller JM. Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation) trial. J Am Coll Cardiol. 2012;60:628–36.

    Article  PubMed  PubMed Central  Google Scholar 

  572. Gray RA, Jalife J, Panfilov AV, Baxter WT, Cabo C, Davidenko JM, et al. Mechanisms of cardiac fibrillation. Science. 1995;270:1222–3; author reply 1224–5.

  573. Salinet J, Molero R, Schlindwein FS, Karel J, Rodrigo M, Rojo-Alvarez JL, et al. Electrocardiographic imaging for atrial fibrillation: a perspective from computer models and animal experiments to clinical value. Front Physiol. 2021;12: 653013.

    Article  PubMed  PubMed Central  Google Scholar 

  574. Ramanathan C, Ghanem RN, Jia P, Ryu K, Rudy Y. Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat Med. 2004;10:422–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  575. Molero R, González-Ascaso A, Climent AM, Guillem MS. Robustness of imageless electrocardiographic imaging against uncertainty in atrial morphology and location. J Electrocardiol. 2023;77:58–61.

    Article  PubMed  Google Scholar 

  576. Cuculich PS, Wang Y, Lindsay BD, Faddis MN, Schuessler RB, Damiano RJ Jr, et al. Noninvasive characterization of epicardial activation in humans with diverse atrial fibrillation patterns. Circulation. 2010;122:1364–72.

    Article  PubMed  PubMed Central  Google Scholar 

  577. Haissaguerre M, Hocini M, Denis A, Shah AJ, Komatsu Y, Yamashita S, et al. Driver domains in persistent atrial fibrillation. Circulation. 2014;130:530–8.

    Article  PubMed  Google Scholar 

  578. Lim HS, Hocini M, Dubois R, Denis A, Derval N, Zellerhoff S, et al. Complexity and distribution of drivers in relation to duration of persistent atrial fibrillation. J Am Coll Cardiol. 2017;69:1257–69.

    Article  PubMed  Google Scholar 

  579. Knecht S, Sohal M, Deisenhofer I, Albenque JP, Arentz T, Neumann T, et al. Multicentre evaluation of non-invasive biatrial mapping for persistent atrial fibrillation ablation: the AFACART study. Europace. 2017;19:1302–9.

    Article  PubMed  Google Scholar 

  580. Honarbakhsh S, Dhillon G, Abbass H, Waddingham PH, Dennis A, Ahluwalia N, et al. Noninvasive electrocardiographic imaging-guided targeting of drivers of persistent atrial fibrillation: the TARGET-AF1 trial. Heart Rhythm. 2022;19:875–84.

    Article  PubMed  Google Scholar 

  581. Gao X, Lam AG, Bilchick KC, Darby A, Mehta N, Mason PK, et al. The use of non-invasive mapping in persistent AF to predict acute procedural outcome. J Electrocardiol. 2019;57S:S21-6.

    Article  PubMed  Google Scholar 

  582. Rodrigo M, Climent AM, Hernandez-Romero I, Liberos A, Baykaner T, Rogers AJ, et al. Noninvasive assessment of complexity of atrial fibrillation: correlation with contact mapping and impact of ablation. Circ Arrhythm Electrophysiol. 2020;13: e007700.

    Article  PubMed  PubMed Central  Google Scholar 

  583. Badger TJ, Adjei-Poku YA, Marrouche NF. MRI in cardiac electrophysiology: the emerging role of delayed-enhancement MRI in atrial fibrillation ablation. Future Cardiol. 2009;5:63–70.

    Article  PubMed  Google Scholar 

  584. Bisbal F, Calvo M, Trucco E, Arbelo E, Berruezo A, Mont L. Left atrial tachycardia after atrial fibrillation ablation: can magnetic resonance imaging assist the ablation? Can J Cardiol. 2015;31(104):e1-3.

    Google Scholar 

  585. Reddy VY, Shah D, Kautzner J, Schmidt B, Saoudi N, Herrera C, et al. The relationship between contact force and clinical outcome during radiofrequency catheter ablation of atrial fibrillation in the TOCCATA study. Heart Rhythm. 2012;9:1789–95.

    Article  PubMed  Google Scholar 

  586. Neuzil P, Reddy VY, Kautzner J, Petru J, Wichterle D, Shah D, et al. Electrical reconnection after pulmonary vein isolation is contingent on contact force during initial treatment: results from the EFFICAS I study. Circ Arrhythm Electrophysiol. 2013;6:327–33.

    Article  PubMed  Google Scholar 

  587. Kautzner J, Neuzil P, Lambert H, Peichl P, Petru J, Cihak R, et al. EFFICAS II: optimization of catheter contact force improves outcome of pulmonary vein isolation for paroxysmal atrial fibrillation. Europace. 2015;17:1229–35.

    Article  PubMed  PubMed Central  Google Scholar 

  588. Andrade JG, Monir G, Pollak SJ, Khairy P, Dubuc M, Roy D, et al. Pulmonary vein isolation using “contact force” ablation: the effect on dormant conduction and long-term freedom from recurrent atrial fibrillation—a prospective study. Heart Rhythm. 2014;11:1919–24.

    Article  PubMed  Google Scholar 

  589. Squara F, Latcu DG, Massaad Y, Mahjoub M, Bun SS, Saoudi N. Contact force and force-time integral in atrial radiofrequency ablation predict transmurality of lesions. Europace. 2014;16:660–7.

    Article  PubMed  Google Scholar 

  590. Whitaker J, Fish J, Harrison J, Chubb H, Williams SE, Fastl T, et al. Lesion index-guided ablation facilitates continuous, transmural, and durable lesions in a porcine recovery model. Circ Arrhythm Electrophysiol. 2018;11: e005892.

    Article  PubMed  Google Scholar 

  591. Das M, Loveday JJ, Wynn GJ, Gomes S, Saeed Y, Bonnett LJ, et al. Ablation index, a novel marker of ablation lesion quality: prediction of pulmonary vein reconnection at repeat electrophysiology study and regional differences in target values. Europace. 2017;19:775–83.

    PubMed  Google Scholar 

  592. Bourier F, Duchateau J, Vlachos K, Lam A, Martin CA, Takigawa M, et al. High-power short-duration versus standard radiofrequency ablation: insights on lesion metrics. J Cardiovasc Electrophysiol. 2018;29:1570–5.

    Article  PubMed  Google Scholar 

  593. Borne RT, Sauer WH, Zipse MM, Zheng L, Tzou W, Nguyen DT. Longer duration versus increasing power during radiofrequency ablation yields different ablation lesion characteristics. JACC Clin Electrophysiol. 2018;4:902–8.

    Article  PubMed  Google Scholar 

  594. Kyriakopoulou M, Wielandts JY, Strisciuglio T, El Haddad M, Pooter J, Almorad A, et al. Evaluation of higher power delivery during RF pulmonary vein isolation using optimized and contiguous lesions. J Cardiovasc Electrophysiol. 2020;31:1091–8.

    Article  PubMed  Google Scholar 

  595. Berte B, Hilfiker G, Russi I, Moccetti F, Cuculi F, Toggweiler S, et al. Pulmonary vein isolation using a higher power shorter duration CLOSE protocol with a surround flow ablation catheter. J Cardiovasc Electrophysiol. 2019;30:2199–204.

    Article  PubMed  Google Scholar 

  596. Chen S, Schmidt B, Bordignon S, Urbanek L, Tohoku S, Bologna F, et al. Ablation index-guided 50 W ablation for pulmonary vein isolation in patients with atrial fibrillation: procedural data, lesion analysis, and initial results from the FAFA AI high power study. J Cardiovasc Electrophysiol. 2019;30:2724–31.

    Article  PubMed  Google Scholar 

  597. Winkle RA, Mohanty S, Patrawala RA, Mead RH, Kong MH, Engel G, et al. Low complication rates using high power (45–50 W) for short duration for atrial fibrillation ablations. Heart Rhythm. 2019;16:165–9.

    Article  PubMed  Google Scholar 

  598. Winkle RA, Moskovitz R, Hardwin Mead R, Engel G, Kong MH, Fleming W, et al. Atrial fibrillation ablation using very short duration 50 W ablations and contact force sensing catheters. J Interv Card Electrophysiol. 2018;52:1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  599. Wielandts JY, Kyriakopoulou M, Almorad A, Hilfiker G, Strisciuglio T, Phlips T, et al. Prospective randomized evaluation of high power during CLOSE-guided pulmonary vein isolation: the POWER-AF study. Circ Arrhythm Electrophysiol. 2021;14: e009112.

    Article  PubMed  Google Scholar 

  600. Lee AC, Voskoboinik A, Cheung CC, Yogi S, Tseng ZH, Moss JD, et al. A randomized trial of high vs standard power radiofrequency ablation for pulmonary vein isolation: SHORT-AF. JACC Clin Electrophysiol. 2023;9:1038–47.

    Article  PubMed  Google Scholar 

  601. Kottmaier M, Popa M, Bourier F, Reents T, Cifuentes J, Semmler V, et al. Safety and outcome of very high-power short-duration ablation using 70 W for pulmonary vein isolation in patients with paroxysmal atrial fibrillation. Europace. 2020;22:388–93.

    Article  PubMed  Google Scholar 

  602. Castrejón-Castrejón S, Martínez Cossiani M, Jáuregui-Abularach M, Basterra Sola N, Ibáñez Criado JL, Osca Asensi J, et al. POWER FAST III trial investigators. Multicenter prospective comparison of conventional and high-power short duration radiofrequency application for pulmonary vein isolation: the high-power shortduration radiofrequency application for faster and safer pulmonary vein ablation (POWER FAST III) trial. J Interv Card Electrophysiol. 2023;66:1889–99.

  603. Leung LWM, Akhtar Z, Sheppard MN, Louis-Auguste J, Hayat J, Gallagher MM. Preventing esophageal complications from atrial fibrillation ablation: a review. Heart Rhythm. 2021;O2(2):651–64.

    Article  Google Scholar 

  604. Kautzner J, Albenque JP, Natale A, Maddox W, Cuoco F, Neuzil P, et al. A novel temperature-controlled radiofrequency catheter ablation system used to treat patients with paroxysmal atrial fibrillation. JACC Clin Electrophysiol. 2021;7:352–63.

    Article  PubMed  Google Scholar 

  605. Almorad A, Wielandts JY, El Haddad M, Knecht S, Tavernier R, Kobza R, et al. Performance and safety of temperature- and flow-controlled radiofrequency ablation in ablation index-guided pulmonary vein isolation. JACC Clin Electrophysiol. 2021;7:408–9.

    Article  PubMed  Google Scholar 

  606. Bortone A, Albenque JP, Ramirez FD, Haïssaguerre M, Combes S, Constantin M, et al. 90 vs 50-watt radiofrequency applications for pulmonary vein isolation: experimental and clinical findings. Circ Arrhythm Electrophysiol. 2022;15: e010663.

    Article  CAS  PubMed  Google Scholar 

  607. Leshem E, Zilberman I, Tschabrunn CM, Barkagan M, Contreras-Valdes FM, Govari A, et al. High-power and short-duration ablation for pulmonary vein isolation: biophysical characterization. JACC Clin Electrophysiol. 2018;4:467–79.

    Article  PubMed  Google Scholar 

  608. Takigawa M, Kitamura T, Martin CA, Fuimaono K, Datta K, Joshi H, et al. Temperature- and flow-controlled ablation/very-high-power short-duration ablation vs conventional power-controlled ablation: comparison of focal and linear lesion characteristics. Heart Rhythm. 2021;18:553–61.

    Article  PubMed  Google Scholar 

  609. Nakagawa H, Ikeda A, Sharma T, Govari A, Ashton J, Maffre J, et al. Comparison of in vivo tissue temperature profile and lesion geometry for radiofrequency ablation with high power-short duration and moderate power-moderate duration: effects of thermal latency and contact force on lesion formation. Circ Arrhythm Electrophysiol. 2021;14: e009899.

    Article  CAS  PubMed  Google Scholar 

  610. Reddy VY, Grimaldi M, De Potter T, Vijgen JM, Bulava A, Duytschaever MF, et al. Pulmonary vein isolation with very high power, short duration, temperature-controlled lesions: the QDOT-FAST trial. JACC Clin Electrophysiol. 2019;5:778–86.

    Article  PubMed  Google Scholar 

  611. Halbfass P, Wielandts JY, Knecht S, Le Polain de Waroux JB, Tavernier R, De Wilde V, et al. Safety of very high-power short-duration radiofrequency ablation for pulmonary vein isolation: a two-centre report with emphasis on silent oesophageal injury. Europace. 2022;24:400–5.

  612. Richard Tilz R, Sano M, Vogler J, Fink T, Saraei R, Sciacca V, et al. Very high-power short-duration temperature-controlled ablation versus conventional power-controlled ablation for pulmonary vein isolation: the fast and furious – AF study. Int J Cardiol Heart Vasc. 2021;35: 100847.

    PubMed  PubMed Central  Google Scholar 

  613. O’Neill L, El Haddad M, Berte B, Kobza R, Hilfiker G, Scherr D, et al. Very high-power ablation for contiguous pulmonary vein isolation: results from the randomized POWER PLUS trial. JACC Clin Electrophysiol. 2022;9:511–22.

    Article  Google Scholar 

  614. Reddy VY, Schilling R, Grimaldi M, Horton R, Natale A, Riva S, et al. Pulmonary vein isolation with a novel multielectrode radiofrequency balloon catheter that allows directionally tailored energy delivery: short-term outcomes from a multicenter first-in-human study (RADIANCE). Circ Arrhythm Electrophysiol. 2019;12: e007541.

    Article  PubMed  Google Scholar 

  615. Dhillon GS, Honarbakhsh S, Di Monaco A, Coling AE, Lenka K, Pizzamiglio F, et al. Use of a multielectrode radiofrequency balloon catheter to achieve pulmonary vein isolation in patients with paroxysmal atrial fibrillation: 12-month outcomes of the RADIANCE study. J Cardiovasc Electrophysiol. 2020;31:1259–69.

    Article  PubMed  Google Scholar 

  616. Almorad A, Del Monte A, Della Rocca DG, Pannone L, Ramak R, Overeinder I, et al. Outcomes of pulmonary vein isolation with radiofrequency balloon vs. cryoballoon ablation: a multi-centric study. Europace. 2023;25:euad252.

    Article  PubMed  PubMed Central  Google Scholar 

  617. Schilling R, Dhillon GS, Tondo C, Riva S, Grimaldi M, Quadrini F, et al. Safety, effectiveness, and quality of life following pulmonary vein isolation with a multielectrode radiofrequency balloon catheter in paroxysmal atrial fibrillation: 1-year outcomes from SHINE. Europace. 2021;23:851–60.

    Article  PubMed  PubMed Central  Google Scholar 

  618. Del Monte A, Almorad A, Pannone L, Della Rocca DG, Bisignani A, Monaco C, et al. Pulmonary vein isolation with the radiofrequency balloon catheter: a single centre prospective study. Europace. 2023;25:896–904.

    Article  PubMed  PubMed Central  Google Scholar 

  619. Reddy VY, Anter E, Rackauskas G, Peichl P, Koruth JS, Petru J, et al. Lattice-tip focal ablation catheter that toggles between radiofrequency and pulsed field energy to treat atrial fibrillation: a first-in-human trial. Circ Arrhythm Electrophysiol. 2020;13: e008718.

    Article  CAS  PubMed  Google Scholar 

  620. Reddy VY, Peichl P, Anter E, Rackauskas G, Petru J, Funasako M, et al. A focal ablation catheter toggling between radiofrequency and pulsed field energy to treat atrial fibrillation. JACC Clin Electrophysiol. 2023;9:1786–801.

    Article  PubMed  Google Scholar 

  621. Dubuc M, Khairy P, Rodriguez-Santiago A, Talajic M, Tardif JC, Thibault B, et al. Catheter cryoablation of the atrioventricular node in patients with atrial fibrillation: a novel technology for ablation of cardiac arrhythmias. J Cardiovasc Electrophysiol. 2001;12:439–44.

    Article  CAS  PubMed  Google Scholar 

  622. Andrade JG, Champagne J, Dubuc M, Deyell MW, Verma A, Macle L, et al. Cryoballoon or radiofrequency ablation for atrial fibrillation assessed by continuous monitoring: a randomized clinical trial. Circulation. 2019;140:1779–88.

    Article  PubMed  Google Scholar 

  623. Furnkranz A, Chun KR, Nuyens D, Metzner A, Koster I, Schmidt B, et al. Characterization of conduction recovery after pulmonary vein isolation using the “single big cryoballoon” technique. Heart Rhythm. 2010;7:184–90.

    Article  PubMed  Google Scholar 

  624. Martin CA, Tilz RRR, Anic A, Defaye P, Luik A, de Asmundis C, et al. Acute procedural efficacy and safety of a novel cryoballoon for the treatment of paroxysmal atrial fibrillation: results from the POLAR ICE study. J Cardiovasc Electrophysiol. 2023;34:833–40.

    Article  PubMed  Google Scholar 

  625. Tilz RR, Meyer-Saraei R, Eitel C, Fink T, Sciacca V, Lopez LD, et al. Novel cryoballoon ablation system for single shot pulmonary vein isolation- the prospective ICE-AGE-X study. Circ J. 2021;85:1296–304.

    Article  PubMed  Google Scholar 

  626. Assaf A, Bhagwandien R, Szili-Torok T, Yap SC. Comparison of procedural efficacy, balloon nadir temperature, and incidence of phrenic nerve palsy between two cryoballoon technologies for pulmonary vein isolation: a systematic review and metaanalysis. J Cardiovasc Electrophysiol. 2021;32:2424–31.

    Article  PubMed  PubMed Central  Google Scholar 

  627. Reichlin T, Kaueffer T, Knecht S, Madaffari A, Badertscher P, Maurhofer J, et al. Comparison of the PolarX and the Arctic Front cryoballoon for pulmonary vein isolation in patients with paroxysmal atrial fibrillation (COMPARE CRYO). Presented at ESC Congress 2023, Late Breaking Sciences in Atrial Fibrillation Session 2023.

  628. Kuck KH, Furnkranz A, Chun KR, Metzner A, Ouyang F, Schluter M, et al. Cryoballoon or radiofrequency ablation for symptomatic paroxysmal atrial fibrillation: reintervention, rehospitalization, and quality-of-life outcomes in the FIRE AND ICE trial. Eur Heart J. 2016;37:2858–65.

    Article  PubMed  PubMed Central  Google Scholar 

  629. Bredikis A, Wilber DJ. Cryoablation of Cardiac Arrhythmias. 1st ed. Philadelphia, PA: Elsevier/Saunders; 2011.

    Google Scholar 

  630. De Potter T, Klaver M, Babkin A, Iliodromitis K, Hocini M, Cox J, et al. Ultra-low temperature cryoablation for atrial fibrillation: primary outcomes for efficacy and safety: the cryocure-2 study. JACC Clin Electrophysiol. 2022;8:1034–9.

    Article  PubMed  Google Scholar 

  631. Verma A, Asivatham SJ, Deneke T, Castellvi Q, Neal RE 2nd. Primer on pulsed electrical field ablation: understanding the benefits and limitations. Circ Arrhythm Electrophysiol. 2021;14: e010086.

    Article  PubMed  Google Scholar 

  632. Ruzgys P, Novickij V, Novickij J, Satkauskas S. Influence of the electrode material on ROS generation and electroporation efficiency in low and high frequency nanosecond pulse range. Bioelectrochemistry. 2019;127:87–93.

    Article  CAS  PubMed  Google Scholar 

  633. Rubinsky L, Guenther E, Mikus P, Stehling M, Rubinsky B. Electrolytic effects during tissue ablation by electroporation. Technol Cancer Res Treat. 2016;15:NP95-103.

    Article  PubMed  Google Scholar 

  634. Xie F, Varghese F, Pakhomov AG, Semenov I, Xiao S, Philpott J, et al. Ablation of myocardial tissue with nanosecond pulsed electric fields. PLoS One. 2015;10: e0144833.

    Article  PubMed  PubMed Central  Google Scholar 

  635. Maor E, Ivorra A, Leor J, Rubinsky B. The effect of irreversible electroporation on blood vessels. Technol Cancer Res Treat. 2007;6:307–12.

    Article  PubMed  Google Scholar 

  636. Scheinman MM, Morady F, Hess DS, Gonzalez R. Catheter-induced ablation of the atrioventricular junction to control refractory supraventricular arrhythmias. JAMA. 1982;248:851–5.

    Article  CAS  PubMed  Google Scholar 

  637. van den Bos W, Scheffer HJ, Vogel JA, Wagstaff PG, de Bruin DM, de Jong MC, et al. Thermal energy during irreversible electroporation and the influence of different ablation parameters. J Vasc Interv Radiol. 2016;27:433–43.

    Article  PubMed  Google Scholar 

  638. Stewart MT, Haines DE, Miklavcic D, Kos B, Kirchhof N, Barka N, et al. Safety and chronic lesion characterization of pulsed field ablation in a porcine model. J Cardiovasc Electrophysiol. 2021;32:958–69.

    Article  PubMed  PubMed Central  Google Scholar 

  639. Meckes D, Emami M, Fong I, Lau DH, Sanders P. Pulsed-field ablation: computational modeling of electric fields for lesion depth analysis. Heart Rhythm. 2022;O2(3):433–40.

    Article  Google Scholar 

  640. Verma A, Howard BT, Tzou WT, Mattison LM, Kos B, Miklavcic D, et al. Effects of tissue proximity on cardiac lesion formation using pulsed field ablation. Heart Rhythm. 2022;19:S228.

    Article  Google Scholar 

  641. Reddy VY, Neuzil P, Koruth JS, Petru J, Funosako M, Cochet H, et al. Pulsed field ablation for pulmonary vein isolation in atrial fibrillation. J Am Coll Cardiol. 2019;74:315–26.

    Article  PubMed  Google Scholar 

  642. Verma A, Boersma L, Haines DE, Natale A, Marchlinski FE, Sanders P, et al. First-in-human experience and acute procedural outcomes using a novel pulsed field ablation system: the PULSED AF pilot trial. Circ Arrhythm Electrophysiol. 2022;15: e010168.

    Article  CAS  PubMed  Google Scholar 

  643. Ekanem E, Reddy VY, Schmidt B, Reichlin T, Neven K, Metzner A, et al. Multinational survey on the methods, efficacy, and safety on the post-approval clinical use of pulsed field ablation (MANIFEST-PF). Europace. 2022;24:1256–66.

    Article  PubMed  PubMed Central  Google Scholar 

  644. Schmidt B, Bordignon S, Neven K, Reichlin T, Blaauw Y, Hansen J, et al. EUropean real-world outcomes with pulsed field ablatiOn in patients with symptomatic atRIAl fibrillation: lessons from the multi-centre EU-PORIA registry. Europace. 2023;25:euad185.

    Article  PubMed  PubMed Central  Google Scholar 

  645. Maor E, Ivorra A, Rubinsky B. Non thermal irreversible electroporation: novel technology for vascular smooth muscle cells ablation. PLoS One. 2009;4: e4757.

    Article  PubMed  PubMed Central  Google Scholar 

  646. Li W, Fan Q, Ji Z, Qiu X, Li Z. The effects of irreversible electroporation (IRE) on nerves. PLoS One. 2011;6: e18831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  647. Koruth JS, Kuroki K, Kawamura I, Brose R, Viswanathan R, Buck ED, et al. Pulsed field ablation versus radiofrequency ablation: esophageal injury in a novel porcine model. Circ Arrhythm Electrophysiol. 2020;13: e008303.

    Article  PubMed  PubMed Central  Google Scholar 

  648. Stewart MT, Haines DE, Verma A, Kirchhof N, Barka N, Grassl E, et al. Intracardiac pulsed field ablation: proof of feasibility in a chronic porcine model. Heart Rhythm. 2019;16:754–64.

    Article  PubMed  Google Scholar 

  649. Howard B, Haines DE, Verma A, Kirchhof N, Barka N, Onal B, et al. Characterization of phrenic nerve response to pulsed field ablation. Circ Arrhythm Electrophysiol. 2022;15: e010127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  650. Howard B, Haines DE, Verma A, Packer D, Kirchhof N, Barka N, et al. Reduction in pulmonary vein stenosis and collateral damage with pulsed field ablation compared with radiofrequency ablation in a canine model. Circ Arrhythm Electrophysiol. 2020;13: e008337.

    Article  PubMed  PubMed Central  Google Scholar 

  651. Reddy VY, Dukkipati SR, Neuzil P, Anic A, Petru J, Funasako M, et al. Pulsed field ablation of paroxysmal atrial fibrillation: 1-year outcomes of IMPULSE, PEFCAT, and PEFCAT II. JACC Clin Electrophysiol. 2021;7:614–27.

    Article  PubMed  Google Scholar 

  652. Chung EM, Banahan C, Patel N, Janus J, Marshall D, Horsfield MA, et al. Size distribution of air bubbles entering the brain during cardiac surgery. PLoS One. 2015;10: e0122166.

    Article  PubMed  PubMed Central  Google Scholar 

  653. Reinsch N, Füting A, Höwel D, Bell J, Lin Y, Neven K. Cerebral safety after pulsed field ablation for paroxysmal atrial fibrillation. Heart Rhythm. 2022;19:1813–8.

    Article  PubMed  Google Scholar 

  654. Loh P, van Es R, Groen MHA, Neven K, Kassenberg W, Wittkampf FHM, et al. Pulmonary vein isolation with single pulse irreversible electroporation: a first in human study in 10 patients with atrial fibrillation. Circ Arrhythm Electrophysiol. 2020;13: e008192.

    Article  PubMed  Google Scholar 

  655. Gunawardene Melanie A, Schaeffer Benjamin N, Jularic M, Eickholt C, Maurer T, Akbulak Ruken Ö, et al. Coronary spasm during pulsed field ablation of the mitral isthmus line. JACC Clin Electrophysiol. 2021;7:1618–20.

    Article  CAS  PubMed  Google Scholar 

  656. Reddy VY, Petru J, Funasako M, Kopriva K, Hala P, Chovanec M, et al. Coronary arterial spasm during pulsed field ablation to treat atrial fibrillation. Circulation. 2022;146:1808–19.

    Article  PubMed  Google Scholar 

  657. Reddy VY, Anic A, Koruth J, Petru J, Funasako M, Minami K, et al. Pulsed field ablation in patients with persistent atrial fibrillation. J Am Coll Cardiol. 2020;76:1068–80.

    Article  PubMed  Google Scholar 

  658. Anić A, Phlips T, Brešković T, Koopman P, Girouard S, Mediratta V, et al. Pulsed field ablation using focal contact force-sensing catheters for treatment of atrial fibrillation: acute and 90-day invasive remapping results. Europace. 2023;25:euad147.

    Article  PubMed  PubMed Central  Google Scholar 

  659. Turagam MK, Neuzil P, Schmidt B, Reichlin T, Neven K, Metzner A, et al. Safety and effectiveness of pulsed field ablation to treat atrial fibrillation: one-year outcomes from the MANIFEST-PF registry. Circulation. 2023;148:35–46.

    Article  CAS  PubMed  Google Scholar 

  660. Verma A, Haines DE, Boersma LV, Sood N, Natale A, Marchlinski FE, et al. Pulsed field ablation for the treatment of atrial fibrillation: PULSED AF pivotal trial. Circulation. 2023;147:1422–32.

    Article  PubMed  PubMed Central  Google Scholar 

  661. Duytschaever M, De Potter T, Grimaldi M, Anic A, Vijgen J, Neuzil P, et al. Paroxysmal atrial fibrillation ablation using a novel variable-loop biphasic pulsed field ablation catheter integrated with a 3-dimensional mapping system: 1-year outcomes of the multicenter inspIRE study. Circ Arrhythm Electrophysiol. 2023;16: e011780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  662. Reddy VY, Gerstenfeld EP, Natale A, Whang W, Cuoco FA, Patel C, et al. Pulsed field or conventional thermal ablation for paroxysmal atrial fibrillation. N Engl J Med. 2023;389:1660–71.

    Article  CAS  PubMed  Google Scholar 

  663. Rovaris G, Ciconte G, Schiavone M, Mitacchione G, Gasperetti A, Piazzi E, et al. Second-generation laser balloon ablation for the treatment of atrial fibrillation assessed by continuous rhythm monitoring: the LIGHT-AF study. Europace. 2021;23:1380–90.

    Article  PubMed  Google Scholar 

  664. Schmidt B, Neuzil P, Luik A, Osca Asensi J, Schrickel JW, Deneke T, et al. Laser balloon or wide-area circumferential irrigated radiofrequency ablation for persistent atrial fibrillation: a multicenter prospective randomized study. Circ Arrhythm Electrophysiol. 2017;10: e005767.

    Article  PubMed  Google Scholar 

  665. Chun JKR, Bordignon S, Last J, Mayer L, Tohoku S, Zanchi S, et al. Cryoballoon versus laserballoon: insights from the first prospective randomized balloon trial in catheter ablation of atrial fibrillation. Circ Arrhythm Electrophysiol. 2021;14: e009294.

    Article  PubMed  Google Scholar 

  666. Ye W, Chen Q, Fan G, Zhou X, Wang X, Mao W, et al. Efficacy and safety of visually guided laser balloon versus cryoballoon ablation for paroxysmal atrial fibrillation: a systematic review and metaanalysis. Front Cardiovasc Med. 2023;10:1229223.

    Article  PubMed  PubMed Central  Google Scholar 

  667. Schiavone M, Gasperetti A, Montemerlo E, Pozzi M, Sabato F, Piazzi E, et al. Long-term comparisons of atrial fibrillation ablation outcomes with a cryoballoon or laser-balloon: a propensity-matched analysis based on continuous rhythm monitoring. Hellenic J Cardiol. 2022;65:1–7.

    Article  PubMed  Google Scholar 

  668. Proietti R, Pecoraro V, Di Biase L, Natale A, Santangeli P, Viecca M, et al. Remote magnetic with open-irrigated catheter vs. manual navigation for ablation of atrial fibrillation: a systematic review and metaanalysis. Europace. 2013;15:1241–8.

    Article  PubMed  Google Scholar 

  669. Jia K, Jin Q, Liu A, Wu L. Remote magnetic navigation versus manual control navigation for atrial fibrillation ablation: a systematic review and metaanalysis. J Electrocardiol. 2019;55:78–86.

    Article  PubMed  Google Scholar 

  670. Li X, Bao Y, Jia K, Zhang N, Lin C, Wei Y, et al. Comparison of the mid-term outcomes of robotic magnetic navigation-guided radiofrequency ablation versus cryoballoon ablation for persistent atrial fibrillation. J Cardiovasc Dev Dis. 2022;9:88.

    PubMed  PubMed Central  Google Scholar 

  671. Verma A, Feld GK, Cox JL, Dewland TA, Babkin A, De Potter T, et al. Combined pulsed field ablation with ultra-low temperature cryoablation: a preclinical experience. J Cardiovasc Electrophysiol. 2022;34:2124–33.

    Article  PubMed  Google Scholar 

  672. Hilbert S, Sommer P, Gutberlet M, Gaspar T, Foldyna B, Piorkowski C, et al. Real-time magnetic resonance-guided ablation of typical right atrial flutter using a combination of active catheter tracking and passive catheter visualization in man: initial results from a consecutive patient series. Europace. 2016;18:572–7.

    Article  PubMed  Google Scholar 

  673. Lehmann HI, Graeff C, Simoniello P, Constantinescu A, Takami M, Lugenbiel P, et al. Feasibility study on cardiac arrhythmia ablation using high-energy heavy ion beams. Sci Rep. 2016;6:38895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  674. Ströker E, de Asmundis C, Kupics K, Takarada K, Mugnai G, De Cocker J, et al. Value of ultrasound for access guidance and detection of subclinical vascular complications in the setting of atrial fibrillation cryoballoon ablation. Europace. 2019;21:434–9.

    Article  PubMed  Google Scholar 

  675. Wynn GJ, Haq I, Hung J, Bonnett LJ, Lewis G, Webber M, et al. Improving safety in catheter ablation for atrial fibrillation: a prospective study of the use of ultrasound to guide vascular access. J Cardiovasc Electrophysiol. 2014;25:680–5.

    Article  PubMed  Google Scholar 

  676. Yamagata K, Wichterle D, Roubicek T, Jarkovsky P, Sato Y, Kogure T, et al. Ultrasound-guided versus conventional femoral venipuncture for catheter ablation of atrial fibrillation: a multicentre randomized efficacy and safety trial (ULTRA-FAST trial). Europace. 2018;20:1107–14.

    Article  PubMed  Google Scholar 

  677. Sharma PS, Padala SK, Gunda S, Koneru JN, Ellenbogen KA. Vascular complications during catheter ablation of cardiac arrhythmias: a comparison between vascular ultrasound guided access and conventional vascular access. J Cardiovasc Electrophysiol. 2016;27:1160–6.

    Article  PubMed  Google Scholar 

  678. Pellegrino PL, Di Monaco A, Santoro F, Grimaldi M, D’Arienzo G, Casavecchia G, et al. Near zero vascular complications using echo-guided puncture during catheter ablation of arrhythmias: a retrospective study and literature review. J Arrhythm. 2022;38:395–9.

    Article  PubMed  PubMed Central  Google Scholar 

  679. Sobolev M, Shiloh AL, Di Biase L, Slovut DP. Ultrasound-guided cannulation of the femoral vein in electrophysiological procedures: a systematic review and metaanalysis. Europace. 2017;19:850–5.

    PubMed  Google Scholar 

  680. Wang TKM, Wang MTM, Martin A. Metaanalysis of ultrasound-guided vs conventional vascular access for cardiac electrophysiology procedures. J Arrhythm. 2019;35:858–62.

    Article  PubMed  PubMed Central  Google Scholar 

  681. Verma A, Debruyne P, Nardi S, Deneke T, DeGreef Y, Spitzer S, et al. Evaluation and reduction of asymptomatic cerebral embolism in ablation of atrial fibrillation, but high prevalence of chronic silent infarction: results of the evaluation of reduction of asymptomatic cerebral embolism trial. Circ Arrhythm Electrophysiol. 2013;6:835–42.

    Article  PubMed  Google Scholar 

  682. Yu Y, Wang X, Li X, Zhou X, Liao S, Yang W, et al. Higher incidence of asymptomatic cerebral emboli after atrial fibrillation ablation found with high-resolution diffusion-weighted magnetic resonance imaging. Circ Arrhythm Electrophysiol. 2020;13: e007548.

    Article  PubMed  Google Scholar 

  683. Briceno DF, Villablanca PA, Lupercio F, Kargoli F, Jagannath A, Londono A, et al. Clinical impact of heparin kinetics during catheter ablation of atrial fibrillation: metaanalysis and meta-regression. J Cardiovasc Electrophysiol. 2016;27:683–93.

    Article  PubMed  Google Scholar 

  684. Maleki K, Mohammadi R, Hart D, Cotiga D, Farhat N, Steinberg JS. Intracardiac ultrasound detection of thrombus on transseptal sheath: incidence, treatment, and prevention. J Cardiovasc Electrophysiol. 2005;16:561–5.

    Article  PubMed  Google Scholar 

  685. Ren JF, Marchlinski FE, Callans DJ, Gerstenfeld EP, Dixit S, Lin D, et al. Increased intensity of anticoagulation may reduce risk of thrombus during atrial fibrillation ablation procedures in patients with spontaneous echo contrast. J Cardiovasc Electrophysiol. 2005;16:474–7.

    Article  PubMed  Google Scholar 

  686. Bruce CJ, Friedman PA, Narayan O, Munger TM, Hammill SC, Packer DL, et al. Early heparinization decreases the incidence of left atrial thrombi detected by intracardiac echocardiography during radiofrequency ablation for atrial fibrillation. J Interv Card Electrophysiol. 2008;22:211–9.

    Article  PubMed  Google Scholar 

  687. Asbach S, Biermann J, Bode C, Faber TS. Early heparin administration reduces risk for left atrial thrombus formation during atrial fibrillation ablation procedures. Cardiol Res Pract. 2011;2011: 615087.

    Article  PubMed  PubMed Central  Google Scholar 

  688. Di Biase L, Gaita F, Toso E, Santangeli P, Mohanty P, Rutledge N, et al. Does periprocedural anticoagulation management of atrial fibrillation affect the prevalence of silent thromboembolic lesion detected by diffusion cerebral magnetic resonance imaging in patients undergoing radiofrequency atrial fibrillation ablation with open irrigated catheters? Results from a prospective multicenter study. Heart Rhythm. 2014;11:791–8.

    Article  PubMed  Google Scholar 

  689. Meininghaus DG, Blembel K, Waniek C, Kruells-Muench J, Ernst H, Kleemann T, et al. Temperature monitoring and temperature-driven irrigated radiofrequency energy titration do not prevent thermally induced esophageal lesions in pulmonary vein isolation: a randomized study controlled by esophagoscopy before and after catheter ablation. Heart Rhythm. 2021;18:926–34.

    Article  Google Scholar 

  690. Schoene K, Arya A, Grashoff F, Knopp H, Weber A, Lerche M, et al. Oesophageal probe evaluation in radiofrequency ablation of atrial fibrillation (OPERA): results from a prospective randomized trial. Europace. 2020;22:1487–94.

    Article  PubMed  Google Scholar 

  691. Deneke T, Nentwich K, Berkovitz A, Sonne K, Ene E, Pavlov B, et al. High-resolution infrared thermal imaging of the esophagus during atrial fibrillation ablation as a predictor of endoscopically detected thermal lesions. Circ Arrhythm Electrophysiol. 2018;11: e006681.

    Article  PubMed  Google Scholar 

  692. Ayoub T, El Hajjar AH, Singh Sidhu GD, Bhatnagar A, Zhang Y, Mekhael M, et al. Esophageal temperature during atrial fibrillation ablation poorly predicts esophageal injury: an observational study. Heart Rhythm. 2021;O2(2):570–7.

    Article  Google Scholar 

  693. Ha FJ, Han HC, Sanders P, Teh AW, O’Donnell D, Farouque O, et al. Prevalence and prevention of oesophageal injury during atrial fibrillation ablation: a systematic review and metaanalysis. Europace. 2019;21:80–90.

    Article  PubMed  Google Scholar 

  694. Chen S, Schmidt B, Seeger A, Bordignon S, Tohoku S, Willems F, et al. Catheter ablation of atrial fibrillation using ablation index-guided high power (50 W) for pulmonary vein isolation with or without esophageal temperature probe (the AI-HP ESO II). Heart Rhythm. 2020;17:1833–40.

    Article  PubMed  Google Scholar 

  695. Garcia R, Waldmann V, Vanduynhoven P, Nesti M, Jansen de Oliveira Figueiredo M, Narayanan K, et al. Worldwide sedation strategies for atrial fibrillation ablation: current status and evolution over the last decade. Europace. 2021;23:2039–45.

    Article  PubMed  Google Scholar 

  696. Dada RS, Hayanga JWA, Woods K, Schwartzman D, Thibault D, Ellison M, et al. Anesthetic choice for atrial fibrillation ablation: a national anesthesia clinical outcomes registry analysis. J Cardiothorac Vasc Anesth. 2021;35:2600–6.

    Article  PubMed  Google Scholar 

  697. Di Biase L, Conti S, Mohanty P, Bai R, Sanchez J, Walton D, et al. General anesthesia reduces the prevalence of pulmonary vein reconnection during repeat ablation when compared with conscious sedation: results from a randomized study. Heart Rhythm. 2011;8:368–72.

    Article  PubMed  Google Scholar 

  698. Chikata A, Kato T, Yaegashi T, Sakagami S, Kato C, Saeki T, et al. General anesthesia improves contact force and reduces gap formation in pulmonary vein isolation: a comparison with conscious sedation. Heart Vessels. 2017;32:997–1005.

    Article  PubMed  Google Scholar 

  699. Martin CA, Curtain JP, Gajendragadkar PR, Begley DA, Fynn SP, Grace AA, et al. Improved outcome and cost effectiveness in ablation of persistent atrial fibrillation under general anaesthetic. Europace. 2018;20:935–42.

    Article  PubMed  Google Scholar 

  700. Pang N, Gao J, Zhang N, Zhang B, Wang R. Comparison of the different anesthesia strategies for atrial fibrillation catheter ablation: a systematic review and metaanalysis. Cardiol Res Pract. 2022;2022:1124372.

    Article  PubMed  PubMed Central  Google Scholar 

  701. Weinmann K, Heudorfer R, Lenz A, Aktolga D, Rattka M, Bothner C, et al. Safety of conscious sedation in electroanatomical mapping procedures and cryoballoon pulmonary vein isolation. Heart Vessels. 2021;36:561–7.

    Article  PubMed  Google Scholar 

  702. Wasserlauf J, Knight BP, Li Z, Andrei AC, Arora R, Chicos AB, et al. Moderate sedation reduces lab time compared to general anesthesia during cryoballoon ablation for AF without compromising safety or long-term efficacy. Pacing Clin Electrophysiol. 2016;39:1359–65.

    Article  PubMed  Google Scholar 

  703. Tohoku S, Schmidt B, Bordignon S, Chen S, Bologna F, Chun JK. Initial clinical experience of pulmonary vein isolation using the ultra-low temperature cryoablation catheter for patients with atrial fibrillation. J Cardiovasc Electrophysiol. 2022;33:1371–9.

    Article  PubMed  Google Scholar 

  704. Schmidt B, Bordignon S, Tohoku S, Chen S, Bologna F, Urbanek L, et al. 5S study: safe and simple single shot pulmonary vein isolation with pulsed field ablation using sedation. Circ Arrhythm Electrophysiol. 2022;15: e010817.

    Article  CAS  PubMed  Google Scholar 

  705. Iacopino S, Colella J, Dini D, Mantovani L, Sorrenti PF, Malacrida M, et al. Sedation strategies for pulsed-field ablation of atrial fibrillation: focus on deep sedation with intravenous ketamine in spontaneous respiration. Europace. 2023;25:euad230.

    Article  PubMed  PubMed Central  Google Scholar 

  706. Grimaldi M, Quadrini F, Caporusso N, Troisi F, Vitulano N, Delmonte V, et al. Deep sedation protocol during atrial fibrillation ablation using a novel variable-loop biphasic pulsed field ablation catheter. Europace. 2023;25:euad222.

    Article  PubMed  PubMed Central  Google Scholar 

  707. Kumar S, Morton JB, Halloran K, Spence SJ, Lee G, Wong MC, et al. Effect of respiration on catheter-tissue contact force during ablation of atrial arrhythmias. Heart Rhythm. 2012;9:1041-7.e1.

    Article  PubMed  Google Scholar 

  708. Sivasambu B, Hakim JB, Barodka V, Chrispin J, Berger RD, Ashikaga H, et al. Initiation of a high-frequency jet ventilation strategy for catheter ablation for atrial fibrillation: safety and outcomes data. JACC Clin Electrophysiol. 2018;4:1519–25.

    Article  PubMed  PubMed Central  Google Scholar 

  709. Aizer A, Qiu JK, Cheng AV, Wu PB, Barbhaiya CR, Jankelson L, et al. Rapid pacing and high-frequency jet ventilation additively improve catheter stability during atrial fibrillation ablation. J Cardiovasc Electrophysiol. 2020;31:1678–86.

    Article  PubMed  Google Scholar 

  710. Fernandez-Bustamante A, Ibañez V, Alfaro JJ, de Miguel E, Germán MJ, Mayo A, et al. High-frequency jet ventilation in interventional bronchoscopy: factors with predictive value on high-frequency jet ventilation complications. J Clin Anesth. 2006;18:349–56.

    Article  PubMed  Google Scholar 

  711. Babapoor-Farrokhran S, Alzubi J, Port Z, Khraisha O, Mainigi SK. Utility of high-frequency jet ventilation in atrial fibrillation ablation. J Innov Card Rhythm Manag. 2021;12:4590–3.

    Article  PubMed  PubMed Central  Google Scholar 

  712. Osorio J, Varley A, Kreidieh O, Godfrey B, Schrappe G, Rajendra A, et al. High-frequency, low-tidal-volume mechanical ventilation safely improves catheter stability and procedural efficiency during radiofrequency ablation of atrial fibrillation. Circ Arrhythm Electrophysiol. 2022;15: e010722.

    Article  PubMed  Google Scholar 

  713. Gabriels J, Donnelly J, Khan M, Anca D, Beldner S, Willner J, et al. High-frequency, low tidal volume ventilation to improve catheter stability during atrial fibrillation ablation. JACC Clin Electrophysiol. 2019;5:1224–6.

    Article  PubMed  Google Scholar 

  714. Kadado AJ, Gobeil K, Fakhoury F, Pervaiz A, Chalhoub F. Very low tidal volume, high-frequency ventilation in atrial fibrillation ablation: a systematic review. J Interv Card Electrophysiol. 2022;64:539–43.

    Article  PubMed  Google Scholar 

  715. Osorio J, Zei PC, Díaz JC, Varley AL, Morales GX, Silverstein JR, et al. High-frequency low-tidal-volume ventilation improves long-term outcomes in atrial fibrillation ablation: a multicenter prospective study. JACC Clin Electrophysiol. 2023;9:1543–54.

    Article  PubMed  Google Scholar 

  716. Hoyt H, Bhonsale A, Chilukuri K, Alhumaid F, Needleman M, Edwards D, et al. Complications arising from catheter ablation of atrial fibrillation: temporal trends and predictors. Heart Rhythm. 2011;8:1869–74.

    Article  PubMed  Google Scholar 

  717. Deshmukh A, Patel NJ, Pant S, Shah N, Chothani A, Mehta K, et al. In-hospital complications associated with catheter ablation of atrial fibrillation in the United States between 2000 and 2010: analysis of 93 801 procedures. Circulation. 2013;128:2104–12.

    Article  PubMed  Google Scholar 

  718. Iqbal AM, Li KY, Aznaurov SG, Lugo RM, Venkataraman R, Gautam S. Catheter ablation for atrial fibrillation can be safely performed without invasive hemodynamic monitoring: a multi-center study. J Interv Card Electrophysiol. 2022;64:743–9.

    Article  PubMed  Google Scholar 

  719. Deneke T, Shin DI, Balta O, Bünz K, Fassbender F, Mügge A, et al. Postablation asymptomatic cerebral lesions: long-term follow-up using magnetic resonance imaging. Heart Rhythm. 2011;8:1705–11.

    Article  PubMed  Google Scholar 

  720. Maleki K, Mohammadi R, Hart D, Cotiga D, Farhat N, Steinberg JS. Intracardiac ultrasound detection of thrombus on transseptal sheath: incidence, treatment, and prevention. J Cardiovasc Electrophysiol. 2005;16:561–5.

    Article  PubMed  Google Scholar 

  721. Zhang RF, Ma CM, Wang N, Yang MH, Li WW, Yin XM, et al. Appropriate intraprocedural initial heparin dosing in patients undergoing catheter ablation for atrial fibrillation receiving uninterrupted non-vitamin-K antagonist oral anticoagulant treatment. BMC Cardiovasc Disord. 2021;21:214.

    Article  PubMed  PubMed Central  Google Scholar 

  722. Benali K, Verain J, Hammache N, Guenancia C, Hooks D, Magnin-Poull I, et al. Running after activated clotting time values in patients receiving direct oral anticoagulants: a potentially dangerous race. Results from a prospective study in atrial fibrillation catheter ablation procedures. J Clin Med. 2021;10:4240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  723. Hohnloser SH, Camm AJ, Cappato R, Diener HC, Heidbuchel H, Mont L, et al. Periprocedural anticoagulation in the uninterrupted edoxaban vs. vitamin K antagonists for ablation of atrial fibrillation (ELIMINATE-AF) trial. Europace. 2021;23:65–72.

    Article  PubMed  Google Scholar 

  724. Calkins H, Willems S, Verma A, Schilling R, Hohnloser SH, Okumura K, et al. Heparin dosing in uninterrupted anticoagulation with dabigatran vs. warfarin in atrial fibrillation ablation: RE-CIRCUIT study. Europace. 2019;21:879–85.

    Article  PubMed  PubMed Central  Google Scholar 

  725. Payne JE, Koerber SM, Bickel T, Ghadban R, Flaker G, Gautam S. Higher initial weight-based heparin dosing is required with direct oral anticoagulants during catheter ablation for atrial fibrillation. J Interv Card Electrophysiol. 2020;58:185–91.

    Article  PubMed  Google Scholar 

  726. Martin AC, Kyheng M, Foissaud V, Duhamel A, Marijon E, Susen S, et al. Activated clotting time monitoring during atrial fibrillation catheter ablation: does the anticoagulant matter? J Clin Med. 2020;9:350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  727. Songqun H, Chunling W, Zhifu G, Xinmiao H, Jiang C. Effects of rivaroxaban on activated clotting time in catheter ablation for atrial fibrillation in Chinese patients. J Interv Card Electrophysiol. 2020;59:509–16.

    Article  PubMed  Google Scholar 

  728. Safani M, Tobias S, Shandling AH, Redmond K, Lee MY. Comprehensive intraprocedural unfractionated heparin protocol during catheter ablation of atrial fibrillation in the presence of direct oral anticoagulants and wide spectrum of body mass index. J Cardiovasc Pharmacol Ther. 2021;26:349–58.

    Article  CAS  PubMed  Google Scholar 

  729. Ghannam M, Chugh A, Dillon P, Alyesh D, Kossidas K, Sharma S, et al. Protamine to expedite vascular hemostasis after catheter ablation of atrial fibrillation: a randomized controlled trial. Heart Rhythm. 2018;15:1642–7.

    Article  PubMed  Google Scholar 

  730. Pollack CV Jr, Reilly PA, van Ryn J, Eikelboom JW, Glund S, Bernstein RA, et al. Idarucizumab for dabigatran reversal. N Engl J Med. 2015;373:511–20.

    Article  CAS  PubMed  Google Scholar 

  731. Siegal DM, Curnutte JT, Connolly SJ, Lu G, Conley PB, Wiens BL, et al. Andexanet alfa for the reversal of factor Xa inhibitor activity. N Engl J Med. 2015;373:2413–24.

    Article  CAS  PubMed  Google Scholar 

  732. Steffel J, Collins R, Antz M, Cornu P, Desteghe L, Haeusler KG, et al. 2021 European heart rhythm association practical guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Europace. 2021;23:1612–76.

    Article  PubMed  Google Scholar 

  733. Hsu JC, Badhwar N, Gerstenfeld EP, Lee RJ, Mandyam MC, Dewland TA, et al. Randomized trial of conventional transseptal needle versus radiofrequency energy needle puncture for left atrial access (the TRAVERSE-LA study). J Am Heart Assoc. 2013;2: e000428.

    Article  PubMed  PubMed Central  Google Scholar 

  734. Andrade JG, Macle L, Bennett MT, Hawkins NM, Essebag V, Champagne J, et al. Randomized trial of conventional versus radiofrequency needle transseptal puncture for cryoballoon ablation: the CRYO-LATS trial. J Interv Card Electrophysiol. 2022;65:481–9.

    Article  PubMed  PubMed Central  Google Scholar 

  735. Tokuda M, Yamashita S, Matsuo S, Kato M, Sato H, Oseto H, et al. Radiofrequency needle for transseptal puncture is associated with lower incidence of thromboembolism during catheter ablation of atrial fibrillation: propensity score-matched analysis. Heart Vessels. 2018;33:1238–44.

    Article  PubMed  Google Scholar 

  736. Chow AWC, Cobb V, Sepahpour A, McCready JW. Transseptal puncture performed with the new needle-free ‘SafeSept’ guidewire: a multicentre experience. J Interv Card Electrophysiol. 2020;59:29–34.

    Article  PubMed  Google Scholar 

  737. Maclean E, Mahtani K, Roelas M, Vyas R, Butcher C, Ahluwalia N, et al. Transseptal puncture for left atrial ablation: risk factors for cardiac tamponade and a proposed causative classification system. J Cardiovasc Electrophysiol. 2022;33:1747–55.

    Article  PubMed  PubMed Central  Google Scholar 

  738. Stauber A, Kornej J, Sepehri Shamloo A, Dinov B, Bacevicius J, Dagres N, et al. Impact of single versus double transseptal puncture on outcome and complications in pulmonary vein isolation procedures. Cardiol J. 2021;28:671–7.

    Article  PubMed  Google Scholar 

  739. Deyell MW, Wen G, Laksman Z, Bennett MT, Chakrabarti S, Yeung-Lai-Wah JA, et al. The impact of steerable sheaths on unblinded contact force during catheter ablation for atrial fibrillation. J Interv Card Electrophysiol. 2020;57:417–24.

    Article  PubMed  Google Scholar 

  740. Piorkowski C, Eitel C, Rolf S, Bode K, Sommer P, Gaspar T, et al. Steerable versus nonsteerable sheath technology in atrial fibrillation ablation: a prospective, randomized study. Circ Arrhythm Electrophysiol. 2011;4:157–65.

    Article  PubMed  Google Scholar 

  741. Janosi K, Debreceni D, Janosa B, Bocz B, Simor T, Kupo P. Visualizable vs. standard, non-visualizable steerable sheath for pulmonary vein isolation procedures: randomized, single-centre trial. Front Cardiovasc Med. 2022;9:1033755.

    Article  PubMed  PubMed Central  Google Scholar 

  742. Rajendra A, Hunter TD, Morales GX, Zei P, Boo LM, Varley A, et al. Steerable sheath visualizable under 3D electroanatomical mapping facilitates paroxysmal atrial fibrillation ablation with minimal fluoroscopy. J Interv Card Electrophysiol. 2023;66:381–8.

    Article  PubMed  Google Scholar 

  743. Fitzpatrick N, Mittal A, Galvin J, Jauvert G, Keaney J, Keelan E, et al. The impact of steerable sheath visualization during catheter ablation for atrial fibrillation. Europace. 2023.

  744. Khalaph M, Sommer P, Lucas P, Guckel D, Fink T, Sciacca V, et al. First clinical experience using a visualized sheath for atrial fibrillation ablation. Pacing Clin Electrophysiol. 2022;45:922–9.

    Article  PubMed  Google Scholar 

  745. Goya M, Frame D, Gache L, Ichishima Y, Tayar DO, Goldstein L, et al. The use of intracardiac echocardiography catheters in endocardial ablation of cardiac arrhythmia: metaanalysis of efficiency, effectiveness, and safety outcomes. J Cardiovasc Electrophysiol. 2020;31:664–73.

    Article  PubMed  PubMed Central  Google Scholar 

  746. Xu J, Gao Y, Liu C, Wang Y. Radiofrequency ablation for treatment of atrial fibrillation with the use of intracardiac echocardiography versus without intracardiac echocardiography: a metaanalysis of observational and randomized studies. J Cardiovasc Electrophysiol. 2022;33:897–907.

    Article  PubMed  Google Scholar 

  747. Pimentel RC, Rahai N, Maccioni S, Khanna R. Differences in outcomes among patients with atrial fibrillation undergoing catheter ablation with versus without intracardiac echocardiography. J Cardiovasc Electrophysiol. 2022;33:2015–47.

    Article  PubMed  PubMed Central  Google Scholar 

  748. La Greca C, Cirasa A, Di Modica D, Sorgato A, Simoncelli U, Pecora D. Advantages of the integration of ICE and 3D electroanatomical mapping and ultrasound-guided femoral venipuncture in catheter ablation of atrial fibrillation. J Interv Card Electrophysiol. 2021;61:559–66.

    Article  PubMed  Google Scholar 

  749. Isath A, Padmanabhan D, Haider SW, Siroky G, Perimbeti S, Correa A, et al. Does the use of intracardiac echocardiography during atrial fibrillation catheter ablation improve outcomes and cost? A nationwide 14-year analysis from 2001 to 2014. J Interv Card Electrophysiol. 2021;61:461–8.

    Article  PubMed  Google Scholar 

  750. Deshpande S, Sawatari H, Ahmed R, Nair RG, Khan H, Khanji MY, et al. Impact of intracardiac echocardiography on readmission morbidity and mortality following atrial fibrillation ablation. J Cardiovasc Electrophysiol. 2022;33:2496–503.

    Article  PubMed  Google Scholar 

  751. Ren JF, Chen S, Callans DJ, Jiang C, Marchlinski FE. Role of intracardiac echocardiography for catheter ablation of atrial fibrillation: reduction of complications and mortality. J Am Coll Cardiol. 2020;75:1244–5.

    Article  PubMed  Google Scholar 

  752. Catanzariti D, Maines M, Angheben C, Centonze M, Cemin C, Vergara G. Usefulness of contrast intracardiac echocardiography in performing pulmonary vein balloon occlusion during cryo-ablation for atrial fibrillation. Indian Pacing Electrophysiol J. 2012;12:237–49.

    Article  PubMed  PubMed Central  Google Scholar 

  753. Makino Y, Mizutani Y, Yamashita D, Yonekawa J, Satake A, Kurobe M, et al. Cryoballoon ablation for atrial fibrillation without the use of a contrast medium: a combination of the intracardiac echocardiography and pressure wave monitoring guided approach. Heart Vessels. 2022;37:765–74.

    Article  PubMed  Google Scholar 

  754. Suzuki A, Fujiwara R, Asada H, Iwasa K, Miyata T, Song WH, et al. Peri-balloon leak flow velocity assessed by intracardiac echography predicts pulmonary vein electrical gap-intracardiac echography-guided contrast-free cryoballoon ablation. Circ J. 2022;86:256–65.

    Article  PubMed  Google Scholar 

  755. Kanda T, Masuda M, Kurata N, Asai M, Iida O, Okamoto S, et al. A saline contrast-enhanced echocardiography-guided approach to cryoballoon ablation. Pacing Clin Electrophysiol. 2020;43:664–70.

    Article  PubMed  Google Scholar 

  756. Motoike Y, Harada M, Ito T, Nomura Y, Nishimura A, Koshikawa M, et al. Wall thickness-based adjustment of ablation index improves efficacy of pulmonary vein isolation in atrial fibrillation: real-time assessment by intracardiac echocardiography. J Cardiovasc Electrophysiol. 2021;32:1620–30.

    Article  PubMed  Google Scholar 

  757. Chen J, Einstein AJ, Fazel R, Krumholz HM, Wang Y, Ross JS, et al. Cumulative exposure to ionizing radiation from diagnostic and therapeutic cardiac imaging procedures: a population-based analysis. J Am Coll Cardiol. 2010;56:702–11.

    Article  PubMed  PubMed Central  Google Scholar 

  758. Lickfett L, Mahesh M, Vasamreddy C, Bradley D, Jayam V, Eldadah Z, et al. Radiation exposure during catheter ablation of atrial fibrillation. Circulation. 2004;110:3003–10.

    Article  PubMed  Google Scholar 

  759. Ector J, Dragusin O, Adriaenssens B, Huybrechts W, Willems R, Ector H, et al. Obesity is a major determinant of radiation dose in patients undergoing pulmonary vein isolation for atrial fibrillation. J Am Coll Cardiol. 2007;50:234–42.

    Article  PubMed  Google Scholar 

  760. Voskoboinik A, Kalman ES, Savicky Y, Sparks PB, Morton JB, Lee G, et al. Reduction in radiation dose for atrial fibrillation ablation over time: a 12-year single-center experience of 2344 patients. Heart Rhythm. 2017;14:810–6.

    Article  PubMed  Google Scholar 

  761. Lee G, Hunter RJ, Lovell MJ, Finlay M, Ullah W, Baker V, et al. Use of a contact force-sensing ablation catheter with advanced catheter location significantly reduces fluoroscopy time and radiation dose in catheter ablation of atrial fibrillation. Europace. 2016;18:211–8.

    Article  PubMed  Google Scholar 

  762. Walters TE, Kistler PM, Morton JB, Sparks PB, Halloran K, Kalman JM. Impact of collimation on radiation exposure during interventional electrophysiology. Europace. 2012;14:1670–3.

    Article  PubMed  Google Scholar 

  763. Schneider R, Lauschke J, Schneider C, Tischer T, Glass A, Bänsch D. Reduction of radiation exposure during ablation of atrial fibrillation. Herz. 2015;40:883–91.

    Article  PubMed  Google Scholar 

  764. Heidbuchel H, Wittkampf FH, Vano E, Ernst S, Schilling R, Picano E, et al. Practical ways to reduce radiation dose for patients and staff during device implantations and electrophysiological procedures. Europace. 2014;16:946–64.

    Article  PubMed  Google Scholar 

  765. Sommer P, Sciacca V, Anselmino M, Tilz R, Bourier F, Lehrmann H, et al. Practical guidance to reduce radiation exposure in electrophysiology applying ultra low-dose protocols: a European heart rhythm association review. Europace. 2023;25:euad191.

    Article  PubMed  PubMed Central  Google Scholar 

  766. Zei PC, Quadros KK, Clopton P, Thosani A, Ferguson J, Brodt C, et al. Safety and efficacy of minimal- versus zero-fluoroscopy radiofrequency catheter ablation for atrial fibrillation: a multicenter, prospective study. J Innov Card Rhythm Manag. 2020;11:4281–91.

    Article  PubMed  PubMed Central  Google Scholar 

  767. Tahin T, Riba A, Nemeth B, Arvai F, Lupkovics G, Szeplaki G, et al. Implementation of a zero fluoroscopic workflow using a simplified intracardiac echocardiography guided method for catheter ablation of atrial fibrillation, including repeat procedures. BMC Cardiovasc Disord. 2021;21:407.

    Article  PubMed  PubMed Central  Google Scholar 

  768. Lyan E, Tsyganov A, Abdrahmanov A, Morozov A, Bakytzhanuly A, Tursunbekov A, et al. Nonfluoroscopic catheter ablation of paroxysmal atrial fibrillation. Pacing Clin Electrophysiol. 2018;41:611–9.

    Article  PubMed  Google Scholar 

  769. Falasconi G, Penela D, Soto-Iglesias D, Jauregui B, Chauca A, Antonio RS, et al. A standardized stepwise zero-fluoroscopy approach with transesophageal echocardiography guidance for atrial fibrillation ablation. J Interv Card Electrophysiol. 2022;64:629–39.

    Article  PubMed  Google Scholar 

  770. Bulava A, Hanis J, Eisenberger M. Catheter ablation of atrial fibrillation using zero-fluoroscopy technique: a randomized trial. Pacing Clin Electrophysiol. 2015;38:797–806.

    Article  PubMed  Google Scholar 

  771. Lurie A, Amit G, Divakaramenon S, Acosta JG, Healey JS, Wong JA. Outcomes and safety of fluoroless catheter ablation for atrial fibrillation. CJC Open. 2021;3:303–10.

    Article  PubMed  Google Scholar 

  772. Sommer P, Bertagnolli L, Kircher S, Arya A, Bollmann A, Richter S, et al. Safety profile of near-zero fluoroscopy atrial fibrillation ablation with non-fluoroscopic catheter visualization: experience from 1000 consecutive procedures. Europace. 2018;20:1952–8.

    Article  PubMed  Google Scholar 

  773. Enriquez A, Velasco A, Diaz JC, Sadek M, Osorio J, Zei P, et al. Fluoroless catheter ablation of atrial fibrillation: a step-by-step workflow. J Interv Card Electrophysiol. 2023;66:1291–301.

    Article  PubMed  Google Scholar 

  774. Ahn J, Shin DG, Han S-J, Lim HE. Safety and efficacy of intracardiac echocardiography–guided zero-fluoroscopic cryoballoon ablation for atrial fibrillation: a prospective randomized controlled trial. Europace. 2023;25:euad086.

    Article  PubMed  PubMed Central  Google Scholar 

  775. Alyesh D, Venkataraman G, Stucky A, Joyner J, Choe W, Sundaram S. Acute safety and efficacy of fluoroless cryoballoon ablation for atrial fibrillation. J Innov Card Rhythm Manag. 2021;12:4413–20.

    Article  PubMed  PubMed Central  Google Scholar 

  776. Halbfass P, Pavlov B, Müller P, Nentwich K, Sonne K, Barth S, et al. Progression from esophageal thermal asymptomatic lesion to perforation complicating atrial fibrillation ablation: a single-center registry. Circ Arrhythm Electrophysiol. 2017;10: e005233.

    Article  PubMed  Google Scholar 

  777. Ripley KL, Gage AA, Olsen DB, Van Vleet JF, Lau CP, Tse HF. Time course of esophageal lesions after catheter ablation with cryothermal and radiofrequency ablation: implication for atrio-esophageal fistula formation after catheter ablation for atrial fibrillation. J Cardiovasc Electrophysiol. 2007;18:642–6.

    Article  PubMed  Google Scholar 

  778. Tschabrunn CM, Silverstein J, Berzin T, Ellis E, Buxton AE, Josephson ME, et al. Comparison between single- and multisensor oesophageal temperature probes during atrial fibrillation ablation: thermodynamic characteristics. Europace. 2015;17:891–7.

    Article  PubMed  Google Scholar 

  779. Turagam MK, Miller S, Sharma SP, Prakash P, Gopinathannair R, Lakkireddy P, et al. Differences in transient thermal response of commercial esophageal temperature probes: insights from an experimental study. JACC Clin Electrophysiol. 2019;5:1280–8.

    Article  PubMed  Google Scholar 

  780. Barbhaiya CR, Kogan EV, Jankelson L, Knotts RJ, Spinelli M, Bernstein S, et al. Esophageal temperature dynamics during high-power short-duration posterior wall ablation. Heart Rhythm. 2020;17:721–7.

    Article  PubMed  Google Scholar 

  781. Bhardwaj R, Naniwadekar A, Whang W, Mittnacht AJ, Palaniswamy C, Koruth JS, et al. Esophageal deviation during atrial fibrillation ablation: clinical experience with a dedicated esophageal balloon retractor. JACC Clin Electrophysiol. 2018;4:1020–30.

    Article  PubMed  Google Scholar 

  782. Hamed M, Elseidy SA, Abdelazeem M, Morcos R, Abdallah A, Sammour Y, et al. Role of oesophageal cooling in the prevention of oesophageal injury in atrial fibrillation catheter ablation: a systematic review and metaanalysis of randomized controlled trials. Europace. 2023;25:euad080.

    Article  PubMed  PubMed Central  Google Scholar 

  783. Leung LWM, Bajpai A, Zuberi Z, Li A, Norman M, Kaba RA, et al. Randomized comparison of oesophageal protection with a temperature control device: results of the IMPACT study. Europace. 2021;23:205–15.

    Article  PubMed  Google Scholar 

  784. Joseph C, Nazari J, Zagrodzky J, Brumback B, Sherman J, Zagrodzky W, et al. Improved 1-year outcomes after active cooling during left atrial radiofrequency ablation. J Interv Card Electrophysiol. 2023;66:1621–9.

    Article  PubMed  PubMed Central  Google Scholar 

  785. Sanchez J, Woods C, Zagrodzky J, Nazari J, Singleton MJ, Schricker A, et al. Atrioesophageal fistula rates before and after adoption of active esophageal cooling during atrial fibrillation ablation. JACC Clin Electrophysiol. 2023;9:2558–70.

    Article  PubMed  Google Scholar 

  786. Teres C, Soto-Iglesias D, Penela D, Falasconi G, Viveros D, Meca-Santamaria J, et al. Relationship between the posterior atrial wall and the esophagus: esophageal position and temperature measurement during atrial fibrillation ablation (AWESOME-AF). A randomized controlled trial. J Interv Card Electrophysiol. 2022;65:651–61.

    Article  PubMed  Google Scholar 

  787. Zhang X, Kuang X, Gao X, Xiang H, Wei F, Liu T, et al. RESCUE-AF in patients undergoing atrial fibrillation ablation: the RESCUE-AF trial. Circ Arrhythm Electrophysiol. 2019;12: e007044.

    Article  PubMed  Google Scholar 

  788. Reddy VY, Dukkipati SR, Neuzil P, Natale A, Albenque J-P, Kautzner J, et al. Randomized, controlled trial of the safety and effectiveness of a contact force-sensing irrigated catheter for ablation of paroxysmal atrial fibrillation: results of the TactiCath contact force ablation catheter study for atrial fibrillation (TOCCASTAR) study. Circulation. 2015;132:907–15.

    Article  PubMed  Google Scholar 

  789. Arentz T, Jander N, von Rosenthal J, Blum T, Fürmaier R, Görnandt L, et al. Incidence of pulmonary vein stenosis 2 years after radiofrequency catheter ablation of refractory atrial fibrillation. Eur Heart J. 2003;24:963–9.

    Article  PubMed  Google Scholar 

  790. Mochizuki A, Nagahara D, Kamiyama N, Fujito T, Miura T. Revaluation of the significance of demonstrable exit block after radiofrequency pulmonary vein isolation. Circ Rep. 2020;2:218–25.

    Article  PubMed  PubMed Central  Google Scholar 

  791. Duytschaever M, De Meyer G, Acena M, El-Haddad M, De Greef Y, Van Heuverswyn F, et al. Lessons from dissociated pulmonary vein potentials: entry block implies exit block. Europace. 2013;15:805–12.

    Article  PubMed  Google Scholar 

  792. Chen S, Meng W, Sheng He D, Chen G, Zhang F, Yan Y, et al. Blocking the pulmonary vein to left atrium conduction in addition to the entrance block enhances clinical efficacy in atrial fibrillation ablation. Pacing Clin Electrophysiol. 2012;35:524–31.

    Article  PubMed  Google Scholar 

  793. Wang X-h, Liu X, Sun Y-m, Gu J-n, Shi H-f, Zhou L, et al. Early identification and treatment of PV re-connections: role of observation time and impact on clinical results of atrial fibrillation ablation. Europace. 2007;9:481–6.

    Article  PubMed  Google Scholar 

  794. Jiang CY, Jiang RH, Matsuo S, Liu Q, Fan YQ, Zhang ZW, et al. Early detection of pulmonary vein reconnection after isolation in patients with paroxysmal atrial fibrillation: a comparison of ATP-induction and reassessment at 30 minutes postisolation. J Cardiovasc Electrophysiol. 2009;20:1382–7.

    Article  PubMed  Google Scholar 

  795. Cheema A, Dong J, Dalal D, Marine JE, Henrikson CA, Spragg D, et al. Incidence and time course of early recovery of pulmonary vein conduction after catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2007;18:387–91.

    Article  PubMed  Google Scholar 

  796. Brunelli M, Raffa S, Große A, Hanazawa K, Sammut M, Roos M, et al. Residual conduction after pulmonary vein isolation with a circular multielectrode radiofrequency ablation catheter: the role of adenosine and orciprenalin during a prolonged observation time. Int J Cardiol. 2013;168:4122–31.

    Article  PubMed  Google Scholar 

  797. Efremidis M, Letsas K, Giannopoulos G, Lioni L, Vlachos K, Asvestas D, et al. Early pulmonary vein reconnection as a predictor of left atrial ablation outcomes for paroxysmal atrial fibrillation. Europace. 2015;17:741–6.

    Article  PubMed  Google Scholar 

  798. Andrade JG, Deyell MW, Nattel S, Khairy P, Dubuc M, Champagne J, et al. Prevalence and clinical impact of spontaneous and adenosine-induced pulmonary vein reconduction in the contact-force vs. cryoballoon atrial fibrillation ablation (CIRCA-DOSE) study. Heart Rhythm. 2020;17:897–904.

    Article  PubMed  Google Scholar 

  799. Jiang R, Chen M, Yang B, Liu Q, Zhang Z, Zhang F, et al. Intraprocedural endpoints to predict durable pulmonary vein isolation: a randomized trial of four postablation techniques. Europace. 2020;22:567–75.

    Article  PubMed  Google Scholar 

  800. Sousa PA, Barra S, Adão L, Primo J, Khoueiry Z, Puga L, et al. Assessment of the need of a waiting period after pulmonary vein isolation with the ablation index software. J Cardiovasc Electrophysiol. 2022;33:1725–33.

    Article  PubMed  Google Scholar 

  801. Miller MA, d’Avila A, Dukkipati SR, Koruth JS, Viles-Gonzalez J, Napolitano C, et al. Acute electrical isolation is a necessary but insufficient endpoint for achieving durable PV isolation: the importance of closing the visual gap. Europace. 2012;14:653–60.

    Article  PubMed  Google Scholar 

  802. Macle L, Khairy P, Weerasooriya R, Novak P, Verma A, Willems S, et al. Adenosine-guided pulmonary vein isolation for the treatment of paroxysmal atrial fibrillation: an international, multicentre, randomised superiority trial. Lancet. 2015;386:672–9.

    Article  PubMed  Google Scholar 

  803. Kapa S, Killu A, Deshmukh A, Mulpuru SK, Asirvatham SJ. Dose-dependent pulmonary vein reconnection in response to adenosine: relevance of atrioventricular block during infusion. J Interv Card Electrophysiol. 2016;47:117–23.

    Article  PubMed  Google Scholar 

  804. Teunissen C, Clappers N, Kassenberg W, Hassink RJ, van der Heijden JF, Loh P. Time matters: adenosine testing immediately after pulmonary vein isolation does not substitute a waiting period. Europace. 2017;19:1140–5.

    Article  PubMed  Google Scholar 

  805. McLellan AJA, Kumar S, Smith C, Ling LH, Prabhu S, Kalman JM, et al. The role of adenosine challenge in catheter ablation for atrial fibrillation: a systematic review and metaanalysis. Int J Cardiol. 2017;236:253–61.

    Article  PubMed  Google Scholar 

  806. Kobori A, Shizuta S, Inoue K, Kaitani K, Morimoto T, Nakazawa Y, et al. Adenosine triphosphate-guided pulmonary vein isolation for atrial fibrillation: the unmasking dormant electrical reconduction by adenosine triphosphate (UNDER-ATP) trial. Eur Heart J. 2015;36:3276–87.

    CAS  PubMed  Google Scholar 

  807. Zeng LJ, Shi L, Tian Y, Wang YJ, Yin XD, Liu XQ, et al. Pace capture and adenosine triphosphate provocation are complementary rather than mutually exclusive methods to ensure durable pulmonary vein isolation. J Cardiovasc Electrophysiol. 2019;30:815–23.

    Article  PubMed  Google Scholar 

  808. Moser J, Sultan A, Luker J, Servatius H, Salzbrunn T, Altenburg M, et al. 5-Year outcome of pulmonary vein isolation by loss of pace capture on the ablation line versus electrical circumferential pulmonary vein isolation. JACC Clin Electrophysiol. 2017;3:1262–71.

    Article  PubMed  Google Scholar 

  809. Masuda M, Fujita M, Iida O, Okamoto S, Ishihara T, Nanto K, et al. Pace-capture-guided ablation after contact-force-guided pulmonary vein isolation: results of the randomized controlled DRAGON trial. Europace. 2018;20:1451–8.

    Article  PubMed  Google Scholar 

  810. Steven D, Sultan A, Reddy V, Luker J, Altenburg M, Hoffmann B, et al. Benefit of pulmonary vein isolation guided by loss of pace capture on the ablation line: results from a prospective 2-center randomized trial. J Am Coll Cardiol. 2013;62:44–50.

    Article  PubMed  Google Scholar 

  811. Sawhney N, Anousheh R, Chen W, Feld GK. Circumferential pulmonary vein ablation with additional linear ablation results in an increased incidence of left atrial flutter compared with segmental pulmonary vein isolation as an initial approach to ablation of paroxysmal atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3:243–8.

    Article  PubMed  Google Scholar 

  812. Ouyang F, Ernst S, Vogtmann T, Goya M, Volkmer M, Schaumann A, et al. Characterization of reentrant circuits in left atrial macroreentrant tachycardia: critical isthmus block can prevent atrial tachycardia recurrence. Circulation. 2002;105:1934–42.

    Article  PubMed  Google Scholar 

  813. Mujović N, Marinković M, Marković N, Stanković G, Lip GYH, Blomstrom-Lundqvist C, et al. Persistency of left atrial linear lesions after radiofrequency catheter ablation for atrial fibrillation: data from an invasive follow-up electrophysiology study. J Cardiovasc Electrophysiol. 2017;28:1403–14.

    Article  PubMed  Google Scholar 

  814. Sanchez-Somonte P, Jiang CY, Betts TR, Chen J, Mantovan R, Macle L, et al. Completeness of linear or fractionated electrogram ablation in addition to pulmonary vein isolation on ablation outcome: a substudy of the STAR AF II trial. Circ Arrhythm Electrophysiol. 2021;14: e010146.

    Article  PubMed  Google Scholar 

  815. Chae S, Oral H, Good E, Dey S, Wimmer A, Crawford T, et al. Atrial tachycardia after circumferential pulmonary vein ablation of atrial fibrillation: mechanistic insights, results of catheter ablation, and risk factors for recurrence. J Am Coll Cardiol. 2007;50:1781–7.

    Article  PubMed  Google Scholar 

  816. Tzeis S, Luik A, Jilek C, Schmitt C, Estner HL, Wu J, et al. The modified anterior line: an alternative linear lesion in perimitral flutter. J Cardiovasc Electrophysiol. 2010;21:665–70.

    Article  PubMed  Google Scholar 

  817. Pappone C, Manguso F, Vicedomini G, Gugliotta F, Santinelli O, Ferro A, et al. Prevention of iatrogenic atrial tachycardia after ablation of atrial fibrillation: a prospective randomized study comparing circumferential pulmonary vein ablation with a modified approach. Circulation. 2004;110:3036–42.

    Article  PubMed  Google Scholar 

  818. Takagi T, Derval N, Duchateau J, Chauvel R, Tixier R, Marchand H, et al. Gaps after linear ablation of persistent atrial fibrillation (Marshall-PLAN): clinical implication. Heart Rhythm. 2023;20:14–21.

    Article  PubMed  Google Scholar 

  819. Di Biase L, Burkhardt JD, Mohanty P, Sanchez J, Mohanty S, Horton R, et al. Left atrial appendage: an underrecognized trigger site of atrial fibrillation. Circulation. 2010;122:109–18.

    Article  PubMed  Google Scholar 

  820. Ikenouchi T, Nitta J, Inaba O, Kono T, Murata K, Takamiya T, et al. Effect of isolation feasibility of non-pulmonary vein foci on efficacy of ablation for atrial fibrillation: comparison of the isolation and focal ablation methods. J Interv Card Electrophysiol. 2022;65:441–51.

    Article  PubMed  Google Scholar 

  821. Della Rocca DG, Di Biase L, Mohanty S, Trivedi C, Gianni C, Romero J, et al. Targeting non-pulmonary vein triggers in persistent atrial fibrillation: results from a prospective, multicentre, observational registry. Europace. 2021;23:1939–49.

    Article  PubMed  Google Scholar 

  822. Takamiya T, Nitta J, Inaba O, Sato A, Ikenouchi T, Murata K, et al. One-year outcomes after pulmonary vein isolation plus posterior wall isolation and additional non-pulmonary vein trigger ablation for persistent atrial fibrillation with or without contact force sensing: a propensity score-matched comparison. J Interv Card Electrophysiol. 2020;59:585–93.

    Article  PubMed  Google Scholar 

  823. Zhao Y, Di Biase L, Trivedi C, Mohanty S, Bai R, Mohanty P, et al. Importance of non-pulmonary vein triggers ablation to achieve long-term freedom from paroxysmal atrial fibrillation in patients with low ejection fraction. Heart Rhythm. 2016;13:141–9.

    Article  PubMed  Google Scholar 

  824. Nakashima T, Pambrun T, Vlachos K, Goujeau C, André C, Krisai P, et al. Impact of vein of Marshall ethanol infusion on mitral isthmus block: efficacy and durability. Circ Arrhythm Electrophysiol. 2020;13: e008884.

    Article  CAS  PubMed  Google Scholar 

  825. Valderrábano M, Liu X, Sasaridis C, Sidhu J, Little S, Khoury DS. Ethanol infusion in the vein of Marshall: adjunctive effects during ablation of atrial fibrillation. Heart Rhythm. 2009;6:1552–8.

    Article  PubMed  PubMed Central  Google Scholar 

  826. Gillis K, O’Neill L, Wielandts JY, Hilfiker G, Almorad A, Lycke M, et al. Vein of Marshall ethanol infusion as first step for mitral isthmus linear ablation. JACC Clin Electrophysiol. 2022;8:367–76.

    Article  PubMed  Google Scholar 

  827. Yang G, Zheng L, Jiang C, Fan J, Liu X, Zhan X, et al. Circumferential pulmonary vein isolation plus low-voltage area modification in persistent atrial fibrillation: the STABLE-SR-II trial. JACC Clin Electrophysiol. 2022;8:882–91.

    Article  PubMed  Google Scholar 

  828. Huo Y, Gaspar T, Schönbauer R, Wójcik M, Fiedler L, Roithinger Franz X, et al. Low-voltage myocardium-guided ablation trial of persistent atrial fibrillation. NEJM Evidence. 2022;1:EVIDoa2200141.

    Article  PubMed  Google Scholar 

  829. Kottkamp H, Berg J, Bender R, Rieger A, Schreiber D. Box isolation of fibrotic areas (BIFA): a patient-tailored substrate modification approach for ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2016;27:22–30.

    Article  PubMed  Google Scholar 

  830. Valderrábano M, Peterson LE, Swarup V, Schurmann PA, Makkar A, Doshi RN, et al. Effect of catheter ablation with vein of Marshall ethanol infusion vs catheter ablation alone on persistent atrial fibrillation: the VENUS randomized clinical trial. JAMA. 2020;324:1620–8.

    Article  PubMed  Google Scholar 

  831. Huang L, Gao M, Lai Y, Guo Q, Li S, Li C, et al. The adjunctive effect for left pulmonary vein isolation of vein of Marshall ethanol infusion in persistent atrial fibrillation. Europace. 2023;25:441–9.

    Article  PubMed  Google Scholar 

  832. Nakashima T, Pambrun T, Vlachos K, Goujeau C, André C, Krisai P, et al. Strategy for repeat procedures in patients with persistent atrial fibrillation: systematic linear ablation with adjunctive ethanol infusion into the vein of Marshall versus electrophysiology-guided ablation. J Cardiovasc Electrophysiol. 2022;33:1116–24.

    Article  PubMed  Google Scholar 

  833. Lador A, Peterson LE, Swarup V, Schurmann PA, Makkar A, Doshi RN, et al. Determinants of outcome impact of vein of Marshall ethanol infusion when added to catheter ablation of persistent atrial fibrillation: a secondary analysis of the VENUS randomized clinical trial. Heart Rhythm. 2021;18:1045–54.

    Article  PubMed  PubMed Central  Google Scholar 

  834. Derval N, Duchateau J, Denis A, Ramirez FD, Mahida S, André C, et al. Marshall bundle elimination, pulmonary vein isolation, and line completion for ANATOmical ablation of persistent atrial fibrillation (Marshall-PLAN): prospective, single-center study. Heart Rhythm. 2021;18:529–37.

    Article  PubMed  Google Scholar 

  835. Dixit S, Marchlinski FE, Lin D, Callans DJ, Bala R, Riley MP, et al. Randomized ablation strategies for the treatment of persistent atrial fibrillation: RASTA study. Circ Arrhythm Electrophysiol. 2012;5:287–94.

    Article  PubMed  Google Scholar 

  836. Bai R, Di Biase L, Mohanty P, Trivedi C, Dello Russo A, Themistoclakis S, et al. Proven isolation of the pulmonary vein antrum with or without left atrial posterior wall isolation in patients with persistent atrial fibrillation. Heart Rhythm. 2016;13:132–40.

    Article  PubMed  Google Scholar 

  837. Lee JM, Shim J, Park J, Yu HT, Kim TH, Park JK, et al. The electrical isolation of the left atrial posterior wall in catheter ablation of persistent atrial fibrillation. JACC Clin Electrophysiol. 2019;5:1253–61.

    Article  PubMed  Google Scholar 

  838. Kistler PM, Chieng D, Sugumar H, Ling LH, Segan L, Azzopardi S, et al. Effect of catheter ablation using pulmonary vein isolation with vs without posterior left atrial wall isolation on atrial arrhythmia recurrence in patients with persistent atrial fibrillation: the CAPLA randomized clinical trial. JAMA. 2023;329:127–35.

    Article  PubMed  PubMed Central  Google Scholar 

  839. Jiang X, Liao J, Ling Z, Meyer C, Sommer P, Futyma P, et al. Adjunctive left atrial posterior wall isolation in treating atrial fibrillation: insight from a large secondary analysis. JACC Clin Electrophysiol. 2022;8:605–18.

    Article  PubMed  Google Scholar 

  840. Sirico G, Sirico D, Montisci A, Cerrato E, Morosato M, Panigada S, et al. Contact-Force guided posterior wall isolation as an adjunctive ablation strategy for persistent atrial fibrillation. J Atr Fibrillation. 2021;14:20200475.

    Article  PubMed  PubMed Central  Google Scholar 

  841. Tokioka S, Fukamizu S, Kimura T, Takahashi M, Kitamura T, Hojo R. The effect of posterior wall isolation for persistent atrial fibrillation on recurrent arrhythmia. J Cardiovasc Electrophysiol. 2021;32:597–604.

    Article  PubMed  Google Scholar 

  842. Pothineni NVK, Lin A, Frankel DS, Supple GE, Garcia FC, Lin D, et al. Impact of left atrial posterior wall isolation on arrhythmia outcomes in patients with atrial fibrillation undergoing repeat ablation. Heart Rhythm. 2021;O2(2):489–97.

    Article  Google Scholar 

  843. Salih M, Darrat Y, Ibrahim AM, Al-Akchar M, Bhattarai M, Koester C, et al. Clinical outcomes of adjunctive posterior wall isolation in persistent atrial fibrillation: a metaanalysis. J Cardiovasc Electrophysiol. 2020;31:1394–402.

    Article  PubMed  Google Scholar 

  844. Sutter JS, Lokhnygina Y, Daubert JP, Bahnson T, Jackson K, Koontz JI, et al. Safety and efficacy outcomes of left atrial posterior wall isolation compared to pulmonary vein isolation and pulmonary vein isolation with linear ablation for the treatment of persistent atrial fibrillation. Am Heart J. 2020;220:89–96.

    Article  PubMed  Google Scholar 

  845. Yamaji H, Higashiya S, Murakami T, Hina K, Kawamura H, Murakami M, et al. Efficacy of an adjunctive electrophysiological test-guided left atrial posterior wall isolation in persistent atrial fibrillation without a left atrial low-voltage area. Circ Arrhythm Electrophysiol. 2020;13: e008191.

    Article  CAS  PubMed  Google Scholar 

  846. McLellan AJA, Prabhu S, Voskoboinik A, Wong MCG, Walters TE, Pathik B, et al. Isolation of the posterior left atrium for patients with persistent atrial fibrillation: routine adenosine challenge for dormant posterior left atrial conduction improves long-term outcome. Europace. 2017;19:1958–66.

    Article  PubMed  Google Scholar 

  847. Kim JS, Shin SY, Na JO, Choi CU, Kim SH, Kim JW, et al. Does isolation of the left atrial posterior wall improve clinical outcomes after radiofrequency catheter ablation for persistent atrial fibrillation?: a prospective randomized clinical trial. Int J Cardiol. 2015;181:277–83.

    Article  PubMed  Google Scholar 

  848. Bisbal F, Benito E, Teis A, Alarcón F, Sarrias A, Caixal G, et al. Magnetic resonance imaging-guided fibrosis ablation for the treatment of atrial fibrillation: the ALICIA trial. Circ Arrhythm Electrophysiol. 2020;13: e008707.

    Article  CAS  PubMed  Google Scholar 

  849. Marrouche NF, Wazni O, McGann C, Greene T, Dean JM, Dagher L, et al. Effect of MRI-guided fibrosis ablation vs conventional catheter ablation on atrial arrhythmia recurrence in patients with persistent atrial fibrillation: the DECAAF II randomized clinical trial. JAMA. 2022;327:2296–305.

    Article  PubMed  PubMed Central  Google Scholar 

  850. Ip JE, Markowitz SM, Cheung JW, Liu CF, Thomas G, Lessner SJ, et al. Method for differentiating left superior pulmonary vein exit conduction from pseudo-exit conduction. Pacing Clin Electrophysiol. 2013;36:299–308.

    Article  PubMed  Google Scholar 

  851. Vijayaraman P, Dandamudi G, Naperkowski A, Oren J, Storm R, Ellenbogen KA. Assessment of exit block following pulmonary vein isolation: far-field capture masquerading as entrance without exit block. Heart Rhythm. 2012;9:1653–9.

    Article  PubMed  Google Scholar 

  852. Squara F, Liuba I, Chik W, Santangeli P, Zado ES, Callans DJ, et al. Loss of local capture of the pulmonary vein myocardium after antral isolation: prevalence and clinical significance. J Cardiovasc Electrophysiol. 2015;26:242–50.

    Article  PubMed  Google Scholar 

  853. Gerstenfeld EP, Dixit S, Callans D, Rho R, Rajawat Y, Zado E, et al. Utility of exit block for identifying electrical isolation of the pulmonary veins. J Cardiovasc Electrophysiol. 2002;13:971–9.

    Article  PubMed  Google Scholar 

  854. Tada H, Oral H, Wasmer K, Greenstein R, Pelosi F, Knight BP, et al. Pulmonary vein isolation: comparison of bipolar and unipolar electrograms at successful and unsuccessful ostial ablation sites. J Cardiovasc Electrophysiol. 2002;13:13–9.

    Article  PubMed  Google Scholar 

  855. Tada H, Oral H, Knight BP, Ozaydin M, Chugh A, Scharf C, et al. Randomized comparison of bipolar versus unipolar plus bipolar recordings during segmental ostial ablation of pulmonary veins. J Cardiovasc Electrophysiol. 2002;13:851–6.

    Article  PubMed  Google Scholar 

  856. Michowitz Y, Buch E, Bourke T, Tung R, Bradfield J, Mathuria N, et al. Unipolar and bipolar electrogram characteristics predict exit block during pulmonary vein antral isolation. Pacing Clin Electrophysiol. 2012;35:1294–301.

    Article  PubMed  Google Scholar 

  857. Bortone A, Appetiti A, Bouzeman A, Maupas E, Ciobotaru V, Boulenc JM, et al. Unipolar signal modification as a guide for lesion creation during radiofrequency application in the left atrium: prospective study in humans in the setting of paroxysmal atrial fibrillation catheter ablation. Circ Arrhythm Electrophysiol. 2013;6:1095–102.

    Article  PubMed  Google Scholar 

  858. Bortone A, Brault-Noble G, Appetiti A, Marijon E. Elimination of the negative component of the unipolar atrial electrogram as an in vivo marker of transmural lesion creation: acute study in canines. Circ Arrhythm Electrophysiol. 2015;8:905–11.

    Article  PubMed  Google Scholar 

  859. Bortone A, Lagrange P, Cauchemez B, Durand C, Dieuzaide P, Prévot S, et al. Elimination of the negative component of the unipolar electrogram as a local procedural endpoint during paroxysmal atrial fibrillation catheter ablation using contact-force sensing: the UNIFORCE study. J Interv Card Electrophysiol. 2017;49:299–306.

    Article  PubMed  Google Scholar 

  860. Ejima K, Kato K, Okada A, Wakisaka O, Kimura R, Ishizawa M, et al. Comparison between contact force monitoring and unipolar signal modification as a guide for catheter ablation of atrial fibrillation: prospective multi-center randomized study. Circ Arrhythm Electrophysiol. 2019;12: e007311.

    Article  PubMed  Google Scholar 

  861. Fu G, He B, Wang B, Feng M, Du X, Liu J, et al. Unipolar electrogram-guided versus lesion size index-guided catheter ablation in patients with paroxysmal atrial fibrillation. J Cardiovasc Dev Dis. 2022;9:229.

    PubMed  PubMed Central  Google Scholar 

  862. Coeman M, Haddad ME, Wol M, Choudhury R, Vandekerckhove Y, Choudhury R, et al. ‘CLOSE’-guided pulmonary vein isolation and changes in local bipolar and unipolar atrial electrograms: observations from the EP lab. J Atr Fibrillation. 2018;10:1794.

    Article  PubMed  PubMed Central  Google Scholar 

  863. Tomlinson DR, Myles M, Stevens KN, Streeter AJ. Transmural unipolar electrogram change occurs within 7 s at the left atrial posterior wall during pulmonary vein isolation. Pacing Clin Electrophysiol. 2019;42:922–9.

    Article  PubMed  Google Scholar 

  864. Zheng X, Walcott GP, Hall JA, Rollins DL, Smith WM, Kay GN, et al. Electrode impedance: an indicator of electrode-tissue contact and lesion dimensions during linear ablation. J Interv Card Electrophysiol. 2000;4:645–54.

    Article  CAS  PubMed  Google Scholar 

  865. Chinitz JS, Kapur S, Barbhaiya C, Kumar S, John R, Epstein LM, et al. Sites with small impedance decrease during catheter ablation for atrial fibrillation are associated with recovery of pulmonary vein conduction. J Cardiovasc Electrophysiol. 2016;27:1390–8.

    Article  PubMed  Google Scholar 

  866. Reichlin T, Knecht S, Lane C, Kuhne M, Nof E, Chopra N, et al. Initial impedance decrease as an indicator of good catheter contact: insights from radiofrequency ablation with force sensing catheters. Heart Rhythm. 2014;11:194–201.

    Article  PubMed  Google Scholar 

  867. Wakili R, Clauss S, Schmidt V, Ulbrich M, Hahnefeld A, Schüssler F, et al. Impact of real-time contact force and impedance measurement in pulmonary vein isolation procedures for treatment of atrial fibrillation. Clin Res Cardiol. 2014;103:97–106.

    Article  PubMed  Google Scholar 

  868. Park HS, Kim IC, Cho YK, Yoon HJ, Kim H, Nam CW, et al. Comparison of the efficacy between impedance-guided and contact force-guided atrial fibrillation ablation using an automated annotation system. J Arrhythm. 2018;34:239–46.

    Article  PubMed  PubMed Central  Google Scholar 

  869. Knecht S, Reichlin T, Pavlovic N, Schaer B, Osswald S, Sticherling C, et al. Contact force and impedance decrease during ablation depends on catheter location and orientation: insights from pulmonary vein isolation using a contact force-sensing catheter. J Interv Card Electrophysiol. 2015;43:297–306.

    Article  PubMed  Google Scholar 

  870. Yasumoto K, Egami Y, Kawanami S, Sugae H, Ukita K, Kawamura A, et al. The correlation between local impedance drop and catheter contact in clinical pulmonary vein isolation use. Pacing Clin Electrophysiol. 2022;45:984–92.

    Article  PubMed  Google Scholar 

  871. Segreti L, De Simone A, Schillaci V, Bongiorni MG, Pelargonio G, Pandozi C, et al. A novel local impedance algorithm to guide effective pulmonary vein isolation in atrial fibrillation patients: preliminary experience across different ablation sites from the CHARISMA pilot study. J Cardiovasc Electrophysiol. 2020;31:2319–27.

    Article  PubMed  Google Scholar 

  872. Hashimoto K, Tsuzuki I, Seki Y, Ibe S, Yamashita T, Miyama H, et al. Change in the local impedance and electrograms recorded by a micro-electrode tip catheter during initial atrial fibrillation ablation. Journal of Arrhythmia. 2021;37:566–73.

    Article  PubMed  PubMed Central  Google Scholar 

  873. Solimene F, Giannotti Santoro M, De Simone A, Malacrida M, Stabile G, Pandozi C, et al. Pulmonary vein isolation in atrial fibrillation patients guided by a novel local impedance algorithm: 1-year outcome from the CHARISMA study. J Cardiovasc Electrophysiol. 2021;32:1540–8.

    Article  PubMed  Google Scholar 

  874. Yokoyama K, Nakagawa H, Shah DC, Lambert H, Leo G, Aeby N, et al. Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombus. Circ Arrhythm Electrophysiol. 2008;1:354–62.

    Article  PubMed  Google Scholar 

  875. Kumar S, Morton JB, Lee J, Halloran K, Spence SJ, Gorelik A, et al. Prospective characterization of catheter-tissue contact force at different anatomic sites during antral pulmonary vein isolation. Circ Arrhythm Electrophysiol. 2012;5:1124–9.

    Article  PubMed  Google Scholar 

  876. Reddy VY, Shah D, Kautzner J, Schmidt B, Saoudi N, Herrera C, et al. The relationship between contact force and clinical outcome during radiofrequency catheter ablation of atrial fibrillation in the TOCCATA study. Heart Rhythm. 2012;9:1789–95.

    Article  PubMed  Google Scholar 

  877. Neuzil P, Reddy VY, Kautzner J, Petru J, Wichterle D, Shah D, et al. Electrical reconnection after pulmonary vein isolation is contingent on contact force during initial treatment: results from the EFFICAS I study. Circ Arrhythm Electrophysiol. 2013;6:327–33.

    Article  PubMed  Google Scholar 

  878. Kautzner J, Neuzil P, Lambert H, Peichl P, Petru J, Cihak R, et al. EFFICAS II: optimization of catheter contact force improves outcome of pulmonary vein isolation for paroxysmal atrial fibrillation. Europace. 2015;17:1229–35.

    Article  PubMed  PubMed Central  Google Scholar 

  879. Shah DC, Lambert H, Nakagawa H, Langenkamp A, Aeby N, Leo G. Area under the real-time contact force curve (force-time integral) predicts radiofrequency lesion size in an in vitro contractile model. J Cardiovasc Electrophysiol. 2010;21:1038–43.

    Article  PubMed  Google Scholar 

  880. Kuck K-H, Reddy VY, Schmidt B, Natale A, Neuzil P, Saoudi N, et al. A novel radiofrequency ablation catheter using contact force sensing: Toccata study. Heart Rhythm. 2012;9:18–23.

    Article  PubMed  Google Scholar 

  881. Kumar S, Morton JB, Halloran K, Spence SJ, Lee G, Wong MCG, et al. Effect of respiration on catheter-tissue contact force during ablation of atrial arrhythmias. Heart Rhythm. 2012;9:1041-47.e1.

    Article  PubMed  Google Scholar 

  882. El Haddad E, Taghji P, Phlips T, Wolf M, Demolder A, Choudhury R, et al. Determinants of acute and late pulmonary vein reconnection in contact force-guided pulmonary vein isolation: identifying the weakest link in the ablation chain. Circ Arrhythm Electrophysiol. 2017;10: e004867.

    Article  PubMed  Google Scholar 

  883. Nakagawa H, Ikeda A, Govari A, Papaioannou T, Constantine G, Bar-Tal M, et al. Abstract 12104: prospective study using a new formula incorporating contact force, radiofrequency power and application time (force-power-time index) for quantifying lesion formation to guide long continuous atrial lesions in the beating canine heart. Circulation. 2013;128:A12104–A12104.

    Google Scholar 

  884. Ullah W, Hunter RJ, Finlay MC, McLean A, Dhinoja MB, Sporton S, et al. Ablation index and surround flow catheter irrigation: impedance-based appraisal in clinical ablation. JACC Clin Electrophysiol. 2017;3:1080–8.

    Article  PubMed  Google Scholar 

  885. Teres C, Soto-Iglesias D, Penela D, Jáuregui B, Ordoñez A, Chauca A, et al. Personalized paroxysmal atrial fibrillation ablation by tailoring ablation index to the left atrial wall thickness: the ‘ablate by-LAW’ single-centre study-a pilot study. Europace. 2022;24:390–9.

    Article  PubMed  Google Scholar 

  886. Kyriakopoulou M, Strisciuglio T, El Haddad M, De Pooter J, Almorad A, Van Beeumen K, et al. Evaluation of a simple technique aiming at optimizing point-by-point isolation of the left pulmonary veins: a randomized study. Europace. 2019;21:1185–92.

    Article  PubMed  Google Scholar 

  887. Berte B, Hilfiker G, Moccetti F, Schefer T, Weberndörfer V, Cuculi F, et al. Pulmonary vein isolation using ablation index vs. CLOSE protocol with a surround flow ablation catheter. Europace. 2020;22:84–9.

    Article  PubMed  Google Scholar 

  888. Hoffmann P, Diaz Ramirez I, Baldenhofer G, Stangl K, Mont L, Althoff TF. Randomized study defining the optimum target interlesion distance in ablation index-guided atrial fibrillation ablation. Europace. 2020;22:1480–6.

    Article  PubMed  Google Scholar 

  889. Kobayashi S, Fukaya H, Oikawa J, Saito D, Sato T, Matsuura G, et al. Optimal interlesion distance in ablation index-guided pulmonary vein isolation for atrial fibrillation. J Interv Card Electrophysiol. 2021;62:123–31.

    Article  PubMed  Google Scholar 

  890. Francke A, Taha NS, Scharfe F, Schoen S, Wunderlich C, Christoph M. Procedural efficacy and safety of standardized, ablation index guided fixed 50 W high-power short-duration pulmonary vein isolation and substrate modification using the CLOSE protocol. J Cardiovasc Electrophysiol. 2021;32:2408–17.

    Article  PubMed  Google Scholar 

  891. Francke A, Scharfe F, Schoen S, Wunderlich C, Christoph M. Reconnection patterns after CLOSE-guided 50 W high-power-short-duration circumferential pulmonary vein isolation and substrate modification-PV reconnection might no longer be an issue. J Cardiovasc Electrophysiol. 2022;33:1136–45.

    Article  PubMed  Google Scholar 

  892. Chen S, Schmidt B, Bordignon S, Tohoku S, Urban VC, Schulte-Hahn B, et al. Catheter ablation of atrial fibrillation using ablation index-guided high-power technique: Frankfurt AI high-power 15-month follow-up. J Cardiovasc Electrophysiol. 2021;32:616–24.

    Article  PubMed  Google Scholar 

  893. Jiang C-Y, Jiang R-H, Matsuo S, Liu Q, Fan Y-Q, Zhang Z-W, et al. Early detection of pulmonary vein reconnection after isolation in patients with paroxysmal atrial fibrillation: a comparison of ATP-induction and reassessment at 30 minutes postisolation. J Cardiovasc Electrophysiol. 2009;20:1382–7.

    Article  PubMed  Google Scholar 

  894. Cheema A, Dong J, Dalal D, Marine JE, Henrikson CA, Spragg D, et al. Incidence and time course of early recovery of pulmonary vein conduction after catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2007;18:387–91.

    Article  PubMed  Google Scholar 

  895. Brunelli M, Raffa S, Große A, Hanazawa K, Sammut M, Roos M, et al. Residual conduction after pulmonary vein isolation with a circular multielectrode radiofrequency ablation catheter: the role of adenosine and orciprenalin during a prolonged observation time. Int J Cardiol. 2013;168:4122–31.

    Article  PubMed  Google Scholar 

  896. Dallaglio PD, Betts TR, Ginks M, Bashir Y, Anguera I, Rajappan K. The role of adenosine in pulmonary vein isolation: a critical review. Cardiol Res Pract. 2016;2016:8632509.

    Article  PubMed  PubMed Central  Google Scholar 

  897. le Polain de Waroux J-B, Weerasooriya R, Anvardeen K, Barbraud C, Marchandise S, De Meester C, et al. Low contact force and force-time integral predict early recovery and dormant conduction revealed by adenosine after pulmonary vein isolation. Europace. 2015;17:877–83.

    Article  PubMed  PubMed Central  Google Scholar 

  898. Datino T, Macle L, Qi XY, Maguy A, Comtois P, Chartier D, et al. Mechanisms by which adenosine restores conduction in dormant canine pulmonary veins. Circulation. 2010;121:963–72.

    Article  CAS  PubMed  Google Scholar 

  899. Tokuda M, Matsuo S, Isogai R, Uno G, Tokutake K, Yokoyama K, et al. Adenosine testing during cryoballoon ablation and radiofrequency ablation of atrial fibrillation: a propensity score-matched analysis. Heart Rhythm. 2016;13:2128–34.

    Article  PubMed  Google Scholar 

  900. Ghanbari H, Jani R, Hussain-Amin A, Al-Assad W, Huether E, Ansari S, et al. Role of adenosine after antral pulmonary vein isolation of paroxysmal atrial fibrillation: a randomized controlled trial. Heart Rhythm. 2016;13:407–15.

    Article  PubMed  Google Scholar 

  901. Prabhu S, Mackin V, McLellan AJ, Phan T, McGlade D, Ling LH, et al. Determining the optimal dose of adenosine for unmasking dormant pulmonary vein conduction following atrial fibrillation ablation: electrophysiological and hemodynamic assessment. DORMANT-AF study J Cardiovasc Electrophysiol. 2017;28:13–22.

    Article  PubMed  Google Scholar 

  902. Osorio J, Hunter TD, Rajendra A, Zei P, Silverstein J, Morales G. Predictors of clinical success after paroxysmal atrial fibrillation catheter ablation. J Cardiovasc Electrophysiol. 2021;32:1814–21.

    Article  PubMed  Google Scholar 

  903. Ninomiya Y, Inoue K, Tanaka N, Okada M, Tanaka K, Onishi T, et al. Absence of first-pass isolation is associated with poor pulmonary vein isolation durability and atrial fibrillation ablation outcomes. J Arrhythm. 2021;37:1468–76.

    Article  PubMed  PubMed Central  Google Scholar 

  904. Barbhaiya CR, Aizer A, Knotts R, Bernstein S, Park D, Holmes D, et al. Simultaneous pace-ablate during CARTO-guided pulmonary vein isolation with a contact-force sensing radiofrequency ablation catheter. J Interv Card Electrophysiol. 2019;54:119–24.

    Article  PubMed  Google Scholar 

  905. Kogawa R, Okumura Y, Watanabe I, Sonoda K, Sasaki N, Takahashi K, et al. Difference between dormant conduction sites revealed by adenosine triphosphate provocation and unipolar pace-capture sites along the ablation line after pulmonary vein isolation. Int Heart J. 2016;57:25–9.

    Article  CAS  PubMed  Google Scholar 

  906. Okumura Y, Watanabe I, Nagashima K, Sonoda K, Mano H, Sasaki N, et al. The effects of standard electrical PV isolation vs. “pace and ablate” on ATP-provoked PV reconnections. J Interv Card Electrophysiol. 2014;40:39–45.

    Article  PubMed  Google Scholar 

  907. Kumar S, Kalman JM, Sutherland F, Spence SJ, Finch S, Sparks PB. Atrial fibrillation inducibility in the absence of structural heart disease or clinical atrial fibrillation: critical dependence on induction protocol, inducibility definition, and number of inductions. Circ Arrhythm Electrophysiol. 2012;5:531–6.

    Article  PubMed  Google Scholar 

  908. Darma A, Daneschnejad SS, Gaspar T, Huo Y, Wetzel U, Dagres N, et al. Role of inducibility and its dynamic change in the outcome of catheter ablation of atrial fibrillation: a single center prospective study. J Cardiovasc Electrophysiol. 2020;31:705–11.

    Article  PubMed  Google Scholar 

  909. Santangeli P, Zado ES, Garcia FC, Riley MP, Lin D, Frankel DS, et al. Lack of prognostic value of atrial arrhythmia inducibility and change in inducibility status after catheter ablation of atrial fibrillation. Heart Rhythm. 2018;15:660–5.

    Article  PubMed  Google Scholar 

  910. Leong-Sit P, Robinson M, Zado ES, Callans DJ, Garcia F, Lin D, et al. Inducibility of atrial fibrillation and flutter following pulmonary vein ablation. J Cardiovasc Electrophysiol. 2013;24:617–23.

    Article  PubMed  Google Scholar 

  911. Millenaar D, Becker N, Pavlicek V, Wintrich J, Böhm M, Mahfoud F, et al. Inducibility of atrial fibrillation after catheter ablation predicts recurrences of atrial fibrillation: a metaanalysis. Pacing Clin Electrophysiol. 2021;44:667–76.

    Article  PubMed  Google Scholar 

  912. Neumann T, Vogt J, Schumacher B, Dorszewski A, Kuniss M, Neuser H, et al. Circumferential pulmonary vein isolation with the cryoballoon technique results from a prospective 3-center study. J Am Coll Cardiol. 2008;52:273–8.

    Article  PubMed  Google Scholar 

  913. Alyesh D, Frederick J, Choe W, Sundaram S. Step by step: how to perform a fluoroless cryoballoon ablation for atrial fibrillation. J Cardiovasc Electrophysiol. 2022;33:2351–5.

    Article  PubMed  Google Scholar 

  914. Siklódy CH, Minners J, Allgeier M, Allgeier HJ, Jander N, Keyl C, et al. Pressure-guided cryoballoon isolation of the pulmonary veins for the treatment of paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol. 2010;21:120–5.

    Article  PubMed  Google Scholar 

  915. Rottner L, Sinning C, Reissmann B, Schleberger R, Dinshaw L, Münkler P, et al. Wide-band dielectric imaging and the novel cryoballoon-occlusion tool to guide cryoballoon-based pulmonary vein isolation. Circ Arrhythm Electrophysiol. 2020;13: e008507.

    Article  PubMed  Google Scholar 

  916. Takami M, Lehmann HI, Misiri J, Parker KD, Sarmiento RI, Johnson SB, et al. Impact of freezing time and balloon size on the thermodynamics and isolation efficacy during pulmonary vein isolation using the second generation cryoballoon. Circ Arrhythm Electrophysiol. 2015;8:836–45.

    Article  PubMed  Google Scholar 

  917. Andrade JG, Dubuc M, Guerra PG, Landry E, Coulombe N, Leduc H, et al. Pulmonary vein isolation using a second-generation cryoballoon catheter: a randomized comparison of ablation duration and method of deflation. J Cardiovasc Electrophysiol. 2013;24:692–8.

    Article  PubMed  Google Scholar 

  918. Cheung CC, Deyell MW, Macle L, Verma A, Champagne J, Leong-Sit P, et al. Repeat atrial fibrillation ablation procedures in the CIRCA-DOSE study. Circ Arrhythm Electrophysiol. 2020;13: e008480.

    Article  PubMed  Google Scholar 

  919. Chun KR, Stich M, Fürnkranz A, Bordignon S, Perrotta L, Dugo D, et al. Individualized cryoballoon energy pulmonary vein isolation guided by real-time pulmonary vein recordings, the randomized ICE-T trial. Heart Rhythm. 2017;14:495–500.

    Article  PubMed  Google Scholar 

  920. Wissner E, Heeger CH, Grahn H, Reissmann B, Wohlmuth P, Lemes C, et al. One-year clinical success of a ‘no-bonus’ freeze protocol using the second-generation 28 mm cryoballoon for pulmonary vein isolation. Europace. 2015;17:1236–40.

    Article  PubMed  Google Scholar 

  921. Farkowski MM, Karlinski M, Barra S, Providencia R, Golicki D, Pytkowski M, et al. Effectiveness and safety of a single freeze strategy of cryoballoon ablation of atrial fibrillation: an EHRA systematic review and metaanalysis. Europace. 2022;24:58–69.

    Article  PubMed  Google Scholar 

  922. Bordignon S, Chen S, Bologna F, Thohoku S, Urbanek L, Willems F, et al. Optimizing cryoballoon pulmonary vein isolation: lessons from >1000 procedures- the Frankfurt approach. Europace. 2021;23:868–77.

    Article  PubMed  Google Scholar 

  923. Chen S, Schmidt B, Bordignon S, Perrotta L, Bologna F, Chun KRJ. Impact of cryoballoon freeze duration on long-term durability of pulmonary vein isolation: ICE re-map study. JACC Clin Electrophysiol. 2019;5:551–9.

    Article  PubMed  Google Scholar 

  924. Heeger CH, Popescu SS, Saraei R, Kirstein B, Hatahet S, Samara O, et al. Individualized or fixed approach to pulmonary vein isolation utilizing the fourth-generation cryoballoon in patients with paroxysmal atrial fibrillation: the randomized INDI-FREEZE trial. Europace. 2022;24:921–7.

    Article  PubMed  Google Scholar 

  925. Ferrero-de-Loma-Osorio Á, García-Fernández A, Castillo-Castillo J, Izquierdo-de-Francisco M, Ibáñez-Críado A, Moreno-Arribas J, et al. Time-to-effect-based dosing strategy for cryoballoon ablation in patients with paroxysmal atrial fibrillation: results of the plusONE multicenter randomized controlled noninferiority trial. Circ Arrhythm Electrophysiol. 2017;10: e005318.

    Article  PubMed  Google Scholar 

  926. Ciconte G, Mugnai G, Sieira J, Velagić V, Saitoh Y, Irfan G, et al. On the quest for the best freeze: predictors of late pulmonary vein reconnections after second-generation cryoballoon ablation. Circ Arrhythm Electrophysiol. 2015;8:1359–65.

    Article  PubMed  Google Scholar 

  927. Aryana A, Mugnai G, Singh SM, Pujara DK, de Asmundis C, Singh SK, et al. Procedural and biophysical indicators of durable pulmonary vein isolation during cryoballoon ablation of atrial fibrillation. Heart Rhythm. 2016;13:424–32.

    Article  PubMed  Google Scholar 

  928. Ghosh J, Martin A, Keech AC, Chan KH, Gomes S, Singarayar S, et al. Balloon warming time is the strongest predictor of late pulmonary vein electrical reconnection following cryoballoon ablation for atrial fibrillation. Heart Rhythm. 2013;10:1311–7.

    Article  PubMed  Google Scholar 

  929. Bose A, Chevli PA, Berberian G, Januszkiewicz J, Ahmad G, Hashmath Z, et al. Presence of a left common pulmonary vein and pulmonary vein anatomical characteristics as predictors of outcome following cryoballoon ablation for paroxysmal atrial fibrillation. J Interv Card Electrophysiol. 2021;62:409–17.

    Article  PubMed  Google Scholar 

  930. Coutiño HE, Ströker E, Takarada K, Mugnai G, Abugattas JP, Sieira J, et al. Radiofrequency versus cryoballoon ablation for atrial fibrillation in the setting of left common pulmonary veins. Pacing Clin Electrophysiol. 2019;42:1456–62.

    Article  PubMed  Google Scholar 

  931. Yamaguchi M, Miyazaki S, Kajiyama T, Hada M, Nakamura H, Hachiya H, et al. Pulmonary vein isolation in patients with a left common pulmonary vein: comparison between second-generation cryoballoon and radiofrequency ablation. J Cardiol. 2019;73:292–8.

    Article  PubMed  Google Scholar 

  932. Shigeta T, Okishige K, Yamauchi Y, Aoyagi H, Nakamura T, Yamashita M, et al. Clinical assessment of cryoballoon ablation in cases with atrial fibrillation and a left common pulmonary vein. J Cardiovasc Electrophysiol. 2017;28:1021–7.

    Article  PubMed  Google Scholar 

  933. Asvestas D, Sousonis V, Kotsovolis G, Karanikas S, Xintarakou A, Sakadakis E, et al. Cavotricuspid isthmus ablation guided by force-time integral – a randomized study. Clin Cardiol. 2022;45:503–8.

    Article  PubMed  PubMed Central  Google Scholar 

  934. Sakama S, Yagishita A, Sakai T, Morise M, Ayabe K, Amino M, et al. Ablation index-guided cavotricuspid isthmus ablation with contiguous lesions using fluoroscopy integrated 3D mapping in atrial flutter. J Interv Card Electrophysiol. 2022;64:217–22.

    Article  PubMed  PubMed Central  Google Scholar 

  935. Sasaki T, Nakamura K, Inoue M, Minami K, Miki Y, Goto K, et al. Optimal local impedance drops for an effective radiofrequency ablation during cavo-tricuspid isthmus ablation. J Arrhythm. 2020;36:905–11.

    Article  PubMed  PubMed Central  Google Scholar 

  936. Sau A, Kapadia S, Al-Aidarous S, Howard J, Sohaib A, Sikkel MB, et al. Temporal trends and lesion sets for persistent atrial fibrillation ablation: a metaanalysis with trial sequential analysis and meta-regression. Circ Arrhythm Electrophysiol. 2023;16: e011861.

    Article  PubMed  PubMed Central  Google Scholar 

  937. Clarnette JA, Brooks AG, Mahajan R, Elliott AD, Twomey DJ, Pathak RK, et al. Outcomes of persistent and long-standing persistent atrial fibrillation ablation: a systematic review and metaanalysis. Europace. 2018;20:f366-76.

    Article  PubMed  Google Scholar 

  938. Bergonti M, Spera FR, Ferrero TG, Nsahlai M, Bonomi A, Boris W, et al. Anterior mitral line in patients with persistent atrial fibrillation and anterior scar: a multicenter matched comparison-The MiLine study. Heart Rhythm. 2023;20:658–65.

    Article  PubMed  Google Scholar 

  939. Nademanee K, McKenzie J, Kosar E, Schwab M, Sunsaneewitayakul B, Vasavakul T, et al. A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. J Am Coll Cardiol. 2004;43:2044–53.

    Article  PubMed  Google Scholar 

  940. Lau DH, Maesen B, Zeemering S, Verheule S, Crijns HJ, Schotten U. Stability of complex fractionated atrial electrograms: a systematic review. J Cardiovasc Electrophysiol. 2012;23:980–7.

    Article  PubMed  Google Scholar 

  941. Vogler J, Willems S, Sultan A, Schreiber D, Lüker J, Servatius H, et al. Pulmonary vein isolation versus defragmentation: the CHASE-AF clinical trial. J Am Coll Cardiol. 2015;66:2743–52.

    Article  PubMed  Google Scholar 

  942. Providência R, Lambiase PD, Srinivasan N, Ganesh Babu G, Bronis K, Ahsan S, et al. Is there still a role for complex fractionated atrial electrogram ablation in addition to pulmonary vein isolation in patients with paroxysmal and persistent atrial fibrillation? Metaanalysis of 1415 patients. Circ Arrhythm Electrophysiol. 2015;8:1017–29.

    Article  PubMed  Google Scholar 

  943. O’Neill MD, Wright M, Knecht S, Jaïs P, Hocini M, Takahashi Y, et al. Long-term follow-up of persistent atrial fibrillation ablation using termination as a procedural endpoint. Eur Heart J. 2009;30:1105–12.

    Article  PubMed  Google Scholar 

  944. Schreiber D, Rostock T, Fröhlich M, Sultan A, Servatius H, Hoffmann BA, et al. Five-year follow-up after catheter ablation of persistent atrial fibrillation using the stepwise approach and prognostic factors for success. Circ Arrhythm Electrophysiol. 2015;8:308–17.

    Article  PubMed  Google Scholar 

  945. Suenari K, Chen YC, Kao YH, Cheng CC, Lin YK, Chen YJ, et al. Discrepant electrophysiological characteristics and calcium homeostasis of left atrial anterior and posterior myocytes. Basic Res Cardiol. 2011;106:65–74.

    Article  CAS  PubMed  Google Scholar 

  946. Markides V, Schilling RJ, Ho SY, Chow AW, Davies DW, Peters NS. Characterization of left atrial activation in the intact human heart. Circulation. 2003;107:733–9.

    Article  PubMed  Google Scholar 

  947. Pauza DH, Skripka V, Pauziene N. Morphology of the intrinsic cardiac nervous system in the dog: a whole-mount study employing histochemical staining with acetylcholinesterase. Cells Tissues Organs. 2002;172:297–320.

    Article  PubMed  Google Scholar 

  948. Thiyagarajah A, Mahajan R, Iwai S, Griffin A, Mishima RS, Linz D, et al. Single ring isolation with inferior line sparing for atrial fibrillation: a proof-of-concept study. Circ Arrhythm Electrophysiol. 2021;14: e009552.

    Article  PubMed  Google Scholar 

  949. Thomas SP, Lim TW, McCall R, Seow SC, Ross DL. Electrical isolation of the posterior left atrial wall and pulmonary veins for atrial fibrillation: feasibility of and rationale for a single-ring approach. Heart Rhythm. 2007;4:722–30.

    Article  PubMed  Google Scholar 

  950. Bisignani A, Pannone L, Miraglia V, Sieira J, Iacopino S, Bala G, et al. Feasibility and safety of left atrial posterior wall isolation with a new Cryoballoon technology in patients with persistent atrial fibrillation. Pacing Clin Electrophysiol. 2022;45:605–11.

    Article  PubMed  PubMed Central  Google Scholar 

  951. Aryana A, Baker JH, Espinosa Ginic MA, Pujara DK, Bowers MR, O’Neill PG, et al. Posterior wall isolation using the cryoballoon in conjunction with pulmonary vein ablation is superior to pulmonary vein isolation alone in patients with persistent atrial fibrillation: a multicenter experience. Heart Rhythm. 2018;15:1121–9.

    Article  PubMed  Google Scholar 

  952. Aryana A, Allen SL, Pujara DK, Bowers MR, O’Neill PG, Yamauchi Y, et al. Concomitant pulmonary vein and posterior wall isolation using cryoballoon with adjunct radiofrequency in persistent atrial fibrillation. JACC Clin Electrophysiol. 2021;7:187–96.

    Article  PubMed  Google Scholar 

  953. Ahn J, Shin DG, Han SJ, Lim HE. Does isolation of the left atrial posterior wall using cryoballoon ablation improve clinical outcomes in patients with persistent atrial fibrillation? A prospective randomized controlled trial Europace. 2022;24:1093–101.

    PubMed  Google Scholar 

  954. Gunawardene MA, Frommeyer G, Ellermann C, Jularic M, Leitz P, Hartmann J, et al. Left atrial posterior wall isolation with pulsed field ablation in persistent atrial fibrillation. J Clin Med. 2023;12:6304.

    Article  PubMed  PubMed Central  Google Scholar 

  955. Sohns C, Fink T, Braun M, Sciacca V, Piran M, Khalaph M, et al. Lesion formation following pulsed field ablation for pulmonary vein and posterior wall isolation. Pacing Clin Electrophysiol. 2023;46:714–6.

    Article  PubMed  Google Scholar 

  956. Yu HT, Shim J, Park J, Kim IS, Kim TH, Uhm JS, et al. Pulmonary vein isolation alone versus additional linear ablation in patients with persistent atrial fibrillation converted to paroxysmal type with antiarrhythmic drug therapy: a multicenter, prospective, randomized study. Circ Arrhythm Electrophysiol. 2017;10: e004915.

    Article  PubMed  Google Scholar 

  957. Wong K, Schricker AA, Nerlekar R, Feng Z, Sudat S, Cook K, et al. The posterior wall isolation for persistent atrial fibrillation high-power short duration (PEF-HOT) trial. JACC Clin Electrophysiol. 2023;9:2166–8.

    Article  PubMed  Google Scholar 

  958. Jankelson L, Garber L, Shulman E, Cohen RB, Peterson C, Wadhwani L, et al. Outcomes of posterior wall isolation with pulmonary vein isolation for paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol. 2022;33:209–17.

    Article  PubMed  Google Scholar 

  959. Sugumar H, Thomas SP, Prabhu S, Voskoboinik A, Kistler PM. How to perform posterior wall isolation in catheter ablation for atrial fibrillation. J Cardiovasc Electrophysiol. 2018;29:345–52.

    Article  PubMed  Google Scholar 

  960. Tran VN, Kusa S, Smietana J, Tsai WC, Bhasin K, Teh A, et al. The relationship between oesophageal heating during left atrial posterior wall ablation and the durability of pulmonary vein isolation. Europace. 2017;19:1664–9.

    Article  PubMed  Google Scholar 

  961. Markman TM, Hyman MC, Kumareswaran R, Arkles JS, Santangeli P, Schaller RD, et al. Durability of posterior wall isolation after catheter ablation among patients with recurrent atrial fibrillation. Heart Rhythm. 2020;17:1740–4.

    Article  PubMed  Google Scholar 

  962. Kumar P, Bamimore AM, Schwartz JD, Chung EH, Gehi AK, Kiser AC, et al. Challenges and outcomes of posterior wall isolation for ablation of atrial fibrillation. J Am Heart Assoc. 2016;5: e003885.

    Article  PubMed  PubMed Central  Google Scholar 

  963. Segan L, Chieng D, Prabhu S, Hunt A, Watts T, Klys B, et al. Posterior wall isolation improves outcomes for persistent AF with rapid posterior wall activity: a CAPLA substudy. Clin Electrophysiol. 2023;9:2536–46.

    Article  Google Scholar 

  964. Al-Kaisey AM, Parameswaran R, Kalman JM. Atrial fibrillation structural substrates: aetiology, identification and implications. Arrhythm Electrophysiol Rev. 2020;9:113–20.

    PubMed  PubMed Central  Google Scholar 

  965. Prabhu S, Voskoboinik A, McLellan AJA, Peck KY, Pathik B, Nalliah CJ, et al. Biatrial electrical and structural atrial changes in heart failure: electroanatomic mapping in persistent atrial fibrillation in humans. JACC Clin Electrophysiol. 2018;4:87–96.

    Article  PubMed  Google Scholar 

  966. Kistler PM, Sanders P, Fynn SP, Stevenson IH, Spence SJ, Vohra JK, et al. Electrophysiologic and electroanatomic changes in the human atrium associated with age. J Am Coll Cardiol. 2004;44:109–16.

    Article  PubMed  Google Scholar 

  967. Mahajan R, Lau DH, Brooks AG, Shipp NJ, Wood JPM, Manavis J, et al. Atrial fibrillation and obesity: reverse remodeling of atrial substrate with weight reduction. JACC Clin Electrophysiol. 2021;7:630–41.

    Article  PubMed  Google Scholar 

  968. Voskoboinik A, Kalman JM, De Silva A, Nicholls T, Costello B, Nanayakkara S, et al. Alcohol abstinence in drinkers with atrial fibrillation. N Engl J Med. 2020;382:20–8.

    Article  PubMed  Google Scholar 

  969. Trivedi SJ, Claessen G, Stefani L, Flannery MD, Brown P, Janssens K, et al. Differing mechanisms of atrial fibrillation in athletes and non-athletes: alterations in atrial structure and function. Eur Heart J Cardiovasc Imaging. 2020;21:1374–83.

    Article  PubMed  Google Scholar 

  970. Kottkamp H, Bender R, Berg J. Catheter ablation of atrial fibrillation: how to modify the substrate? J Am Coll Cardiol. 2015;65:196–206.

    Article  PubMed  Google Scholar 

  971. Rolf S, Kircher S, Arya A, Eitel C, Sommer P, Richter S, et al. Tailored atrial substrate modification based on low-voltage areas in catheter ablation of atrial fibrillation. Circ Arrhythm Electrophysiol. 2014;7:825–33.

    Article  PubMed  Google Scholar 

  972. Cutler MJ, Johnson J, Abozguia K, Rowan S, Lewis W, Costantini O, et al. Impact of voltage mapping to guide whether to perform ablation of the posterior wall in patients with persistent atrial fibrillation. J Cardiovasc Electrophysiol. 2016;27:13–21.

    Article  PubMed  Google Scholar 

  973. Yang G, Yang B, Wei Y, Zhang F, Ju W, Chen H, et al. Catheter ablation of nonparoxysmal atrial fibrillation using electrophysiologically guided substrate modification during sinus rhythm after pulmonary vein isolation. Circ Arrhythm Electrophysiol. 2016;9: e003382.

    Article  PubMed  Google Scholar 

  974. Masuda M, Asai M, Iida O, Okamoto S, Ishihara T, Nanto K, et al. Additional low-voltage-area ablation in patients with paroxysmal atrial fibrillation: results of the randomized controlled VOLCANO trial. J Am Heart Assoc. 2020;9: e015927.

    Article  PubMed  PubMed Central  Google Scholar 

  975. Chen H, Li C, Han B, Xiao F, Yi F, Wei Y, et al. Circumferential pulmonary vein isolation with vs without additional low-voltage-area ablation in older patients with paroxysmal atrial fibrillation: a randomized clinical trial. JAMA Cardiol. 2023;8:765–72.

    Article  PubMed  Google Scholar 

  976. Wong GR, Nalliah CJ, Lee G, Voskoboinik A, Prabhu S, Parameswaran R, et al. Dynamic atrial substrate during high-density mapping of paroxysmal and persistent AF: implications for substrate ablation. JACC Clin Electrophysiol. 2019;5:1265–77.

    Article  PubMed  Google Scholar 

  977. Kapa S, Desjardins B, Callans DJ, Marchlinski FE, Dixit S. Contact electroanatomic mapping derived voltage criteria for characterizing left atrial scar in patients undergoing ablation for atrial fibrillation. J Cardiovasc Electrophysiol. 2014;25:1044–52.

    Article  PubMed  Google Scholar 

  978. Takahashi Y, Yamaguchi T, Otsubo T, Nakashima K, Shinzato K, Osako R, et al. Histological validation of atrial structural remodelling in patients with atrial fibrillation. Eur Heart J. 2023;44:3339–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  979. Vlachos K, Derval N, Pambrun T, Duchateau J, Martin CA, Bazoukis G, et al. Ligament of Marshall ablation for persistent atrial fibrillation. Pacing Clin Electrophysiol. 2021;44:782–91.

    Article  PubMed  Google Scholar 

  980. Kamakura T, Derval N, Duchateau J, Denis A, Nakashima T, Takagi T, et al. Vein of Marshall ethanol infusion: feasibility, pitfalls, and complications in over 700 patients. Circ Arrhythm Electrophysiol. 2021;14: e010001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  981. Gianni C, Mohanty S, Trivedi C, Di Biase L, Natale A. Novel concepts and approaches in ablation of atrial fibrillation: the role of non-pulmonary vein triggers. Europace. 2018;20:1566–76.

    Article  PubMed  Google Scholar 

  982. Mohanty S, Trivedi C, Horton P, Della Rocca DG, Gianni C, MacDonald B, et al. Natural history of arrhythmia after successful isolation of pulmonary veins, left atrial posterior wall, and superior vena cava in patients with paroxysmal atrial fibrillation: a multi-center experience. J Am Heart Assoc. 2021;10: e020563.

    Article  PubMed  PubMed Central  Google Scholar 

  983. Sørensen SK, Johannessen A, Worck R, Hansen ML, Hansen J. Radiofrequency versus cryoballoon catheter ablation for paroxysmal atrial fibrillation: durability of pulmonary vein isolation and effect on atrial fibrillation burden: the RACE-AF randomized controlled trial. Circ Arrhythm Electrophysiol. 2021;14: e009573.

    Article  PubMed  PubMed Central  Google Scholar 

  984. Della Rocca DG, Tarantino N, Trivedi C, Mohanty S, Anannab A, Salwan AS, et al. Non-pulmonary vein triggers in nonparoxysmal atrial fibrillation: implications of pathophysiology for catheter ablation. J Cardiovasc Electrophysiol. 2020;31:2154–67.

    Article  PubMed  Google Scholar 

  985. Hsu LF, Jaïs P, Keane D, Wharton JM, Deisenhofer I, Hocini M, et al. Atrial fibrillation originating from persistent left superior vena cava. Circulation. 2004;109:828–32.

    Article  PubMed  Google Scholar 

  986. Di Biase L, Burkhardt JD, Mohanty P, Mohanty S, Sanchez JE, Trivedi C, et al. Left atrial appendage isolation in patients with longstanding persistent AF undergoing catheter ablation: BELIEF trial. J Am Coll Cardiol. 2016;68:1929–40.

    Article  PubMed  Google Scholar 

  987. Romero J, Di Biase L, Mohanty S, Trivedi C, Patel K, Parides M, et al. Long-term outcomes of left atrial appendage electrical isolation in patients with nonparoxysmal atrial fibrillation: a propensity score-matched analysis. Circ Arrhythm Electrophysiol. 2020;13: e008390.

    Article  PubMed  Google Scholar 

  988. Romero J, Gabr M, Patel K, Briceno D, Diaz JC, Alviz I, et al. Efficacy and safety of left atrial appendage electrical isolation during catheter ablation of atrial fibrillation: an updated metaanalysis. Europace. 2021;23:226–37.

    Article  PubMed  Google Scholar 

  989. Friedman DJ, Black-Maier EW, Barnett AS, Pokorney SD, Al-Khatib SM, Jackson KP, et al. Left atrial appendage electrical isolation for treatment of recurrent atrial fibrillation: a metaanalysis. JACC Clin Electrophysiol. 2018;4:112–20.

    Article  PubMed  Google Scholar 

  990. Bavry A. Outcomes of adjunctive left atrial appendage ligation utilizing the LARIAT compared to pulmonary vein antral isolation alone - aMAZE. Presented by Dr. David J. Wilber at the american heart association virtual annual scientific sessions (AHA 2021), 2021.

  991. Fink T, Vogler J, Heeger CH, Sano M, Sciacca V, Reissmann B, et al. Impact of left atrial appendage closure on LAA thrombus formation and thromboembolism after LAA isolation. JACC Clin Electrophysiol. 2020;6:1687–97.

    Article  PubMed  Google Scholar 

  992. Rillig A, Tilz RR, Lin T, Fink T, Heeger CH, Arya A, et al. Unexpectedly high incidence of stroke and left atrial appendage thrombus formation after electrical isolation of the left atrial appendage for the treatment of atrial tachyarrhythmias. Circ Arrhythm Electrophysiol. 2016;9: e003461.

    Article  PubMed  Google Scholar 

  993. Kim YG, Shim J, Oh SK, Lee KN, Choi JI, Kim YH. Electrical isolation of the left atrial appendage increases the risk of ischemic stroke and transient ischemic attack regardless of postisolation flow velocity. Heart Rhythm. 2018;15:1746–53.

    Article  PubMed  Google Scholar 

  994. Zender N, Weise FK, Bordignon S, Herrmann E, Konstantinou A, Bologna F, et al. Thromboembolism after electrical isolation of the left atrial appendage: a new indication for interventional closure? Europace. 2019;21:1502–8.

    Article  PubMed  Google Scholar 

  995. Dixit S, Lin D, Frankel DS, Marchlinski FE. Catheter ablation for persistent atrial fibrillation: antral pulmonary vein isolation and elimination of nonpulmonary vein triggers are sufficient. Circ Arrhythm Electrophysiol. 2012;5:1216–23; discussion 1223.

  996. Inoue K, Kurotobi T, Kimura R, Toyoshima Y, Itoh N, Masuda M, et al. Trigger-based mechanism of the persistence of atrial fibrillation and its impact on the efficacy of catheter ablation. Circ Arrhythm Electrophysiol. 2012;5:295–301.

    Article  PubMed  Google Scholar 

  997. Santangeli P, Di Biase L, Mohanty P, Burkhardt JD, Horton R, Bai R, et al. Catheter ablation of atrial fibrillation in octogenarians: safety and outcomes. J Cardiovasc Electrophysiol. 2012;23:687–93.

    Article  PubMed  Google Scholar 

  998. Choi EK, Shen MJ, Han S, Kim D, Hwang S, Sayfo S, et al. Intrinsic cardiac nerve activity and paroxysmal atrial tachyarrhythmia in ambulatory dogs. Circulation. 2010;121:2615–23.

    Article  PubMed  PubMed Central  Google Scholar 

  999. Nakagawa H, Scherlag BJ, Patterson E, Ikeda A, Lockwood D, Jackman WM. Pathophysiologic basis of autonomic ganglionated plexus ablation in patients with atrial fibrillation. Heart Rhythm. 2009;6:S26-34.

    Article  PubMed  Google Scholar 

  1000. Pauza DH, Skripka V, Pauziene N, Stropus R. Morphology, distribution, and variability of the epicardiac neural ganglionated subplexuses in the human heart. Anat Rec. 2000;259:353–82.

    Article  CAS  PubMed  Google Scholar 

  1001. Patterson E, Lazzara R, Szabo B, Liu H, Tang D, Li YH, et al. Sodium-calcium exchange initiated by the Ca2+ transient: an arrhythmia trigger within pulmonary veins. J Am Coll Cardiol. 2006;47:1196–206.

    Article  CAS  PubMed  Google Scholar 

  1002. Lemola K, Chartier D, Yeh YH, Dubuc M, Cartier R, Armour A, et al. Pulmonary vein region ablation in experimental vagal atrial fibrillation: role of pulmonary veins versus autonomic ganglia. Circulation. 2008;117:470–7.

    Article  PubMed  Google Scholar 

  1003. Nishida K, Maguy A, Sakabe M, Comtois P, Inoue H, Nattel S. The role of pulmonary veins vs. autonomic ganglia in different experimental substrates of canine atrial fibrillation. Cardiovasc Res. 2011;89:825–33.

    Article  CAS  PubMed  Google Scholar 

  1004. Nishida K, Datino T, Macle L, Nattel S. Atrial fibrillation ablation: translating basic mechanistic insights to the patient. J Am Coll Cardiol. 2014;64:823–31.

    Article  PubMed  Google Scholar 

  1005. Stavrakis S, Nakagawa H, Po SS, Scherlag BJ, Lazzara R, Jackman WM. The role of the autonomic ganglia in atrial fibrillation. JACC Clin Electrophysiol. 2015;1:1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  1006. Katritsis DG, Pokushalov E, Romanov A, Giazitzoglou E, Siontis GC, Po SS, et al. Autonomic denervation added to pulmonary vein isolation for paroxysmal atrial fibrillation: a randomized clinical trial. J Am Coll Cardiol. 2013;62:2318–25.

    Article  PubMed  Google Scholar 

  1007. Pokushalov E, Romanov A, Katritsis DG, Artyomenko S, Shirokova N, Karaskov A, et al. Ganglionated plexus ablation vs linear ablation in patients undergoing pulmonary vein isolation for persistent/long-standing persistent atrial fibrillation: a randomized comparison. Heart Rhythm. 2013;10:1280–6.

    Article  PubMed  Google Scholar 

  1008. Driessen AHG, Berger WR, Krul SPJ, van den Berg NWE, Neefs J, Piersma FR, et al. Ganglion plexus ablation in advanced atrial fibrillation: the AFACT study. J Am Coll Cardiol. 2016;68:1155–65.

    Article  PubMed  Google Scholar 

  1009. Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361:1139–51.

    Article  CAS  PubMed  Google Scholar 

  1010. Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365:883–91.

    Article  CAS  PubMed  Google Scholar 

  1011. Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365:981–92.

    Article  CAS  PubMed  Google Scholar 

  1012. Giugliano RP, Ruff CT, Braunwald E, Murphy SA, Wiviott SD, Halperin JL, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369:2093–104.

    Article  CAS  PubMed  Google Scholar 

  1013. Ruff CT, Giugliano RP, Braunwald E, Hoffman EB, Deenadayalu N, Ezekowitz MD, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a metaanalysis of randomised trials. Lancet. 2014;383:955–62.

    Article  CAS  PubMed  Google Scholar 

  1014. Kaitani K, Inoue K, Kobori A, Nakazawa Y, Ozawa T, Kurotobi T, et al. Efficacy of antiarrhythmic drugs short-term use after catheter ablation for atrial fibrillation (EAST-AF) trial. Eur Heart J. 2016;37:610–8.

    Article  CAS  PubMed  Google Scholar 

  1015. Darkner S, Chen X, Hansen J, Pehrson S, Johannessen A, Nielsen JB, et al. Recurrence of arrhythmia following short-term oral amiodarone after catheter ablation for atrial fibrillation: a double-blind, randomized, placebo-controlled study (AMIO-CAT trial). Eur Heart J. 2014;35:3356–64.

    Article  CAS  PubMed  Google Scholar 

  1016. Hayashi M, Miyauchi Y, Iwasaki YK, Yodogawa K, Tsuboi I, Uetake S, et al. Three-month lower-dose flecainide after catheter ablation of atrial fibrillation. Europace. 2014;16:1160–7.

    Article  PubMed  Google Scholar 

  1017. Roux JF, Zado E, Callans DJ, Garcia F, Lin D, Marchlinski FE, et al. Antiarrhythmics after ablation of atrial fibrillation (5A study). Circulation. 2009;120:1036–40.

    Article  CAS  PubMed  Google Scholar 

  1018. Leong-Sit P, Roux JF, Zado E, Callans DJ, Garcia F, Lin D, et al. Antiarrhythmics after ablation of atrial fibrillation (5A Study): six-month follow-up study. Circ Arrhythm Electrophysiol. 2011;4:11–4.

    Article  PubMed  Google Scholar 

  1019. Gu J, Liu X, Tan H, Zhou L, Gu J, Jiang W, et al. Extensive antiarrhythmic drugs after catheter ablation of persistent atrial fibrillation. Acta Cardiol. 2012;67:407–14.

    Article  PubMed  Google Scholar 

  1020. Chen W, Liu H, Ling Z, Xu Y, Fan J, Du H, et al. Efficacy of short-term antiarrhythmic drugs use after catheter ablation of atrial fibrillation-a systematic review with metaanalyses and trial sequential analyses of randomized controlled trials. PLoS One. 2016;11: e0156121.

    Article  PubMed  PubMed Central  Google Scholar 

  1021. Goldenberg GR, Burd D, Lodzinski P, Stabile G, Udell JA, Newman D, et al. Antiarrhythmic therapy as an adjuvant to promote post pulmonary vein isolation success—a metaanalysis. J Interv Card Electrophysiol. 2016;47:171–6.

    Article  PubMed  Google Scholar 

  1022. Deyell MW, Leather RA, Macle L, Forman J, Khairy P, Zhang R, et al. Efficacy and safety of same-day discharge for atrial fibrillation ablation. JACC Clin Electrophysiol. 2020;6:609–19.

    Article  PubMed  Google Scholar 

  1023. Creta A, Ventrella N, Providência R, Earley MJ, Sporton S, Dhillon G, et al. Same-day discharge following catheter ablation of atrial fibrillation: a safe and cost-effective approach. J Cardiovasc Electrophysiol. 2020;31:3097–103.

    Article  PubMed  Google Scholar 

  1024. Kowalski M, Parikh V, Salcido JR, Chalfoun N, Albano A, O’Neill PG, et al. Same-day discharge after cryoballoon ablation of atrial fibrillation: a multicenter experience. J Cardiovasc Electrophysiol. 2021;32:183–90.

    Article  PubMed  Google Scholar 

  1025. Tang PT, Davies M, Bashir Y, Betts TR, Pedersen M, Rajappan K, et al. Efficacy and safety of same-day discharge after atrial fibrillation ablation compared with postprocedural overnight stay: a systematic review and metaanalysis. Europace. 2022;24:1569–84.

    Article  PubMed  Google Scholar 

  1026. Jafry AH, Akhtar KH, Khan JA, Clifton S, Reese J, Sami KN, et al. Safety and feasibility of same-day discharge for catheter ablation of atrial fibrillation: a systematic review and metaanalysis. J Interv Card Electrophysiol. 2022;65:803–11.

    Article  PubMed  Google Scholar 

  1027. Sangrigoli R, Harding J, Venkataraman G, Tomaiko-Clark E, Bai R, Su W. Randomized prospective evaluation of same-day discharge after cryoballoon ablation of atrial fibrillation: results of the EASY PVI study. J Interv Card Electrophysiol. 2023;66:1601–7.

    Article  PubMed  Google Scholar 

  1028. Deyell MW, Hoskin K, Forman J, Laksman ZW, Hawkins NM, Bennett MT, et al. Same-day discharge for atrial fibrillation ablation: outcomes and impact of ablation modality. Europace. 2023;25:400–7.

    Article  PubMed  Google Scholar 

  1029. Rajendra A, Osorio J, Diaz JC, Hoyos C, Rivera E, Matos CD, et al. Performance of the REAL-AF same-day discharge protocol in patients undergoing catheter ablation of atrial fibrillation. JACC Clin Electrophysiol. 2023;9:1515–26.

    Article  PubMed  Google Scholar 

  1030. Jimenez-Candil J, Hernandez Hernandez J, Cruz Galban A, Blanco F, Moriñigo JL, Sanchez García M, et al. Clinical and economic outcomes of a systematic same-day discharge programme after pulmonary vein isolation: comparison between cryoballoon vs radiofrequency ablation. Europace. 2023;25:euad265.

    Article  PubMed  PubMed Central  Google Scholar 

  1031. Zellerhoff S, Lenze F, Eckardt L. Prophylactic proton pump inhibition after atrial fibrillation ablation: is there any evidence? Europace. 2011;13:1219–21.

    Article  PubMed  Google Scholar 

  1032. Yokoyama K, Nakagawa H, Seres KA, Jung E, Merino J, Zou Y, et al. Canine model of esophageal injury and atrial-esophageal fistula after applications of forward-firing high-intensity focused ultrasound and side-firing unfocused ultrasound in the left atrium and inside the pulmonary vein. Circ Arrhythm Electrophysiol. 2009;2:41–9.

    Article  PubMed  Google Scholar 

  1033. Cordes F, Ellermann C, Dechering DG, Frommeyer G, Kochhäuser S, Lange PS, et al. Preprocedural proton pump inhibition is associated with fewer peri-oesophageal lesions after cryoballoon pulmonary vein isolation. Sci Rep. 2021;11:4728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1034. Rolantova L, Bulava A, Eisenberger M, Chloubova I, Tothova V, Hanis J. Nurse-performed venous sheath removal in patients undergoing radiofrequency catheter ablation for atrial fibrillation: a randomised study. Eur J Cardiovasc Nurs. 2019;18:332–9.

    Article  PubMed  Google Scholar 

  1035. Kewcharoen J, Shah K, Bhardwaj R, Contractor T, Turagam MK, Mandapati R, et al. Periprocedural outcomes of protamine administration after catheter ablation of atrial fibrillation. Rev Cardiovasc Med. 2022;23:34.

    Article  PubMed  Google Scholar 

  1036. Chilukuri K, Henrikson CA, Dalal D, Scherr D, MacPherson EC, Cheng A, et al. Incidence and outcomes of protamine reactions in patients undergoing catheter ablation of atrial fibrillation. J Interv Card Electrophysiol. 2009;25:175–81.

    Article  PubMed  Google Scholar 

  1037. Traullé S, Kubala M, Doucy A, Quenum S, Hermida JS. Feasibility and safety of temporary subcutaneous venous figure-of-eight suture to achieve haemostasis after ablation of atrial fibrillation. Europace. 2016;18:815–9.

    Article  PubMed  Google Scholar 

  1038. Kumar V, Wish M, Venkataraman G, Bliden K, Jindal M, Strickberger A. A randomized comparison of manual pressure versus figure-of-eight suture for hemostasis after cryoballoon ablation for atrial fibrillation. J Cardiovasc Electrophysiol. 2019;30:2806–10.

    Article  PubMed  Google Scholar 

  1039. Aytemir K, Canpolat U, Yorgun H, Evranos B, Kaya EB, Şahiner ML, et al. Usefulness of ‘figure-of-eight’ suture to achieve haemostasis after removal of 15-French calibre femoral venous sheath in patients undergoing cryoablation. Europace. 2016;18:1545–50.

    Article  PubMed  Google Scholar 

  1040. Natale A, Mohanty S, Liu PY, Mittal S, Al-Ahmad A, De Lurgio David B, et al. Venous vascular closure system versus manual compression following multiple access electrophysiology procedures. JACC Clin Electrophysiol. 2020;6:111–24.

    Article  PubMed  Google Scholar 

  1041. Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace. 2018;20:e1-160.

    Article  PubMed  Google Scholar 

  1042. Verma A, Champagne J, Sapp J, Essebag V, Novak P, Skanes A, et al. Discerning the incidence of symptomatic and asymptomatic episodes of atrial fibrillation before and after catheter ablation (DISCERN AF): a prospective, multicenter study. JAMA Intern Med. 2013;173:149–56.

    Article  PubMed  Google Scholar 

  1043. Bunch TJ, May HT, Bair TL, Weiss JP, Crandall BG, Osborn JS, et al. Atrial fibrillation ablation patients have long-term stroke rates similar to patients without atrial fibrillation regardless of CHADS2 score. Heart Rhythm. 2013;10:1272–7.

    Article  PubMed  Google Scholar 

  1044. Friberg L, Tabrizi F, Englund A. Catheter ablation for atrial fibrillation is associated with lower incidence of stroke and death: data from Swedish health registries. Eur Heart J. 2016;37:2478–87.

    Article  PubMed  Google Scholar 

  1045. Packer DL, Mark DB, Robb RA, Monahan KH, Bahnson TD, Poole JE, et al. Effect of catheter ablation vs antiarrhythmic drug therapy on mortality, stroke, bleeding, and cardiac arrest among patients with atrial fibrillation: the CABANA randomized clinical trial. JAMA. 2019;321:1261–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1046. Daoud EG, Glotzer TV, Wyse DG, Ezekowitz MD, Hilker C, Koehler J, et al. Temporal relationship of atrial tachyarrhythmias, cerebrovascular events, and systemic emboli based on stored device data: a subgroup analysis of TRENDS. Heart Rhythm. 2011;8:1416–23.

    Article  PubMed  Google Scholar 

  1047. Brambatti M, Connolly SJ, Gold MR, Morillo CA, Capucci A, Muto C, et al. Temporal relationship between subclinical atrial fibrillation and embolic events. Circulation. 2014;129:2094–9.

    Article  PubMed  Google Scholar 

  1048. Camen S, Ojeda FM, Niiranen T, Gianfagna F, Vishram-Nielsen JK, Costanzo S, et al. Temporal relations between atrial fibrillation and ischaemic stroke and their prognostic impact on mortality. Europace. 2020;22:522–9.

    Article  PubMed  Google Scholar 

  1049. Romero J, Cerrud-Rodriguez RC, Diaz JC, Rodriguez D, Arshad S, Alviz I, et al. Oral anticoagulation after catheter ablation of atrial fibrillation and the associated risk of thromboembolic events and intracranial hemorrhage: a systematic review and metaanalysis. J Cardiovasc Electrophysiol. 2019;30:1250–7.

    Article  PubMed  Google Scholar 

  1050. Proietti R, AlTurki A, Di Biase L, China P, Forleo G, Corrado A, et al. Anticoagulation after catheter ablation of atrial fibrillation: an unnecessary evil? A systematic review and metaanalysis. J Cardiovasc Electrophysiol. 2019;30:468–78.

    Article  PubMed  Google Scholar 

  1051. Liang JJ, Elafros MA, Mullen MT, Muser D, Hayashi T, Enriquez A, et al. Anticoagulation use and clinical outcomes after catheter ablation in patients with persistent and longstanding persistent atrial fibrillation. J Cardiovasc Electrophysiol. 2018;29:823–32.

    Article  PubMed  Google Scholar 

  1052. Verma A, Ha ACT, Kirchhof P, Hindricks G, Healey JS, Hill MD, et al. The optimal anti-coagulation for enhanced-risk patients post-catheter ablation for atrial fibrillation (OCEAN) trial. Am Heart J. 2018;197:124–32.

    Article  CAS  PubMed  Google Scholar 

  1053. Healey JS, Connolly SJ, Gold MR, Israel CW, Van Gelder IC, Capucci A, et al. Subclinical atrial fibrillation and the risk of stroke. N Engl J Med. 2012;366:120–9.

    Article  CAS  PubMed  Google Scholar 

  1054. Glotzer TV, Daoud EG, Wyse DG, Singer DE, Ezekowitz MD, Hilker C, et al. The relationship between daily atrial tachyarrhythmia burden from implantable device diagnostics and stroke risk: the TRENDS study. Circ Arrhythm Electrophysiol. 2009;2:474–80.

    Article  PubMed  Google Scholar 

  1055. Martin DT, Bersohn MM, Waldo AL, Wathen MS, Choucair WK, Lip GY, et al. Randomized trial of atrial arrhythmia monitoring to guide anticoagulation in patients with implanted defibrillator and cardiac resynchronization devices. Eur Heart J. 2015;36:1660–8.

    Article  PubMed  Google Scholar 

  1056. Waks JW, Passman RS, Matos J, Reynolds M, Thosani A, Mela T, et al. Intermittent anticoagulation guided by continuous atrial fibrillation burden monitoring using dual-chamber pacemakers and implantable cardioverter-defibrillators: results from the tailored anticoagulation for non-continuous atrial fibrillation (TACTIC-AF) pilot study. Heart Rhythm. 2018;15:1601–7.

    Article  PubMed  Google Scholar 

  1057. Passman R, Leong-Sit P, Andrei AC, Huskin A, Tomson TT, Bernstein R, et al. Targeted anticoagulation for atrial fibrillation guided by continuous rhythm assessment with an insertable cardiac monitor: the rhythm evaluation for anticoagulation with continuous monitoring (REACT.COM) pilot study. J Cardiovasc Electrophysiol. 2016;27:264–70.

    Article  PubMed  Google Scholar 

  1058. Barbhaiya CR, Kumar S, John RM, Tedrow UB, Koplan BA, Epstein LM, et al. Global survey of esophageal and gastric injury in atrial fibrillation ablation: incidence, time to presentation, and outcomes. J Am Coll Cardiol. 2015;65:1377–8.

    Article  PubMed  Google Scholar 

  1059. Piccini JP, Braegelmann KM, Simma S, Koneru JN, Ellenbogen KA. Risk of atrioesophageal fistula with cryoballoon ablation of atrial fibrillation. Heart Rhythm. 2020;O2(1):173–9.

    Article  Google Scholar 

  1060. Tilz RR, Schmidt V, Pürerfellner H, Maury P, Chun KJ, Martinek M, et al. A worldwide survey on incidence, management and prognosis of oesophageal fistula formation following atrial fibrillation catheter ablation: the POTTER-AF study. Eur Heart J. 2023;44:2458–69.

    Article  PubMed  PubMed Central  Google Scholar 

  1061. Barbhaiya Chirag R, Kumar S, Guo Y, Zhong J, John Roy M, Tedrow Usha B, et al. Global survey of esophageal injury in atrial fibrillation ablation. JACC Clin Electrophysiol. 2016;2:143–50.

    Article  CAS  PubMed  Google Scholar 

  1062. Gandjbakhch E, Mandel F, Dagher Y, Hidden-Lucet F, Rollin A, Maury P. Incidence, epidemiology, diagnosis and prognosis of atriooesophageal fistula following percutaneous catheter ablation: a French nationwide survey. Europace. 2021;23:557–64.

    Article  PubMed  Google Scholar 

  1063. Della Rocca DG, Magnocavallo M, Natale VN, Gianni C, Mohanty S, Trivedi C, et al. Clinical presentation, diagnosis, and treatment of atrioesophageal fistula resulting from atrial fibrillation ablation. J Cardiovasc Electrophysiol. 2021;32:2441–50.

    Article  PubMed  Google Scholar 

  1064. Dagres N, Kottkamp H, Piorkowski C, Doll N, Mohr F, Horlitz M, et al. Rapid detection and successful treatment of esophageal perforation after radiofrequency ablation of atrial fibrillation: lessons from five cases. J Cardiovasc Electrophysiol. 2006;17:1213–5.

    Article  PubMed  Google Scholar 

  1065. Dagres N, Hindricks G, Kottkamp H, Sommer P, Gaspar T, Bode K, et al. Complications of atrial fibrillation ablation in a high-volume center in 1,000 procedures: still cause for concern? J Cardiovasc Electrophysiol. 2009;20:1014–9.

    Article  PubMed  Google Scholar 

  1066. Arbelo E, Brugada J, Blomström-Lundqvist C, Laroche C, Kautzner J, Pokushalov E, et al. Contemporary management of patients undergoing atrial fibrillation ablation: in-hospital and 1-year follow-up findings from the ESC-EHRA atrial fibrillation ablation long-term registry. Eur Heart J. 2017;38:1303–16.

    PubMed  Google Scholar 

  1067. Markar SR, Koehler R, Low DE, Ross A. Novel multimodality endoscopic closure of postoperative esophageal fistula. Int J Surg Case Rep. 2012;3:577–9.

    Article  PubMed  PubMed Central  Google Scholar 

  1068. Kapur S, Barbhaiya C, Deneke T, Michaud GF. Esophageal injury and atrioesophageal fistula caused by ablation for atrial fibrillation. Circulation. 2017;136:1247–55.

    Article  PubMed  Google Scholar 

  1069. Ugata Y, Michihata N, Matsui H, Fushimi K, Yasunaga H. Impact of proton pump inhibitors on mortality and severe esophageal injury after catheter ablation for atrial fibrillation: a nationwide retrospective study using propensity score matching. Heart Vessels. 2021;36:1730–8.

    Article  PubMed  Google Scholar 

  1070. Deftereos S, Giannopoulos G, Kossyvakis C, Efremidis M, Panagopoulou V, Kaoukis A, et al. Colchicine for prevention of early atrial fibrillation recurrence after pulmonary vein isolation: a randomized controlled study. J Am Coll Cardiol. 2012;60:1790–6.

    Article  CAS  PubMed  Google Scholar 

  1071. Deftereos S, Giannopoulos G, Efremidis M, Kossyvakis C, Katsivas A, Panagopoulou V, et al. Colchicine for prevention of atrial fibrillation recurrence after pulmonary vein isolation: mid-term efficacy and effect on quality of life. Heart Rhythm. 2014;11:620–8.

    Article  PubMed  Google Scholar 

  1072. Koyama T, Tada H, Sekiguchi Y, Arimoto T, Yamasaki H, Kuroki K, et al. Prevention of atrial fibrillation recurrence with corticosteroids after radiofrequency catheter ablation: a randomized controlled trial. J Am Coll Cardiol. 2010;56:1463–72.

    Article  PubMed  Google Scholar 

  1073. Kim YR, Nam GB, Han S, Kim SH, Kim KH, Lee S, et al. Effect of short-term steroid therapy on early recurrence during the blanking period after catheter ablation of atrial fibrillation. Circ Arrhythm Electrophysiol. 2015;8:1366–72.

    Article  PubMed  Google Scholar 

  1074. Iskandar S, Reddy M, Afzal MR, Rajasingh J, Atoui M, Lavu M, et al. Use of oral steroid and its effects on atrial fibrillation recurrence and inflammatory cytokines post ablation – the steroid AF study. J Atr Fibrillation. 2017;9:1604.

    Article  PubMed  PubMed Central  Google Scholar 

  1075. Kim DR, Won H, Uhm JS, Kim JY, Sung JH, Pak HN, et al. Comparison of two different doses of single bolus steroid injection to prevent atrial fibrillation recurrence after radiofrequency catheter ablation. Yonsei Med J. 2015;56:324–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1076. Won H, Kim JY, Shim J, Uhm JS, Pak HN, Lee MH, et al. Effect of a single bolus injection of low-dose hydrocortisone for prevention of atrial fibrillation recurrence after radiofrequency catheter ablation. Circ J. 2013;77:53–9.

    Article  CAS  PubMed  Google Scholar 

  1077. Vasamreddy CR, Dalal D, Dong J, Cheng A, Spragg D, Lamiy SZ, et al. Symptomatic and asymptomatic atrial fibrillation in patients undergoing radiofrequency catheter ablation. J Cardiovasc Electrophysiol. 2006;17:134–9.

    Article  PubMed  Google Scholar 

  1078. Janse PA, van Belle YL, Theuns DA, Rivero-Ayerza M, Scholten MF, Jordaens LJ. Symptoms versus objective rhythm monitoring in patients with paroxysmal atrial fibrillation undergoing pulmonary vein isolation. Eur J Cardiovasc Nurs. 2008;7:147–51.

    Article  PubMed  Google Scholar 

  1079. Piorkowski C, Kottkamp H, Tanner H, Kobza R, Nielsen JC, Arya A, et al. Value of different follow-up strategies to assess the efficacy of circumferential pulmonary vein ablation for the curative treatment of atrial fibrillation. J Cardiovasc Electrophysiol. 2005;16:1286–92.

    Article  PubMed  Google Scholar 

  1080. Klemm HU, Ventura R, Rostock T, Brandstrup B, Risius T, Meinertz T, et al. Correlation of symptoms to ECG diagnosis following atrial fibrillation ablation. J Cardiovasc Electrophysiol. 2006;17:146–50.

    Article  PubMed  Google Scholar 

  1081. Kaufman ES, Israel CW, Nair GM, Armaganijan L, Divakaramenon S, Mairesse GH, et al. Positive predictive value of device-detected atrial high-rate episodes at different rates and durations: an analysis from ASSERT. Heart Rhythm. 2012;9:1241–6.

    Article  PubMed  Google Scholar 

  1082. Hindricks G, Pokushalov E, Urban L, Taborsky M, Kuck KH, Lebedev D, et al. Performance of a new leadless implantable cardiac monitor in detecting and quantifying atrial fibrillation: results of the XPECT trial. Circ Arrhythm Electrophysiol. 2010;3:141–7.

    Article  PubMed  Google Scholar 

  1083. Xing LY, Diederichsen SZ, Højberg S, Krieger DW, Graff C, Olesen MS, et al. Electrocardiographic markers of subclinical atrial fibrillation detected by implantable loop recorder: insights from the LOOP Study. Europace. 2023;25:euad014.

  1084. Charitos EI, Ziegler PD, Stierle U, Graf B, Sievers HH, Hanke T. Long-term outcomes after surgical ablation for atrial fibrillation in patients with continuous heart rhythm monitoring devices. Interact Cardiovasc Thorac Surg. 2015;21:712–21.

    PubMed  Google Scholar 

  1085. Perez-Castellano N, Fernandez-Cavazos R, Moreno J, Canadas V, Conde A, Gonzalez-Ferrer JJ, et al. The COR trial: a randomized study with continuous rhythm monitoring to compare the efficacy of cryoenergy and radiofrequency for pulmonary vein isolation. Heart Rhythm. 2014;11:8–14.

    Article  PubMed  Google Scholar 

  1086. Kapa S, Epstein AE, Callans DJ, Garcia FC, Lin D, Bala R, et al. Assessing arrhythmia burden after catheter ablation of atrial fibrillation using an implantable loop recorder: the ABACUS study. J Cardiovasc Electrophysiol. 2013;24:875–81.

    Article  PubMed  Google Scholar 

  1087. Damiano RJ Jr, Lawrance CP, Saint LL, Henn MC, Sinn LA, Kruse J, et al. Detection of atrial fibrillation after surgical ablation: conventional versus continuous monitoring. Ann Thorac Surg. 2016;101:42–7; discussion 47–8.

  1088. Andrade JG, Wells GA, Deyell MW, Bennett M, Essebag V, Champagne J, et al. Cryoablation or drug therapy for initial treatment of atrial fibrillation. N Engl J Med. 2021;384:305–15.

    Article  CAS  PubMed  Google Scholar 

  1089. Goldenthal IL, Sciacca RR, Riga T, Bakken S, Baumeister M, Biviano AB, et al. Recurrent atrial fibrillation/flutter detection after ablation or cardioversion using the AliveCor KardiaMobile device: iHEART results. J Cardiovasc Electrophysiol. 2019;30:2220–8.

    Article  PubMed  PubMed Central  Google Scholar 

  1090. Tarakji KG, Wazni OM, Callahan T, Kanj M, Hakim AH, Wolski K, et al. Using a novel wireless system for monitoring patients after the atrial fibrillation ablation procedure: the iTransmit study. Heart Rhythm. 2015;12:554–9.

    Article  PubMed  Google Scholar 

  1091. Rizas KD, Freyer L, Sappler N, von Stülpnagel L, Spielbichler P, Krasniqi A, et al. Smartphone-based screening for atrial fibrillation: a pragmatic randomized clinical trial. Nat Med. 2022;28:1823–30.

    Article  CAS  PubMed  Google Scholar 

  1092. Svennberg E, Tjong F, Goette A, Akoum N, Di Biase L, Bordachar P, et al. How to use digital devices to detect and manage arrhythmias: an EHRA practical guide. Europace. 2022;24:979–1005.

    Article  PubMed  Google Scholar 

  1093. Lambert CT, Patel D, Bumgarner JM, Kanj M, Cantillon D, Saliba W, et al. Atrial fibrillation future clinic. Novel platform to integrate smart device electrocardiogram into clinical practice. Cardiovasc Digit Health J. 2021;2:92–100.

    Article  PubMed  PubMed Central  Google Scholar 

  1094. Hermans ANL, Gawalko M, Pluymaekers N, Dinh T, Weijs B, van Mourik MJW, et al. Long-term intermittent versus short continuous heart rhythm monitoring for the detection of atrial fibrillation recurrences after catheter ablation. Int J Cardiol. 2021;329:105–12.

    Article  PubMed  Google Scholar 

  1095. Gawałko M, Duncker D, Manninger M, van der Velden RMJ, Hermans ANL, Verhaert DVM, et al. The European TeleCheck-AF project on remote app-based management of atrial fibrillation during the COVID-19 pandemic: centre and patient experiences. Europace. 2021;23:1003–15.

    Article  PubMed  PubMed Central  Google Scholar 

  1096. Unni RR, Prager RT, Odabashian R, Zhang JJ, Fat Hing NN, Nery PB, et al. Rhythm-monitoring strategy and arrhythmia recurrence in atrial fibrillation ablation trials: a systematic review. CJC Open. 2022;4:488–96.

    Article  PubMed  PubMed Central  Google Scholar 

  1097. Andrade JG, Khairy P, Verma A, Guerra PG, Dubuc M, Rivard L, et al. Early recurrence of atrial tachyarrhythmias following radiofrequency catheter ablation of atrial fibrillation. Pacing Clin Electrophysiol. 2012;35:106–16.

    Article  PubMed  Google Scholar 

  1098. Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary. Europace. 2018;20:157–208.

    Article  PubMed  Google Scholar 

  1099. Gottlieb LA, Dekker LRC, Coronel R. The blinding period following ablation therapy for atrial fibrillation: proarrhythmic and antiarrhythmic pathophysiological mechanisms. JACC Clin Electrophysiol. 2021;7:416–30.

    Article  PubMed  Google Scholar 

  1100. Opacic D, van Bragt KA, Nasrallah HM, Schotten U, Verheule S. Atrial metabolism and tissue perfusion as determinants of electrical and structural remodelling in atrial fibrillation. Cardiovasc Res. 2016;109:527–41.

    Article  CAS  PubMed  Google Scholar 

  1101. Lim HS, Schultz C, Dang J, Alasady M, Lau DH, Brooks AG, et al. Time course of inflammation, myocardial injury, and prothrombotic response after radiofrequency catheter ablation for atrial fibrillation. Circ Arrhythm Electrophysiol. 2014;7:83–9.

    Article  CAS  PubMed  Google Scholar 

  1102. Richter B, Gwechenberger M, Socas A, Zorn G, Albinni S, Marx M, et al. Markers of oxidative stress after ablation of atrial fibrillation are associated with inflammation, delivered radiofrequency energy and early recurrence of atrial fibrillation. Clin Res Cardiol. 2012;101:217–25.

    Article  CAS  PubMed  Google Scholar 

  1103. Sepehri Shamloo A, Bollmann A, Dagres N, Hindricks G, Arya A. Natriuretic peptides: biomarkers for atrial fibrillation management. Clin Res Cardiol. 2020;109:957–66.

    Article  PubMed  Google Scholar 

  1104. Liang JJ, Dixit S, Santangeli P. Mechanisms and clinical significance of early recurrences of atrial arrhythmias after catheter ablation for atrial fibrillation. World J Cardiol. 2016;8:638–46.

    Article  PubMed  PubMed Central  Google Scholar 

  1105. Grégoire JM, Gilon C, Carlier S, Bersini H. Role of the autonomic nervous system and premature atrial contractions in short-term paroxysmal atrial fibrillation forecasting: insights from machine learning models. Arch Cardiovasc Dis. 2022;115:377–87.

    Article  PubMed  Google Scholar 

  1106. Scherschel K, Hedenus K, Jungen C, Lemoine MD, Rübsamen N, Veldkamp MW, et al. Cardiac glial cells release neurotrophic S100B upon catheter-based treatment of atrial fibrillation. Sci Transl Med. 2019;11:eaav7770.

    Article  CAS  PubMed  Google Scholar 

  1107. Sasaki N, Okumura Y, Watanabe I, Nagashima K, Sonoda K, Kogawa R, et al. Transthoracic echocardiographic backscatter-based assessment of left atrial remodeling involving left atrial and ventricular fibrosis in patients with atrial fibrillation. Int J Cardiol. 2014;176:1064–6.

    Article  PubMed  Google Scholar 

  1108. McGann C, Kholmovski E, Blauer J, Vijayakumar S, Haslam T, Cates J, et al. Dark regions of no-reflow on late gadolinium enhancement magnetic resonance imaging result in scar formation after atrial fibrillation ablation. J Am Coll Cardiol. 2011;58:177–85.

    Article  PubMed  PubMed Central  Google Scholar 

  1109. Peters DC, Wylie JV, Hauser TH, Nezafat R, Han Y, Woo JJ, et al. Recurrence of atrial fibrillation correlates with the extent of postprocedural late gadolinium enhancement: a pilot study. JACC Cardiovasc Imaging. 2009;2:308–16.

    Article  PubMed  PubMed Central  Google Scholar 

  1110. Steinberg C, Champagne J, Deyell MW, Dubuc M, Leong-Sit P, Calkins H, et al. Prevalence and outcome of early recurrence of atrial tachyarrhythmias in the cryoballoon vs irrigated radiofrequency catheter ablation (CIRCA-DOSE) study. Heart Rhythm. 2021;18:1463–70.

    Article  PubMed  Google Scholar 

  1111. Charitakis E, Metelli S, Karlsson LO, Antoniadis AP, Rizas KD, Liuba I, et al. Comparing efficacy and safety in catheter ablation strategies for atrial fibrillation: a network metaanalysis. BMC Med. 2022;20:193.

    Article  PubMed  PubMed Central  Google Scholar 

  1112. Andrade JG, Khairy P, Verma A, Guerra PG, Dubuc M, Rivard L, et al. Early recurrence of atrial tachyarrhythmias following radiofrequency catheter ablation of atrial fibrillation. Pacing Clin Electrophysiol. 2012;35:106–16.

    Article  PubMed  Google Scholar 

  1113. Baimbetov AK, Bizhanov KA, Jukenova AM, Aubakirova AT, Ualiyeva AY, Sagatov IY. Comparative effectiveness and safety of cryoablation versus radiofrequency ablation treatments for persistent atrial fibrillation. Am J Cardiol. 2022;184:22–30.

    Article  PubMed  Google Scholar 

  1114. Choi J-H, Kwon H-J, Kim HR, Park S-J, Kim JS, On YK, et al. Electrocardiographic predictors of early recurrence of atrial fibrillation. Ann Noninvasive Electrocardiol. 2021;26: e12884.

    Article  PubMed  PubMed Central  Google Scholar 

  1115. Ribeiro Da Silva M, Santos Silva G, Ribeiro Queiros P, Teixeira R, Almeida J, Fonseca P, et al. Predictors of early and late recurrence of atrial fibrillation after catheter ablation: two sides of the same coin? Eur Heart J. 2021;42:ehab724.

    Article  Google Scholar 

  1116. Kim Yun G, Boo Ki Y, Choi J-I, Choi Yun Y, Choi Ha Y, Roh S-Y, et al. Early recurrence is reliable predictor of late recurrence after radiofrequency catheter ablation of atrial fibrillation. JACC Clin Electrophysiol. 2021;7:343–51.

    Article  PubMed  Google Scholar 

  1117. Calkins H, Gache L, Frame D, Boo LM, Ghaly N, Schilling R, et al. Predictive value of atrial fibrillation during the postradiofrequency ablation blanking period. Heart Rhythm. 2021;18:366–73.

    Article  PubMed  Google Scholar 

  1118. Filipovic K, Dittrich S, Scheurlen C, Arica Z, Erlhoefer S, Woermann J, et al. Validation of seven risk scores in a prospective and independent cohort: the challenge of predicting recurrence after atrial fibrillation ablation. Europace. 2022;24:euac053.191.

    Article  Google Scholar 

  1119. Dretzke J, Chuchu N, Agarwal R, Herd C, Chua W, Fabritz L, et al. Predicting recurrent atrial fibrillation after catheter ablation: a systematic review of prognostic models. Europace. 2020;22:748–60.

    Article  PubMed  PubMed Central  Google Scholar 

  1120. Winkle RA, Jarman JW, Mead RH, Engel G, Kong MH, Fleming W, et al. Predicting atrial fibrillation ablation outcome: the CAAP-AF score. Heart Rhythm. 2016;13:2119–25.

    Article  PubMed  Google Scholar 

  1121. Kornej J, Hindricks G, Arya A, Sommer P, Husser D, Bollmann A. The APPLE score – a novel score for the prediction of rhythm outcomes after repeat catheter ablation of atrial fibrillation. PLOS ONE. 2017;12: e0169933.

    Article  PubMed  PubMed Central  Google Scholar 

  1122. Jud FN, Obeid S, Duru F, Haegeli LM. A novel score in the prediction of rhythm outcome after ablation of atrial fibrillation: the SUCCESS score. Anatol J Cardiol. 2019;21:142–9.

    PubMed  PubMed Central  Google Scholar 

  1123. Mesquita J, Ferreira AM, Cavaco D, Moscoso Costa F, Carmo P, Marques H, et al. Development and validation of a risk score for predicting atrial fibrillation recurrence after a first catheter ablation procedure – ATLAS score. Europace. 2018;20:f428-35.

    Article  PubMed  Google Scholar 

  1124. Nielsen JC, Lin Y-J, de Oliveira Figueiredo MJ, Sepehri Shamloo A, Alfie A, Boveda S, et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: use the right tool for the right outcome, in the right population. Europace. 2020;22:1147–8.

    Article  PubMed  PubMed Central  Google Scholar 

  1125. Lee S-H, Tai C-T, Hsieh M-H, Tsai C-F, Lin Y-K, Tsao H-M, et al. Predictors of early and late recurrence of atrial fibrillation after catheter ablation of paroxysmal atrial fibrillation. J Interv Card Electrophysiol. 2004;10:221–6.

    Article  PubMed  Google Scholar 

  1126. Kuck K-H, Hoffmann BA, Ernst S, Wegscheider K, Treszl A, Metzner A, et al. Impact of complete versus incomplete circumferential lines around the pulmonary veins during catheter ablation of paroxysmal atrial fibrillation: results from the gap-atrial fibrillation–German atrial fibrillation competence network 1 trial. Circ Arrhythm Electrophysiol. 2016;9: e003337.

    Article  PubMed  Google Scholar 

  1127. Liu H, Yuan P, Zhu X, Fu L, Hong K, Hu J. Is atrial fibrillation noninducibility by burst pacing after catheter ablation associated with reduced clinical recurrence? A systematic review and meta-analysis. J Am Heart Assoc. 2020;9: e015260.

    Article  PubMed  PubMed Central  Google Scholar 

  1128. Okada M, Inoue K, Tanaka N, Masuda M, Furukawa Y, Hirata A, et al. Reappraising the role of baseline plasma C-reactive protein levels on recurrence after catheter ablation of persistent atrial fibrillation: insight from EARNEST-PVI trial. Eur Heart J. 2021;42(ehab724):0507.

    Google Scholar 

  1129. Charalampidis P, Teperikidis E, Boulmpou A, Papadopoulos CE, Potoupni V, Tsioni K, et al. Homocysteine as a predictor of paroxysmal atrial fibrillation-related events: a scoping review of the literature. Diagnostics. 2022;12:2192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1130. Liang JJ, Elafros MA, Chik WW, Santangeli P, Zado ES, Frankel DS, et al. Early recurrence of atrial arrhythmias following pulmonary vein antral isolation: timing and frequency of early recurrences predicts long-term ablation success. Heart Rhythm. 2015;12:2461–8.

    Article  PubMed  Google Scholar 

  1131. Amankwah NA, Pothineni NVK, Guandalini G, Santangeli P, Schaller R, Supple GE, et al. Impact of atrial fibrillation recurrences during the blanking period following catheter ablation on long-term arrhythmia-free survival: a prospective study with continuous monitoring. J Interv Card Electrophysiol. 2022;65:519–25.

    Article  PubMed  Google Scholar 

  1132. Mugnai G, de Asmundis C, Hünük B, Ströker E, Velagic V, Moran D, et al. Second-generation cryoballoon ablation for paroxysmal atrial fibrillation: predictive role of atrial arrhythmias occurring in the blanking period on the incidence of late recurrences. Heart Rhythm. 2016;13:845–51.

    Article  PubMed  Google Scholar 

  1133. Stabile G, Iacopino S, Verlato R, Arena G, Pieragnoli P, Molon G, et al. Predictive role of early recurrence of atrial fibrillation after cryoballoon ablation. Europace. 2020;22:1798–804.

    Article  PubMed  Google Scholar 

  1134. Willems S, Khairy P, Andrade JG, Hoffmann BA, Levesque S, Verma A, et al. Redefining the blanking period after catheter ablation for paroxysmal atrial fibrillation: insights from the ADVICE (adenosine following pulmonary vein isolation to target dormant conduction elimination) trial. Circ Arrhythm Electrophysiol. 2016;9: e003909.

    Article  PubMed  Google Scholar 

  1135. Alipour P, Azizi Z, Pirbaglou M, Ritvo P, Pantano A, Verma A, et al. Defining blanking period post-pulmonary vein antrum isolation. JACC Clin Electrophysiol. 2017;3:568–76.

    Article  PubMed  Google Scholar 

  1136. Themistoclakis S, Schweikert RA, Saliba WI, Bonso A, Rossillo A, Bader G, et al. Clinical predictors and relationship between early and late atrial tachyarrhythmias after pulmonary vein antrum isolation. Heart Rhythm. 2008;5:679–85.

    Article  PubMed  Google Scholar 

  1137. Noujaim C, Lim C, Mekhael M, Feng H, Chouman N, Younes H, et al. Identifying the prognostic significance of early arrhythmia recurrence during the blanking period and the optimal blanking period duration: insights from the DECAAF II study. Europace. 2023;25:euad173.

    Article  PubMed  PubMed Central  Google Scholar 

  1138. Cosio FG, Aliot E, Botto GL, Heidbüchel H, Geller CJ, Kirchhof P, et al. Delayed rhythm control of atrial fibrillation may be a cause of failure to prevent recurrences: reasons for change to active antiarrhythmic treatment at the time of the first detected episode. Europace. 2007;10:21–7.

    Article  PubMed  Google Scholar 

  1139. Chilukuri K, Dukes J, Dalal D, Marine JE, Henrikson CA, Scherr D, et al. Outcomes in patients requiring cardioversion following catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2010;21:27–32.

    Article  PubMed  Google Scholar 

  1140. Ebert M, Stegmann C, Kosiuk J, Dinov B, Richter S, Arya A, et al. Predictors, management, and outcome of cardioversion failure early after atrial fibrillation ablation. Europace. 2018;20:1428–34.

    Article  PubMed  Google Scholar 

  1141. Dong Z, Du X, Hou XX, He L, Dong JZ, Ma CS. Effect of electrical cardioversion on 1-year outcomes in patients with early recurrence after catheter ablation for atrial fibrillation. Clin Cardiol. 2021;44:1128–38.

    Article  PubMed  PubMed Central  Google Scholar 

  1142. Malasana G, Day JD, Weiss JP, Crandall BG, Bair TL, May HT, et al. A strategy of rapid cardioversion minimizes the significance of early recurrent atrial tachyarrhythmias after ablation for atrial fibrillation. J Cardiovasc Electrophysiol. 2011;22:761–6.

    Article  PubMed  Google Scholar 

  1143. Sponga S, Leoni L, Buja G, Nalli C, Voisine P, Gerosa G. Role of an aggressive rhythm control strategy on sinus rhythm maintenance following intraoperative radiofrequency ablation of atrial fibrillation in patients undergoing surgical correction of valvular disease. J Cardiol. 2012;60:316–20.

    Article  PubMed  Google Scholar 

  1144. Baman TS, Gupta SK, Billakanty SR, Ilg KJ, Good E, Crawford T, et al. Time to cardioversion of recurrent atrial arrhythmias after catheter ablation of atrial fibrillation and long-term clinical outcome. J Cardiovasc Electrophysiol. 2009;20:1321–5.

    Article  PubMed  Google Scholar 

  1145. Lellouche N, Jaïs P, Nault I, Wright M, Bevilacqua M, Knecht S, et al. Early recurrences after atrial fibrillation ablation: prognostic value and effect of early reablation. J Cardiovasc Electrophysiol. 2008;19:599–605.

    Article  PubMed  Google Scholar 

  1146. Andrade JG, Khairy P, Macle L, Packer DL, Lehmann JW, Holcomb RG, et al. Incidence and significance of early recurrences of atrial fibrillation after cryoballoon ablation: insights from the multicenter sustained treatment of paroxysmal atrial fibrillation (STOP AF) Trial. Circ Arrhythm Electrophysiol. 2014;7:69–75.

    Article  PubMed  Google Scholar 

  1147. Proietti M, Romiti GF, Olshansky B, Lane DA, Lip GYH. Improved outcomes by integrated care of anticoagulated patients with atrial fibrillation using the simple ABC (atrial fibrillation better care) pathway. Am J Med. 2018;131:1359-66.e6.

    Article  PubMed  Google Scholar 

  1148. Rivera-Caravaca JM, Roldán V, Martínez-Montesinos L, Vicente V, Lip GYH, Marín F. The atrial fibrillation better care (ABC) pathway and clinical outcomes in patients with atrial fibrillation: the prospective murcia AF project phase II cohort. J Gen Intern Med. 2023;38:315–23.

    Article  PubMed  Google Scholar 

  1149. Kotalczyk A, Guo Y, Stefil M, Wang Y, Lip GYH. Effects of the atrial fibrillation better care pathway on outcomes among clinically complex Chinese patients with atrial fibrillation with multimorbidity and polypharmacy: a report from the ChiOTEAF registry. J Am Heart Assoc. 2022;11: e024319.

    Article  PubMed  PubMed Central  Google Scholar 

  1150. Patel SM, Palazzolo MG, Murphy SA, Antman EM, Braunwald E, Lanz HJ, et al. Evaluation of the atrial fibrillation better care pathway in the ENGAGE AF-TIMI 48 trial. Europace. 2022;24:1730–8.

    Article  PubMed  Google Scholar 

  1151. Stevens D, Harrison SL, Kolamunnage-Dona R, Lip GYH, Lane DA. The atrial fibrillation better care pathway for managing atrial fibrillation: a review. Europace. 2021;23:1511–27.

    Article  PubMed  PubMed Central  Google Scholar 

  1152. Proietti M, Lip GYH, Laroche C, Fauchier L, Marin F, Nabauer M, et al. Relation of outcomes to ABC (atrial fibrillation better care) pathway adherent care in European patients with atrial fibrillation: an analysis from the ESC-EHRA EORP Atrial Fibrillation General Long-Term (AFGen LT) registry. Europace. 2021;23:174–83.

    Article  PubMed  Google Scholar 

  1153. Gerstenfeld EP, Callans DJ, Dixit S, Russo AM, Nayak H, Lin D, et al. Mechanisms of organized left atrial tachycardias occurring after pulmonary vein isolation. Circulation. 2004;110:1351–7.

    Article  PubMed  Google Scholar 

  1154. Chugh A, Oral H, Good E, Han J, Tamirisa K, Lemola K, et al. Catheter ablation of atypical atrial flutter and atrial tachycardia within the coronary sinus after left atrial ablation for atrial fibrillation. J Am Coll Cardiol. 2005;46:83–91.

    Article  PubMed  Google Scholar 

  1155. Deisenhofer I, Estner H, Zrenner B, Schreieck J, Weyerbrock S, Hessling G, et al. Left atrial tachycardia after circumferential pulmonary vein ablation for atrial fibrillation: incidence, electrophysiological characteristics, and results of radiofrequency ablation. Europace. 2006;8:573–82.

    Article  PubMed  Google Scholar 

  1156. Gerstenfeld EP, Callans DJ, Sauer W, Jacobson J, Marchlinski FE. Reentrant and nonreentrant focal left atrial tachycardias occur after pulmonary vein isolation. Heart Rhythm. 2005;2:1195–202.

    Article  PubMed  Google Scholar 

  1157. Gerstenfeld EP, Marchlinski FE. Mapping and ablation of left atrial tachycardias occurring after atrial fibrillation ablation. Heart Rhythm. 2007;4:S65-72.

    Article  PubMed  Google Scholar 

  1158. Lim TW, Koay CH, McCall R, See VA, Ross DL, Thomas SP. Atrial arrhythmias after single-ring isolation of the posterior left atrium and pulmonary veins for atrial fibrillation: mechanisms and management. Circ Arrhythm Electrophysiol. 2008;1:120–6.

    Article  PubMed  Google Scholar 

  1159. Anousheh R, Sawhney NS, Panutich M, Tate C, Chen WC, Feld GK. Effect of mitral isthmus block on development of atrial tachycardia following ablation for atrial fibrillation. Pacing Clin Electrophysiol. 2010;33:460–8.

    Article  PubMed  Google Scholar 

  1160. Wasmer K, Monnig G, Bittner A, Dechering D, Zellerhoff S, Milberg P, et al. Incidence, characteristics, and outcome of left atrial tachycardias after circumferential antral ablation of atrial fibrillation. Heart Rhythm. 2012;9:1660–6.

    Article  PubMed  Google Scholar 

  1161. Karch MR, Zrenner B, Deisenhofer I, Schreieck J, Ndrepepa G, Dong J, et al. Freedom from atrial tachyarrhythmias after catheter ablation of atrial fibrillation: a randomized comparison between 2 current ablation strategies. Circulation. 2005;111:2875–80.

    Article  PubMed  Google Scholar 

  1162. Ouyang F, Antz M, Ernst S, Hachiya H, Mavrakis H, Deger FT, et al. Recovered pulmonary vein conduction as a dominant factor for recurrent atrial tachyarrhythmias after complete circular isolation of the pulmonary veins: lessons from double Lasso technique. Circulation. 2005;111:127–35.

    Article  PubMed  Google Scholar 

  1163. Yamashita S, Takigawa M, Denis A, Derval N, Sakamoto Y, Masuda M, et al. Pulmonary vein-gap reentrant atrial tachycardia following atrial fibrillation ablation: an electrophysiological insight with high-resolution mapping. Europace. 2019;21:1039–47.

    Article  PubMed  Google Scholar 

  1164. Wojcik M, Berkowitsch A, Zaltsberg S, Hamm CW, Pitschner HF, Kuniss M, et al. Predictors of early and late left atrial tachycardia and left atrial flutter after catheter ablation of atrial fibrillation: long-term follow-up. Cardiol J. 2015;22:557–66.

    Article  PubMed  Google Scholar 

  1165. Mesas CE, Pappone C, Lang CC, Gugliotta F, Tomita T, Vicedomini G, et al. Left atrial tachycardia after circumferential pulmonary vein ablation for atrial fibrillation: electroanatomic characterization and treatment. J Am Coll Cardiol. 2004;44:1071–9.

    Article  PubMed  Google Scholar 

  1166. Oral H, Chugh A, Good E, Wimmer A, Dey S, Gadeela N, et al. Radiofrequency catheter ablation of chronic atrial fibrillation guided by complex electrograms. Circulation. 2007;115:2606–12.

    Article  PubMed  Google Scholar 

  1167. Mikhaylov EN, Bhagwandien R, Janse PA, Theuns DA, Szili-Torok T. Regular atrial tachycardias developing after cryoballoon pulmonary vein isolation: incidence, characteristics, and predictors. Europace. 2013;15:1710–7.

    Article  PubMed  Google Scholar 

  1168. Hermida A, Kubala M, Traulle S, Buiciuc O, Quenum S, Hermida JS. Prevalence and predictive factors of left atrial tachycardia occurring after second-generation cryoballoon ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2018;29:46–54.

    Article  PubMed  Google Scholar 

  1169. Guhl EN, Siddoway D, Adelstein E, Voigt A, Saba S, Jain SK. Efficacy of cryoballoon pulmonary vein isolation in patients with persistent atrial fibrillation. J Cardiovasc Electrophysiol. 2016;27:423–7.

    Article  PubMed  Google Scholar 

  1170. Lyan E, Yalin K, Abdin A, Sawan N, Liosis S, Lange SA, et al. Mechanism, underlying substrate and predictors of atrial tachycardia following atrial fibrillation ablation using the second-generation cryoballoon. J Cardiol. 2019;73:497–506.

    Article  PubMed  Google Scholar 

  1171. Julia J, Chierchia GB, de Asmundis C, Mugnai G, Sieira J, Ciconte G, et al. Regular atrial tachycardias following pulmonary vein isolation for paroxysmal atrial fibrillation: a retrospective comparison between the cryoballoon and conventional focal tip radiofrequency techniques. J Interv Card Electrophysiol. 2015;42:161–9.

    Article  PubMed  Google Scholar 

  1172. Akerstrom F, Bastani H, Insulander P, Schwieler J, Arias MA, Jensen-Urstad M. Comparison of regular atrial tachycardia incidence after circumferential radiofrequency versus cryoballoon pulmonary vein isolation in real-life practice. J Cardiovasc Electrophysiol. 2014;25:948–52.

    Article  PubMed  Google Scholar 

  1173. Van Belle Y, Knops P, Janse P, Rivero-Ayerza M, Jessurun E, Szili-Torok T, et al. Electro-anatomical mapping of the left atrium before and after cryothermal balloon isolation of the pulmonary veins. J Interv Card Electrophysiol. 2009;25:59–65.

    Article  PubMed  Google Scholar 

  1174. Kenigsberg DN, Martin N, Lim HW, Kowalski M, Ellenbogen KA. Quantification of the cryoablation zone demarcated by pre- and postprocedural electroanatomic mapping in patients with atrial fibrillation using the 28-mm second-generation cryoballoon. Heart Rhythm. 2015;12:283–90.

    Article  PubMed  Google Scholar 

  1175. Gopinathannair R, Mar PL, Afzal MR, Di Biase L, Tu Y, Lakkireddy T, et al. Atrial tachycardias after surgical atrial fibrillation ablation: clinical characteristics, electrophysiological mechanisms, and ablation outcomes from a large, multicenter study. JACC Clin Electrophysiol. 2017;3:865–74.

    Article  PubMed  Google Scholar 

  1176. Huo Y, Schoenbauer R, Richter S, Rolf S, Sommer P, Arya A, et al. Atrial arrhythmias following surgical AF ablation: electrophysiological findings, ablation strategies, and clinical outcome. J Cardiovasc Electrophysiol. 2014;25:725–38.

    Article  PubMed  Google Scholar 

  1177. Takigawa M, Derval N, Frontera A, Martin R, Yamashita S, Cheniti G, et al. Revisiting anatomic macroreentrant tachycardia after atrial fibrillation ablation using ultrahigh-resolution mapping: implications for ablation. Heart Rhythm. 2018;15:326–33.

    Article  PubMed  Google Scholar 

  1178. Pascale P, Shah AJ, Roten L, Scherr D, Komatsu Y, Jadidi AS, et al. Pattern and timing of the coronary sinus activation to guide rapid diagnosis of atrial tachycardia after atrial fibrillation ablation. Circ Arrhythm Electrophysiol. 2013;6:481–90.

    Article  PubMed  Google Scholar 

  1179. Arroyo RC, Latcu DG, Maeda S, Kubala M, Santangeli P, Garcia FC, et al. Coronary sinus activation and ECG characteristics of roof-dependent left atrial flutter after pulmonary vein isolation. Circ Arrhythm Electrophysiol. 2018;11: e005948.

    Article  Google Scholar 

  1180. Vlachos K, Efremidis M, Derval N, Martin CA, Takigawa M, Bazoukis G, et al. Use of high-density activation and voltage mapping in combination with entrainment to delineate gap-related atrial tachycardias post atrial fibrillation ablation. Europace. 2021;23:1052–62.

    Article  PubMed  Google Scholar 

  1181. Sundaram S, Choe W, Ryan Jordan J, Mullins N, Boorman C, Kessler EJ, et al. Catheter ablation of atypical atrial flutter: a novel 3D anatomic mapping approach to quickly localize and terminate atypical atrial flutter. J Interv Card Electrophysiol. 2017;49:307–18.

    Article  PubMed  Google Scholar 

  1182. Luik A, Schmidt K, Haas A, Unger L, Tzamalis P, Brüggenjürgen B. Ablation of left atrial tachycardia following catheter ablation of atrial fibrillation: 12-month success rates. J Clin Med. 2022;11:1047.

    Article  PubMed  PubMed Central  Google Scholar 

  1183. Lupercio F, Lin AY, Aldaas OM, Romero J, Briceno D, Hoffmayer KS, et al. Role of adjunctive posterior wall isolation in patients undergoing atrial fibrillation ablation: a systematic review and metaanalysis. J Interv Card Electrophysiol. 2020;58:77–86.

    Article  PubMed  Google Scholar 

  1184. Kim MY, Coyle C, Tomlinson DR, Sikkel MB, Sohaib A, Luther V, et al. Ectopy-triggering ganglionated plexuses ablation to prevent atrial fibrillation: GANGLIA-AF study. Heart Rhythm. 2022;19:516–24.

    Article  PubMed  PubMed Central  Google Scholar 

  1185. Gianni C, Mohanty S, Di Biase L, Metz T, Trivedi C, Gokoglan Y, et al. Acute and early outcomes of focal impulse and rotor modulation (FIRM)-guided rotors-only ablation in patients with nonparoxysmal atrial fibrillation. Heart Rhythm. 2016;13:830–5.

    Article  PubMed  Google Scholar 

  1186. Perera KS, Sharma M, Connolly SJ, Wang J, Gold MR, Hohnloser SH, et al. Stroke type and severity in patients with subclinical atrial fibrillation: an analysis from the asymptomatic atrial fibrillation and stroke evaluation in pacemaker patients and the atrial fibrillation reduction atrial pacing trial (ASSERT). Am Heart J. 2018;201:160–3.

    Article  PubMed  Google Scholar 

  1187. Andrade JG, Deyell MW, Macle L, Steinberg JS, Glotzer TV, Hawkins NM, et al. Healthcare utilization and quality of life for atrial fibrillation burden: the CIRCA-DOSE study. Eur Heart J. 2023;44:765–76.

    Article  PubMed  Google Scholar 

  1188. Blomstrom-Lundqvist C, Gizurarson S, Schwieler J, Jensen SM, Bergfeldt L, Kenneback G, et al. Effect of catheter ablation vs antiarrhythmic medication on quality of life in patients with atrial fibrillation: the CAPTAF randomized clinical trial. JAMA. 2019;321:1059–68.

    Article  PubMed  PubMed Central  Google Scholar 

  1189. Brachmann J, Sohns C, Andresen D, Siebels J, Sehner S, Boersma L, et al. Atrial fibrillation burden and clinical outcomes in heart failure: the CASTLE-AF trial. JACC Clin Electrophysiol. 2021;7:594–603.

    Article  PubMed  Google Scholar 

  1190. Kuck KH, Lebedev DS, Mikhaylov EN, Romanov A, Geller L, Kalejs O, et al. Catheter ablation or medical therapy to delay progression of atrial fibrillation: the randomized controlled atrial fibrillation progression trial (ATTEST). Europace. 2021;23:362–9.

    Article  PubMed  Google Scholar 

  1191. Packer D, Monahan K, Piccini J, Al-Khalidi H, Silverstein A, Poole J, et al. Impact of treatment strategies for AF on the progression and regression of AF type in the CABANA trial. Eur Heart J. 2020;41:ehaa946.0680.

    Article  Google Scholar 

  1192. Gupta D, Vijgen J, Potter T, Scherr D, Van Herendael H, Knecht S, et al. Quality of life and healthcare utilisation improvements after atrial fibrillation ablation. Heart. 2021;107:1296–302.

    Article  PubMed  Google Scholar 

  1193. Mark DB, Anstrom KJ, Sheng S, Piccini JP, Baloch KN, Monahan KH, et al. Effect of catheter ablation vs medical therapy on quality of life among patients with atrial fibrillation: the CABANA randomized clinical trial. JAMA. 2019;321:1275–85.

    Article  PubMed  PubMed Central  Google Scholar 

  1194. Samuel M, Khairy P, Champagne J, Deyell MW, Macle L, Leong-Sit P, et al. Association of atrial fibrillation burden with health-related quality of life after atrial fibrillation ablation: substudy of the cryoballoon vs contact-force atrial fibrillation ablation (CIRCA-DOSE) randomized clinical trial. JAMA Cardiol. 2021;6:1324–8.

    Article  PubMed  Google Scholar 

  1195. Wazni O, Dandamudi G, Sood N, Hoyt R, Tyler J, Durrani S, et al. Quality of life after the initial treatment of atrial fibrillation with cryoablation versus drug therapy. Heart Rhythm. 2022;19:197–205.

    Article  PubMed  Google Scholar 

  1196. Wu L, Narasimhan B, Ho KS, Zheng Y, Shah AN, Kantharia BK. Safety and complications of catheter ablation for atrial fibrillation: predictors of complications from an updated analysis the national inpatient database. J Cardiovasc Electrophysiol. 2021;32:1024–34.

    Article  PubMed  Google Scholar 

  1197. Ngo L, Ali A, Ganesan A, Woodman R, Adams R, Ranasinghe I. Ten-year trends in mortality and complications following catheter ablation of atrial fibrillation. Eur Heart J Qual Care Clin Outcomes. 2022;8:398–408.

    Article  PubMed  Google Scholar 

  1198. Benali K, Khairy P, Hammache N, Petzl A, Da Costa A, Verma A, et al. Procedure-related complications of catheter ablation for atrial fibrillation. J Am Coll Cardiol. 2023;81:2089–99.

    Article  PubMed  Google Scholar 

  1199. Hsu JC, Darden D, Du C, Marine JE, Nichols S, Marcus GM, et al. Initial findings from the national cardiovascular data registry of atrial fibrillation ablation procedures. J Am Coll Cardiol. 2023;81:867–78.

    Article  PubMed  Google Scholar 

  1200. König S, Ueberham L, Schuler E, Wiedemann M, Reithmann C, Seyfarth M, et al. In-hospital mortality of patients with atrial arrhythmias: insights from the German-wide Helios hospital network of 161 502 patients and 34 025 arrhythmia-related procedures. Eur Heart J. 2018;39:3947–57.

    Article  PubMed  Google Scholar 

  1201. Mszar R, Friedman DJ, Ong E, Du C, Wang Y, Zeitler EP, et al. Sex-based differences in atrial fibrillation ablation adverse events. Heart. 2023;109:595–605.

    Article  CAS  PubMed  Google Scholar 

  1202. Forleo GB, Tondo C, De Luca L, Dello Russo A, Casella M, De Sanctis V, et al. Gender-related differences in catheter ablation of atrial fibrillation. Europace. 2007;9:613–20.

    Article  PubMed  Google Scholar 

  1203. Ngo L, Ali A, Ganesan A, Woodman R, Adams R, Ranasinghe I. Gender differences in complications following catheter ablation of atrial fibrillation. Eur Heart J Qual Care Clin Outcomes. 2021;7:458–67.

    Article  PubMed  Google Scholar 

  1204. Tonchev IR, Nam MCY, Gorelik A, Kumar S, Haqqani H, Sanders P, et al. Relationship between procedural volume and complication rates for catheter ablation of atrial fibrillation: a systematic review and metaanalysis. Europace. 2021;23:1024–32.

    Article  PubMed  Google Scholar 

  1205. Cheung JW, Yeo I, Cheng EP, Ip JE, Thomas G, Liu CF, et al. Inpatient hospital procedural volume and outcomes following catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2020;31:1908–19.

    Article  PubMed  Google Scholar 

  1206. Mörtsell D, Arbelo E, Dagres N, Brugada J, Laroche C, Trines SA, et al. Cryoballoon vs. radiofrequency ablation for atrial fibrillation: a study of outcome and safety based on the ESC-EHRA atrial fibrillation ablation long-term registry and the Swedish catheter ablation registry. Europace. 2019;21:581–9.

    Article  PubMed  Google Scholar 

  1207. Buiatti A, von Olshausen G, Barthel P, Schneider S, Luik A, Kaess B, et al. Cryoballoon vs. radiofrequency ablation for paroxysmal atrial fibrillation: an updated metaanalysis of randomized and observational studies. Europace. 2017;19:378–84.

    Article  PubMed  Google Scholar 

  1208. Ravi V, Poudyal A, Abid QU, Larsen T, Krishnan K, Sharma PS, et al. High-power short duration vs. conventional radiofrequency ablation of atrial fibrillation: a systematic review and metaanalysis. Europace. 2021;23:710–21.

    Article  PubMed  Google Scholar 

  1209. Hansom SP, Alqarawi W, Birnie DH, Golian M, Nery PB, Redpath CJ, et al. High-power, short-duration atrial fibrillation ablation compared with a conventional approach: outcomes and reconnection patterns. J Cardiovasc Electrophysiol. 2021;32:1219–28.

    Article  PubMed  Google Scholar 

  1210. Mueller J, Halbfass P, Sonne K, Nentwich K, Ene E, Berkovitz A, et al. Safety aspects of very high power very short duration atrial fibrillation ablation using a modified radiofrequency RF-generator: single-center experience. J Cardiovasc Electrophysiol. 2022;33:920–7.

    Article  PubMed  Google Scholar 

  1211. Chieng D, Segan L, Sugumar H, Al-Kaisey A, Hawson J, Moore BM, et al. Higher power short duration vs. lower power longer duration posterior wall ablation for atrial fibrillation and oesophageal injury outcomes: a prospective multi-centre randomized controlled study (Hi-Lo HEAT trial). Europace. 2023;25:417–24.

    Article  PubMed  Google Scholar 

  1212. Lee AC, Voskoboinik A, Cheung CC, Yogi S, Tseng ZH, Moss JD, et al. A randomized trial of high vs standard power radiofrequency ablation for pulmonary vein isolation. JACC Clin Electrophysiol. 2023;9:1038–47.

    Article  PubMed  Google Scholar 

  1213. Paul Nordin A, Drca N, Insulander P, Bastani H, Bourke T, Braunschweig F, et al. Low incidence of major complications after the first six hours post atrial fibrillation ablation: is same-day discharge safe and feasible in most patients? J Cardiovasc Electrophysiol. 2021;32:2953–60.

    Article  PubMed  Google Scholar 

  1214. Opel A, Mansell J, Butler A, Schwartz R, Fannon M, Finlay M, et al. Comparison of a high throughput day case atrial fibrillation ablation service in a local hospital with standard regional tertiary cardiac centre care. Europace. 2019;21:440–4.

    Article  PubMed  Google Scholar 

  1215. Dagres N, Anastasiou-Nana M. Prevention of atrial-esophageal fistula after catheter ablation of atrial fibrillation. Curr Opin Cardiol. 2011;26:1–5.

    Article  PubMed  Google Scholar 

  1216. Cochet H, Nakatani Y, Sridi-Cheniti S, Cheniti G, Ramirez FD, Nakashima T, et al. Pulsed field ablation selectively spares the oesophagus during pulmonary vein isolation for atrial fibrillation. Europace. 2021;23:1391–9.

    Article  PubMed  PubMed Central  Google Scholar 

  1217. Marashly Q, Gopinath C, Baher A, Acharya M, Kheirkhahan M, Hardisty B, et al. Late gadolinium enhancement magnetic resonance imaging evaluation of post-atrial fibrillation ablation esophageal thermal injury across the spectrum of severity. J Am Heart Assoc. 2021;10: e018924.

    Article  PubMed  PubMed Central  Google Scholar 

  1218. Di Biase L, Saenz LC, Burkhardt DJ, Vacca M, Elayi CS, Barrett CD, et al. Esophageal capsule endoscopy after radiofrequency catheter ablation for atrial fibrillation: documented higher risk of luminal esophageal damage with general anesthesia as compared with conscious sedation. Circ Arrhythm Electrophysiol. 2009;2:108–12.

    Article  PubMed  Google Scholar 

  1219. Martinek M, Meyer C, Hassanein S, Aichinger J, Bencsik G, Schoefl R, et al. Identification of a high-risk population for esophageal injury during radiofrequency catheter ablation of atrial fibrillation: procedural and anatomical considerations. Heart Rhythm. 2010;7:1224–30.

    Article  PubMed  Google Scholar 

  1220. Singh SM, d’Avila A, Singh SK, Stelzer P, Saad EB, Skanes A, et al. Clinical outcomes after repair of left atrial esophageal fistulas occurring after atrial fibrillation ablation procedures. Heart Rhythm. 2013;10:1591–7.

    Article  PubMed  Google Scholar 

  1221. Mohanty S, Santangeli P, Mohanty P, Di Biase L, Trivedi C, Bai R, et al. Outcomes of atrioesophageal fistula following catheter ablation of atrial fibrillation treated with surgical repair versus esophageal stenting. J Cardiovasc Electrophysiol. 2014;25:579–84.

    Article  PubMed  Google Scholar 

  1222. Mohanty S, Santangeli P, Mohanty P, Di Biase L, Holcomb S, Trivedi C, et al. Catheter ablation of asymptomatic longstanding persistent atrial fibrillation: impact on quality of life, exercise performance, arrhythmia perception, and arrhythmia-free survival. J Cardiovasc Electrophysiol. 2014;25:1057–64.

    Article  PubMed  Google Scholar 

  1223. Eitel C, Rolf S, Zachäus M, John S, Sommer P, Bollmann A, et al. Successful nonsurgical treatment of esophagopericardial fistulas after atrial fibrillation catheter ablation: a case series. Circ Arrhythm Electrophysiol. 2013;6:675–81.

    Article  PubMed  Google Scholar 

  1224. Bunch TJ, Nelson J, Foley T, Allison S, Crandall BG, Osborn JS, et al. Temporary esophageal stenting allows healing of esophageal perforations following atrial fibrillation ablation procedures. J Cardiovasc Electrophysiol. 2006;17:435–9.

    Article  PubMed  Google Scholar 

  1225. Liu Y, Zhan X, Xue Y, Deng H, Fang X, Liao H, et al. Incidence and outcomes of cerebrovascular events complicating catheter ablation for atrial fibrillation. Europace. 2016;18:1357–65.

    Article  PubMed  Google Scholar 

  1226. Kosiuk J, Kornej J, Bollmann A, Piorkowski C, Myrda K, Arya A, et al. Early cerebral thromboembolic complications after radiofrequency catheter ablation of atrial fibrillation: incidence, characteristics, and risk factors. Heart Rhythm. 2014;11:1934–40.

    Article  PubMed  Google Scholar 

  1227. Deneke T, Jais P, Scaglione M, Schmitt RLDIB, Christopoulos G, Schade A, et al. Silent cerebral events/lesions related to atrial fibrillation ablation: a clinical review. J Cardiovasc Electrophysiol. 2015;26:455–63.

    Article  PubMed  Google Scholar 

  1228. Kimura T, Kashimura S, Nishiyama T, Katsumata Y, Inagawa K, Ikegami Y, et al. Asymptomatic cerebral infarction during catheter ablation for atrial fibrillation: comparing uninterrupted rivaroxaban and warfarin (ASCERTAIN). JACC Clin Electrophysiol. 2018;4:1598–609.

    Article  PubMed  Google Scholar 

  1229. Medi C, Evered L, Silbert B, Teh A, Halloran K, Morton J, et al. Subtle postprocedural cognitive dysfunction after atrial fibrillation ablation. J Am Coll Cardiol. 2013;62:531–9.

    Article  PubMed  Google Scholar 

  1230. Al-Kaisey AM, Parameswaran R, Bryant C, Anderson RD, Hawson J, Chieng D, et al. Impact of catheter ablation on cognitive function in atrial fibrillation: a randomized control trial. JACC Clin Electrophysiol. 2023;9:1024–34.

    Article  PubMed  Google Scholar 

  1231. Kato N, Muraga K, Hirata Y, Shindo A, Matsuura K, Ii Y, et al. Brain magnetic resonance imaging and cognitive alterations after ablation in patients with atrial fibrillation. Sci Rep. 2021;11:18995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1232. Haeusler KG, Eichner FA, Heuschmann PU, Fiebach JB, Engelhorn T, Blank B, et al. MRI-detected brain lesions and cognitive function in patients with atrial fibrillation undergoing left atrial catheter ablation in the randomized AXAFA-AFNET 5 trial. Circulation. 2022;145:906–15.

    Article  CAS  PubMed  Google Scholar 

  1233. Grecu M, Blomström-Lundqvist C, Kautzner J, Laroche C, Van Gelder IC, Jordaens L, et al. In-hospital and 12-month follow-up outcome from the ESC-EORP EHRA atrial fibrillation ablation long-term registry: sex differences. Europace. 2020;22:66–73.

    Article  PubMed  Google Scholar 

  1234. Santangeli P, Di Biase L, Al-Ahmad A, Horton R, Burkhardt JD, Sanchez JE, et al. Ablation for atrial fibrillation: termination of atrial fibrillation is not the end point. Card Electrophysiol Clin. 2012;4:343–52.

    Article  PubMed  Google Scholar 

  1235. Nairooz R, Sardar P, Payne J, Aronow WS, Paydak H. Metaanalysis of major bleeding with uninterrupted warfarin compared to interrupted warfarin and heparin bridging in ablation of atrial fibrillation. Int J Cardiol. 2015;187:426–9.

    Article  PubMed  Google Scholar 

  1236. Ezekowitz MD, Pollack CV Jr, Halperin JL, England RD, VanPelt Nguyen S, Spahr J, et al. Apixaban compared to heparin/vitamin K antagonist in patients with atrial fibrillation scheduled for cardioversion: the EMANATE trial. Eur Heart J. 2018;39:2959–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1237. Lin H, Chen YH, Hou JW, Lu ZY, Xiang Y, Li YG. Role of contact force-guided radiofrequency catheter ablation for treatment of atrial fibrillation: a systematic review and metaanalysis. J Cardiovasc Electrophysiol. 2017;28:994–1005.

    Article  PubMed  Google Scholar 

  1238. Friedman DJ, Pokorney SD, Ghanem A, Marcello S, Kalsekar I, Yadalam S, et al. Predictors of cardiac perforation with catheter ablation of atrial fibrillation. JACC Clin Electrophysiol. 2020;6:636–45.

    Article  PubMed  Google Scholar 

  1239. Cappato R, Calkins H, Chen SA, Davies W, Iesaka Y, Kalman J, et al. Delayed cardiac tamponade after radiofrequency catheter ablation of atrial fibrillation: a worldwide report. J Am Coll Cardiol. 2011;58:2696–7.

    Article  PubMed  Google Scholar 

  1240. Cappato R, Calkins H, Chen SA, Davies W, Iesaka Y, Kalman J, et al. Prevalence and causes of fatal outcome in catheter ablation of atrial fibrillation. J Am Coll Cardiol. 2009;53:1798–803.

    Article  PubMed  Google Scholar 

  1241. Tsang TS, Enriquez-Sarano M, Freeman WK, Barnes ME, Sinak LJ, Gersh BJ, et al. Consecutive 1127 therapeutic echocardiographically guided pericardiocenteses: clinical profile, practice patterns, and outcomes spanning 21 years. Mayo Clin Proc. 2002;77:429–36.

    Article  PubMed  Google Scholar 

  1242. Bunch TJ, Asirvatham SJ, Friedman PA, Monahan KH, Munger TM, Rea RF, et al. Outcomes after cardiac perforation during radiofrequency ablation of the atrium. J Cardiovasc Electrophysiol. 2005;16:1172–9.

    Article  PubMed  Google Scholar 

  1243. Michowitz Y, Rahkovich M, Oral H, Zado ES, Tilz R, John S, et al. Effects of sex on the incidence of cardiac tamponade after catheter ablation of atrial fibrillation: results from a worldwide survey in 34 943 atrial fibrillation ablation procedures. Circ Arrhythm Electrophysiol. 2014;7:274–80.

    Article  PubMed  Google Scholar 

  1244. Zhao Q, Li L, Liu N, Zhang M, Wu K, Ruan Y, et al. Early versus delayed removal of the pericardial drain in patients with cardiac tamponade complicating radiofrequency ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2020;31:597–603.

    Article  PubMed  Google Scholar 

  1245. Zhao X, Liu JF, Su X, Long DY, Sang CH, Tang RB, et al. Direct autotransfusion in the management of acute pericardial tamponade during catheter ablation for atrial fibrillation: an imperfect but practical method. Front Cardiovasc Med. 2022;9: 984251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1246. Pedersen MEF, Leo M, Kalla M, Malhotra A, Stone M, Wong K, et al. Management of tamponade complicating catheter ablation for atrial fibrillation: early removal of pericardial drains is safe and effective and reduces analgesic requirements and hospital stay compared to conventional delayed removal. JACC Clin Electrophysiol. 2017;3:367–73.

    Article  PubMed  Google Scholar 

  1247. Raeisi-Giglou P, Wazni OM, Saliba WI, Barakat A, Tarakji KG, Rickard J, et al. Outcomes and management of patients with severe pulmonary vein stenosis from prior atrial fibrillation ablation. Circ Arrhythm Electrophysiol. 2018;11: e006001.

    Article  PubMed  Google Scholar 

  1248. Andrade JG, Khairy P, Guerra PG, Deyell MW, Rivard L, Macle L, et al. Efficacy and safety of cryoballoon ablation for atrial fibrillation: a systematic review of published studies. Heart Rhythm. 2011;8:1444–51.

    Article  PubMed  Google Scholar 

  1249. Fender EA, Packer DL, Holmes DR Jr. Pulmonary vein stenosis after atrial fibrillation ablation. EuroIntervention. 2016;12:X31-4.

    Article  PubMed  Google Scholar 

  1250. Saad EB, Marrouche NF, Saad CP, Ha E, Bash D, White RD, et al. Pulmonary vein stenosis after catheter ablation of atrial fibrillation: emergence of a new clinical syndrome. Ann Intern Med. 2003;138:634–8.

    Article  PubMed  Google Scholar 

  1251. Tokutake K, Tokuda M, Yamashita S, Sato H, Ikewaki H, Okajima E, et al. Anatomical and procedural factors of severe pulmonary vein stenosis after cryoballoon pulmonary vein ablation. JACC Clin Electrophysiol. 2019;5:1303–15.

    Article  PubMed  Google Scholar 

  1252. Kim J, Kim D, Yu HT, Kim TH, Joung B, Lee MH, et al. Revisiting symptomatic pulmonary vein stenosis after high-power short-duration radiofrequency ablation in patients with atrial fibrillation. Europace. 2023;25:euad296.

    Article  PubMed  PubMed Central  Google Scholar 

  1253. Katz ES, Tsiamtsiouris T, Applebaum RM, Schwartzbard A, Tunick PA, Kronzon I. Surgical left atrial appendage ligation is frequently incomplete: a transesophageal echocardiograhic study. J Am Coll Cardiol. 2000;36:468–71.

    Article  CAS  PubMed  Google Scholar 

  1254. Fender EA, Widmer RJ, Hodge DO, Cooper GM, Monahan KH, Peterson LA, et al. Severe pulmonary vein stenosis resulting from ablation for atrial fibrillation: presentation, management, and clinical outcomes. Circulation. 2016;134:1812–21.

    Article  CAS  PubMed  Google Scholar 

  1255. Fender EA, Widmer RJ, Hodge DO, Packer DL, Holmes DR Jr. Assessment and management of pulmonary vein occlusion after atrial fibrillation ablation. JACC Cardiovasc Interv. 2018;11:1633–9.

    Article  PubMed  Google Scholar 

  1256. Hilbert S, Paetsch I, Bollmann A, Jahnke C. Pulmonary vein collateral formation as a long-term result of post-interventional pulmonary vein stenosis. Eur Heart J. 2016;37:2474.

    Article  PubMed  Google Scholar 

  1257. Hilbert S, Sommer P, Bollmann A. Pulmonary vein dilatation in a case of total pulmonary vein occlusion: contemporary approach using a combination of 3D-mapping system and image integration. Catheter Cardiovasc Interv. 2016;88:E227-32.

    Article  PubMed  Google Scholar 

  1258. Holmes DR Jr, Monahan KH, Packer D. Pulmonary vein stenosis complicating ablation for atrial fibrillation: clinical spectrum and interventional considerations. JACC Cardiovasc Interv. 2009;2:267–76.

    Article  PubMed  Google Scholar 

  1259. Fender EA, Widmer RJ, Mahowald MK, Hodge DO, Packer DL, Holmes DR Jr. Recurrent pulmonary vein stenosis after successful intervention: prognosis and management of restenosis. Catheter Cardiovasc Interv. 2020;95:954–8.

    Article  PubMed  Google Scholar 

  1260. Mol D, Renskers L, Balt JC, Bhagwandien RE, Blaauw Y, van Driel V, et al. Persistent phrenic nerve palsy after atrial fibrillation ablation: follow-up data from The Netherlands Heart Registration. J Cardiovasc Electrophysiol. 2022;33:559–64.

    Article  PubMed  PubMed Central  Google Scholar 

  1261. Heeger CH, Sohns C, Pott A, Metzner A, Inaba O, Straube F, et al. Phrenic nerve injury during cryoballoon-based pulmonary vein isolation: results of the worldwide YETI registry. Circ Arrhythm Electrophysiol. 2022;15: e010516.

    Article  CAS  PubMed  Google Scholar 

  1262. Sacher F, Monahan KH, Thomas SP, Davidson N, Adragao P, Sanders P, et al. Phrenic nerve injury after atrial fibrillation catheter ablation: characterization and outcome in a multicenter study. J Am Coll Cardiol. 2006;47:2498–503.

    Article  PubMed  Google Scholar 

  1263. Yong Ji S, Dewire J, Barcelon B, Philips B, Catanzaro J, Nazarian S, et al. Phrenic nerve injury: an underrecognized and potentially preventable complication of pulmonary vein isolation using a wide-area circumferential ablation approach. J Cardiovasc Electrophysiol. 2013;24:1086–91.

    Article  PubMed  Google Scholar 

  1264. Franceschi F, Dubuc M, Guerra PG, Khairy P. Phrenic nerve monitoring with diaphragmatic electromyography during cryoballoon ablation for atrial fibrillation: the first human application. Heart Rhythm. 2011;8:1068–71.

    Article  PubMed  Google Scholar 

  1265. Miyazaki S, Hachiya H, Taniguchi H, Nakamura H, Ichihara N, Usui E, et al. Prospective evaluation of bilateral diaphragmatic electromyograms during cryoballoon ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2015;26:622–8.

    Article  PubMed  Google Scholar 

  1266. Mondésert B, Andrade JG, Khairy P, Guerra PG, Dyrda K, Macle L, et al. Clinical experience with a novel electromyographic approach to preventing phrenic nerve injury during cryoballoon ablation in atrial fibrillation. Circ Arrhythm Electrophysiol. 2014;7:605–11.

    Article  PubMed  Google Scholar 

  1267. Palaniswamy C, Kolte D, Harikrishnan P, Khera S, Aronow WS, Mujib M, et al. Catheter ablation of postinfarction ventricular tachycardia: ten-year trends in utilization, in-hospital complications, and in-hospital mortality in the United States. Heart Rhythm. 2014;11:2056–63.

    Article  PubMed  Google Scholar 

  1268. Peichl P, Wichterle D, Pavlu L, Cihak R, Aldhoon B, Kautzner J. Complications of catheter ablation of ventricular tachycardia: a single-center experience. Circ Arrhythm Electrophysiol. 2014;7:684–90.

    Article  PubMed  Google Scholar 

  1269. Waigand J, Uhlich F, Gross CM, Thalhammer C, Dietz R. Percutaneous treatment of pseudoaneurysms and arteriovenous fistulas after invasive vascular procedures. Catheter Cardiovasc Interv. 1999;47:157–64.

    Article  CAS  PubMed  Google Scholar 

  1270. Kuwahara T, Takahashi A, Takahashi Y, Kobori A, Miyazaki S, Takei A, et al. Clinical characteristics of massive air embolism complicating left atrial ablation of atrial fibrillation: lessons from five cases. Europace. 2012;14:204–8.

    Article  PubMed  Google Scholar 

  1271. Krivonyak GS, Warren SG. Cerebral arterial air embolism treated by a vertical head-down maneuver. Catheter Cardiovasc Interv. 2000;49:185–7.

    Article  CAS  PubMed  Google Scholar 

  1272. Franzen OW, Klemm H, Hamann F, Koschyk D, von Kodolitsch Y, Weil J, et al. Mechanisms underlying air aspiration in patients undergoing left atrial catheterization. Catheter Cardiovasc Interv. 2008;71:553–8.

    Article  PubMed  Google Scholar 

  1273. Chugh A, Makkar A, Yen Ho S, Yokokawa M, Sundaram B, Pelosi F, et al. Manifestations of coronary arterial injury during catheter ablation of atrial fibrillation and related arrhythmias. Heart Rhythm. 2013;10:1638–45.

    Article  PubMed  Google Scholar 

  1274. Takahashi Y, Jaïs P, Hocini M, Sanders P, Rotter M, Rostock T, et al. Acute occlusion of the left circumflex coronary artery during mitral isthmus linear ablation. J Cardiovasc Electrophysiol. 2005;16:1104–7.

    Article  PubMed  Google Scholar 

  1275. Kitamura T, Fukamizu S, Arai K, Hojo R, Aoyama Y, Komiyama K, et al. Transient sinus node dysfunction following sinus node artery occlusion due to radiofrequency catheter ablation of the septal superior vena cava-right atrium junction. J Electrocardiol. 2016;49:18–22.

    Article  PubMed  Google Scholar 

  1276. Higuchi S, Im SI, Stillson C, Buck ED, Jerrell S, Schneider CW, et al. Effect of epicardial pulsed field ablation directly on coronary arteries. JACC Clin Electrophysiol. 2022;8:1486–96.

    Article  PubMed  Google Scholar 

  1277. Kesek M, Englund A, Jensen SM, Jensen-Urstad M. Entrapment of circular mapping catheter in the mitral valve. Heart Rhythm. 2007;4:17–9.

    Article  PubMed  Google Scholar 

  1278. Grove R, Kranig W, Coppoolse R, Lüdorff G, Wolff E, Warnecke H, et al. Demand for open heart surgery due to entrapment of a circular mapping catheter in the mitral valve in a patient undergoing atrial fibrillation ablation. Clin Res Cardiol. 2008;97:628–9.

    Article  PubMed  Google Scholar 

  1279. Lakkireddy D, Nagarajan D, Di Biase L, Vanga SR, Mahapatra S, Jared Bunch T, et al. Radiofrequency ablation of atrial fibrillation in patients with mitral or aortic mechanical prosthetic valves: a feasibility, safety, and efficacy study. Heart Rhythm. 2011;8:975–80.

    Article  PubMed  Google Scholar 

  1280. Zeljko HM, Mont L, Sitges M, Tolosana JM, Nadal M, Castella M, et al. Entrapment of the circular mapping catheter in the mitral valve in two patients undergoing atrial fibrillation ablation. Europace. 2011;13:132–3.

    Article  PubMed  Google Scholar 

  1281. Wu RC, Brinker JA, Yuh DD, Berger RD, Calkins HG. Circular mapping catheter entrapment in the mitral valve apparatus: a previously unrecognized complication of focal atrial fibrillation ablation. J Cardiovasc Electrophysiol. 2002;13:819–21.

    Article  PubMed  Google Scholar 

  1282. Kim EJ, Gerstenfeld EP, Pellegrini CN. Use of adenosine to release an entrapped catheter during ablation of premature ventricular complexes. JACC Case Rep. 2021;3:610–3.

    Article  PubMed  PubMed Central  Google Scholar 

  1283. Tavernier R, Duytschaever M, Taeymans Y. Fracture of a circular mapping catheter after entrapment in the mitral valve apparatus during segmental pulmonary vein isolation. Pacing Clin Electrophysiol. 2003;26:1774–5.

    Article  PubMed  Google Scholar 

  1284. Gurbuz O, Ercan A, Ozkan H, Kumtepe G, Karal IH, Ener S. Case report: paravalvular leak as a complication of percutaneous catheter ablation for atrial fibrillation. J Cardiothorac Surg. 2014;9:187.

    Article  PubMed  PubMed Central  Google Scholar 

  1285. Kawaji T, Kato M, Yokomatsu T. How to release PentaRay catheter entrapped in the hinge point of mechanical mitral valve? Europace. 2020;22:204.

    PubMed  Google Scholar 

  1286. Yagishita A, Ayabe K, Sakama S, Morise M, Amino M, Ikari Y, et al. A novel technique to release a PentaRay entrapped in a mechanical mitral valve using an ablation catheter. JACC Clin Electrophysiol. 2020;6:1597–8.

    Article  PubMed  Google Scholar 

  1287. Lopes J, Sousa PA, Elvas L, Gonçalves L. Successful retrieval of a broken PentaRay catheter spine in a patient with mechanic mitral valve prosthesis. J Interv Card Electrophysiol. 2021;61:625–6.

    Article  PubMed  Google Scholar 

  1288. Cochet H, Scherr D, Zellerhoff S, Sacher F, Derval N, Denis A, et al. Atrial structure and function 5 years after successful ablation for persistent atrial fibrillation: an MRI study. J Cardiovasc Electrophysiol. 2014;25:671–9.

    Article  PubMed  Google Scholar 

  1289. Gibson DN, Di Biase L, Mohanty P, Patel JD, Bai R, Sanchez J, et al. Stiff left atrial syndrome after catheter ablation for atrial fibrillation: clinical characterization, prevalence, and predictors. Heart Rhythm. 2011;8:1364–71.

    Article  PubMed  Google Scholar 

  1290. Shoemaker MB, Hemnes AR, Robbins IM, Langberg JJ, Ellis CR, Aznaurov SG, et al. Left atrial hypertension after repeated catheter ablations for atrial fibrillation. J Am Coll Cardiol. 2011;57:1918–9.

    Article  PubMed  Google Scholar 

  1291. Welch TD, Coylewright M, Powell BD, Asirvatham SJ, Gersh BJ, Dearani JA, et al. Symptomatic pulmonary hypertension with giant left atrial v waves after surgical maze procedures: evaluation by comprehensive hemodynamic catheterization. Heart Rhythm. 2013;10:1839–42.

    Article  PubMed  Google Scholar 

  1292. Moon I, Lee SY, Lee E, Lee SR, Cha MJ, Choi EK, et al. Extensive left atrial ablation was associated with exacerbation of left atrial stiffness and dyspnea. J Cardiovasc Electrophysiol. 2019;30:2782–9.

    Article  PubMed  Google Scholar 

  1293. Witt C, Powell B, Holmes D, Alli O. Recurrent dyspnea following multiple ablations for atrial fibrillation explained by the “stiff left atrial syndrome”. Catheter Cardiovasc Interv. 2013;82:E747-9.

    Article  PubMed  Google Scholar 

  1294. Wong GR, Lau DH, Baillie TJ, Middeldorp ME, Steele PM, Sanders P. Novel use of sildenafil in the management of pulmonary hypertension due to post-catheter ablation ‘stiff left atrial syndrome’. Int J Cardiol. 2015;181:55–6.

    Article  PubMed  Google Scholar 

  1295. Lakkireddy D, Reddy YM, Atkins D, Rajasingh J, Kanmanthareddy A, Olyaee M, et al. Effect of atrial fibrillation ablation on gastric motility: the atrial fibrillation gut study. Circ Arrhythm Electrophysiol. 2015;8:531–6.

    Article  PubMed  Google Scholar 

  1296. Kuwahara T, Takahashi A, Takahashi Y, Kobori A, Miyazaki S, Takei A, et al. Clinical characteristics and management of periesophageal vagal nerve injury complicating left atrial ablation of atrial fibrillation: lessons from eleven cases. J Cardiovasc Electrophysiol. 2013;24:847–51.

    Article  PubMed  Google Scholar 

  1297. Knopp H, Halm U, Lamberts R, Knigge I, Zachäus M, Sommer P, et al. Incidental and ablation-induced findings during upper gastrointestinal endoscopy in patients after ablation of atrial fibrillation: a retrospective study of 425 patients. Heart Rhythm. 2014;11:574–8.

    Article  CAS  PubMed  Google Scholar 

  1298. Miyazaki S, Nakamura H, Taniguchi H, Hachiya H, Takagi T, Igarashi M, et al. Gastric hypomotility after second-generation cryoballoon ablation-unrecognized silent nerve injury after cryoballoon ablation. Heart Rhythm. 2017;14:670–7.

    Article  PubMed  Google Scholar 

  1299. Aksu T, Golcuk S, Guler TE, Yalin K, Erden I. Gastroparesis as a complication of atrial fibrillation ablation. Am J Cardiol. 2015;116:92–7.

    Article  PubMed  Google Scholar 

  1300. Shigeta T, Okishige K, Aoyagi H, Nishimura T, Nakamura RA, Ito N, et al. Clinical investigation of esophageal injury from cryoballoon ablation of persistent atrial fibrillation. Pacing Clin Electrophysiol. 2019;42:230–7.

    Article  PubMed  Google Scholar 

  1301. Bunch TJ, Ellenbogen KA, Packer DL, Asirvatham SJ. Vagus nerve injury after posterior atrial radiofrequency ablation. Heart Rhythm. 2008;5:1327–30.

    Article  PubMed  Google Scholar 

  1302. Miyazaki S, Taniguchi H, Kusa S, Komatsu Y, Ichihara N, Takagi T, et al. Factors associated with periesophageal vagal nerve injury after pulmonary vein antrum isolation. J Am Heart Assoc. 2014;3: e001209.

    Article  PubMed  PubMed Central  Google Scholar 

  1303. Pisani CF, Hachul D, Sosa E, Scanavacca M. Gastric hypomotility following epicardial vagal denervation ablation to treat atrial fibrillation. J Cardiovasc Electrophysiol. 2008;19:211–3.

    Article  PubMed  Google Scholar 

  1304. Schwartz TW, Rehfeld JF, Stadil F, Larson LI, Chance RE, Moon N. Pancreatic-polypeptide response to food in duodenal-ulcer patients before and after vagotomy. Lancet. 1976;307:1102–5.

    Article  Google Scholar 

  1305. Janssens J, Peeters TL, Vantrappen G, Tack J, Urbain JL, De Roo M, et al. Improvement of gastric emptying in diabetic gastroparesis by erythromycin. Preliminary studies N Engl J Med. 1990;322:1028–31.

    Article  CAS  PubMed  Google Scholar 

  1306. Camilleri M, Atieh J. New developments in prokinetic therapy for gastric motility disorders. Front Pharmacol. 2021;12: 711500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1307. Zheng T, Camilleri M. Management of gastroparesis. Gastroenterol Hepatol (N Y). 2021;17:515–25.

    PubMed  Google Scholar 

  1308. Badhwar V, Rankin JS, Ad N, Grau-Sepulveda M, Damiano RJ, Gillinov AM, et al. Surgical ablation of atrial fibrillation in the United States: trends and propensity matched outcomes. Ann Thorac Surg. 2017;104:493–500.

    Article  PubMed  Google Scholar 

  1309. Budera P, Straka Z, Osmančík P, Vaněk T, Jelínek Š, Hlavička J, et al. Comparison of cardiac surgery with left atrial surgical ablation vs. cardiac surgery without atrial ablation in patients with coronary and/or valvular heart disease plus atrial fibrillation: final results of the PRAGUE-12 randomized multicentre study. Eur Heart J. 2012;33:2644–52.

    Article  PubMed  PubMed Central  Google Scholar 

  1310. Nashef SAM, Fynn S, Abu-Omar Y, Spyt TJ, Mills C, Everett CC, et al. Amaze: a randomized controlled trial of adjunct surgery for atrial fibrillation. Eur J Cardiothorac Surg. 2018;54:729–37.

    Article  PubMed  PubMed Central  Google Scholar 

  1311. Osmancik P, Budera P, Talavera D, Hlavicka J, Herman D, Holy J, et al. Five-year outcomes in cardiac surgery patients with atrial fibrillation undergoing concomitant surgical ablation versus no ablation. The long-term follow-up of the PRAGUE-12 study. Heart Rhythm. 2019;16:1334–40.

    Article  PubMed  Google Scholar 

  1312. Wong JW, Mak KH. Impact of maze and concomitant mitral valve surgery on clinical outcomes. Ann Thorac Surg. 2006;82:1938–47.

    Article  PubMed  Google Scholar 

  1313. Lee R, McCarthy PM, Wang EC, Vaduganathan M, Kruse J, Malaisrie SC Jr, et al. Midterm survival in patients treated for atrial fibrillation: a propensity-matched comparison to patients without a history of atrial fibrillation. J Thorac Cardiovasc Surg. 2012;143:1341–51; discussion 1350–1.

  1314. Musharbash FN, Schill MR, Sinn LA, Schuessler RB, Maniar HS, Moon MR, et al. Performance of the Cox-maze IV procedure is associated with improved long-term survival in patients with atrial fibrillation undergoing cardiac surgery. J Thorac Cardiovasc Surg. 2018;155:159–70.

    Article  PubMed  Google Scholar 

  1315. Iribarne A, DiScipio AW, McCullough JN, Quinn R, Leavitt BJ, Westbrook BM, et al. Surgical atrial fibrillation ablation improves long-term survival: a multicenter analysis. Ann Thorac Surg. 2019;107:135–42.

    Article  PubMed  Google Scholar 

  1316. Kowalewski M, Pasierski M, Kołodziejczak M, Litwinowicz R, Kowalówka A, Wańha W, et al. Atrial fibrillation ablation improves late survival after concomitant cardiac surgery. J Thorac Cardiovasc Surg. 2023;166:1656-68.e8.

    Article  PubMed  Google Scholar 

  1317. Kim HJ, Kim YJ, Kim M, Yoo JS, Kim DH, Park DW, et al. Surgical ablation for atrial fibrillation during aortic and mitral valve surgery: a nationwide population-based cohort study. J Thorac Cardiovasc Surg. 2022.

  1318. Suwalski P, Kowalewski M, Jasiński M, Staromłyński J, Zembala M, Widenka K, et al. Survival after surgical ablation for atrial fibrillation in mitral valve surgery: analysis from the polish national registry of cardiac surgery procedures (KROK). J Thorac Cardiovasc Surg. 2019;157:1007-18.e4.

    Article  PubMed  Google Scholar 

  1319. Gemelli M, Gallo M, Addonizio M, Van den Eynde J, Pradegan N, Danesi TH, et al. Surgical ablation for atrial fibrillation during mitral valve surgery: a systematic review and metaanalysis of randomized controlled trials. Am J Cardiol. 2023;209:104–13.

    Article  PubMed  Google Scholar 

  1320. Reston JT, Shuhaiber JH. Metaanalysis of clinical outcomes of maze-related surgical procedures for medically refractory atrial fibrillation. Eur J Cardiothorac Surg. 2005;28:724–30.

    Article  PubMed  Google Scholar 

  1321. Rankin JS, Lerner DJ, Braid-Forbes MJ, McCrea MM, Badhwar V. Surgical ablation of atrial fibrillation concomitant to coronary-artery bypass grafting provides cost-effective mortality reduction. J Thorac Cardiovasc Surg. 2020;160:675-86.e13.

    Article  PubMed  Google Scholar 

  1322. Suwalski P, Kowalewski M, Jasiński M, Staromłyński J, Zembala M, Widenka K, et al. Surgical ablation for atrial fibrillation during isolated coronary artery bypass surgery. Eur J Cardiothorac Surg. 2020;57:691–700.

    PubMed  Google Scholar 

  1323. MacGregor RM, Bakir NH, Pedamallu H, Sinn LA, Maniar HS, Melby SJ, et al. Late results after stand-alone surgical ablation for atrial fibrillation. J Thorac Cardiovasc Surg. 2022;164:1515-28.e8.

    Article  PubMed  Google Scholar 

  1324. Lapenna E, De Bonis M, Giambuzzi I, Del Forno B, Ruggeri S, Cireddu M, et al. Long-term outcomes of stand-alone maze IV for persistent or long-standing persistent atrial fibrillation. Ann Thorac Surg. 2020;109:124–31.

    Article  PubMed  Google Scholar 

  1325. Ad N, Holmes SD, Friehling T. Minimally invasive stand-alone cox maze procedure for persistent and long-standing persistent atrial fibrillation: perioperative safety and 5-year outcomes. Circ Arrhythm Electrophysiol. 2017;10: e005352.

    Article  PubMed  Google Scholar 

  1326. Henn MC, Lancaster TS, Miller JR, Sinn LA, Schuessler RB, Moon MR, et al. Late outcomes after the Cox maze IV procedure for atrial fibrillation. J Thorac Cardiovasc Surg. 2015;150(1168–76):1178.e1-2.

    Google Scholar 

  1327. Gammie JS, Haddad M, Milford-Beland S, Welke KF, Ferguson TB Jr, O’Brien SM, et al. Atrial fibrillation correction surgery: lessons from the Society of Thoracic Surgeons National Cardiac Database. Ann Thorac Surg. 2008;85:909–14.

    Article  PubMed  Google Scholar 

  1328. Gillinov AM, Gelijns AC, Parides MK, DeRose JJ Jr, Moskowitz AJ, Voisine P, et al. Surgical ablation of atrial fibrillation during mitral-valve surgery. N Engl J Med. 2015;372:1399–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1329. Mokracek A, Kurfirst V, Bulava A, Hanis J, Tesarik R, Pesl L. Thoracoscopic occlusion of the left atrial appendage. Innovations. 2015;10:179–82.

    PubMed  Google Scholar 

  1330. Wang J-L, Zhou K, Qin Z, Cheng W-J, Zhang L-Z, Zhou Y-J. Minimally invasive thoracoscopic left atrial appendage occlusion compared with transcatheter left atrial appendage closure for stroke prevention in recurrent nonvalvular atrial fibrillation patients after radiofrequency ablation: a prospective cohort study. J Geriatr Cardiol. 2021;18:877–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  1331. Fu M, Qin Z, Zheng S, Li Y, Yang S, Zhao Y, et al. Thoracoscopic left atrial appendage occlusion for stroke prevention compared with long-term warfarin therapy in patients with nonvalvular atrial fibrillation. Am J Cardiol. 2019;123:50–6.

    Article  PubMed  Google Scholar 

  1332. Kim JY, Jeong DS, Park S-J, Park K-M, Kim JS, On YK. Long-term efficacy and anticoagulation strategy of left atrial appendage occlusion during total thoracoscopic ablation of atrial fibrillation to prevent ischemic stroke. Front Cardiovasc Med. 2022;9: 853299.

    Article  PubMed  PubMed Central  Google Scholar 

  1333. Branzoli S, Marini M, Guarracini F, Pederzolli C, Pomarolli C, D’Onghia G, et al. Epicardial standalone left atrial appendage clipping for prevention of ischemic stroke in patients with atrial fibrillation contraindicated for oral anticaogulation. J Cardiovasc Electrophysiol. 2020;31:2187–91.

    Article  PubMed  Google Scholar 

  1334. Cartledge R, Suwalski G, Witkowska A, Gottlieb G, Cioci A, Chidiac G, et al. Standalone epicardial left atrial appendage exclusion for thromboembolism prevention in atrial fibrillation. Interact Cardiovasc Thorac Surg. 2022;34:548–55.

    Article  PubMed  Google Scholar 

  1335. Whitlock RP, Belley-Cote EP, Paparella D, Healey JS, Brady K, Sharma M, et al. Left atrial appendage occlusion during cardiac surgery to prevent stroke. N Engl J Med. 2021;384:2081–91.

    Article  PubMed  Google Scholar 

  1336. Quader MA, McCarthy PM, Gillinov AM, Alster JM, Cosgrove DM 3rd, Lytle BW, et al. Does preoperative atrial fibrillation reduce survival after coronary artery bypass grafting? Ann Thorac Surg. 2004;77:1514–22; discussion 1522–4.

  1337. Ad N, Damiano RJ Jr, Badhwar V, Calkins H, La Meir M, Nitta T, et al. Expert consensus guidelines: examining surgical ablation for atrial fibrillation. J Thorac Cardiovasc Surg. 2017;153:1330-54.e1.

    Article  PubMed  Google Scholar 

  1338. Cox JL, Ad N, Palazzo T. Impact of the maze procedure on the stroke rate in patients with atrial fibrillation. J Thorac Cardiovasc Surg. 1999;118:833–40.

    Article  CAS  PubMed  Google Scholar 

  1339. Boersma LV, Castella M, van Boven W, Berruezo A, Yilmaz A, Nadal M, et al. Atrial fibrillation catheter ablation versus surgical ablation treatment (FAST): a 2-center randomized clinical trial. Circulation. 2012;125:23–30.

    Article  PubMed  Google Scholar 

  1340. Castellá M, Kotecha D, van Laar C, Wintgens L, Castillo Y, Kelder J, et al. Thoracoscopic vs. catheter ablation for atrial fibrillation: long-term follow-up of the FAST randomized trial. Europace. 2019;21:746–53.

    Article  PubMed  PubMed Central  Google Scholar 

  1341. Pokushalov E, Romanov A, Elesin D, Bogachev-Prokophiev A, Losik D, Bairamova S, et al. Catheter versus surgical ablation of atrial fibrillation after a failed initial pulmonary vein isolation procedure: a randomized controlled trial. J Cardiovasc Electrophysiol. 2013;24:1338–43.

    Article  PubMed  Google Scholar 

  1342. Adiyaman A, Buist TJ, Beukema RJ, Smit JJJ, Delnoy P, Hemels MEW, et al. Randomized controlled trial of surgical versus catheter ablation for paroxysmal and early persistent atrial fibrillation. Circ Arrhythm Electrophysiol. 2018;11: e006182.

    Article  PubMed  Google Scholar 

  1343. Philpott JM, Zemlin CW, Cox JL, Stirling M, Mack M, Hooker RL, et al. The ABLATE trial: safety and efficacy of Cox maze-IV using a bipolar radiofrequency ablation system. Ann Thorac Surg. 2015;100:1541–6; discussion 1547–8.

  1344. McGilvray MMO, Barron L, Yates TE, Zemlin CW, Damiano RJ Jr. The Cox-maze procedure: what lesions and why. JTCVS Tech. 2023;17:84–93.

    Article  PubMed  Google Scholar 

  1345. Gillinov AM, Gelijns AC, Parides MK, DeRose JJ Jr, Moskowitz AJ, Voisine P, et al. Surgical ablation of atrial fibrillation during mitral-valve surgery. N Engl J Med. 2015;372:1399–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1346. Hamner CE, Potter DD Jr, Cho KR, Lutterman A, Francischelli D, Sundt TM 3rd, et al. Irrigated radiofrequency ablation with transmurality feedback reliably produces Cox maze lesions in vivo. Ann Thorac Surg. 2005;80:2263–70.

    Article  PubMed  Google Scholar 

  1347. Schuessler RB, Lee AM, Melby SJ, Voeller RK, Gaynor SL, Sakamoto S-I, et al. Animal studies of epicardial atrial ablation. Heart Rhythm. 2009;6:S41-5.

    Article  PubMed  PubMed Central  Google Scholar 

  1348. Saint LL, Lawrance CP, Okada S, Kazui T, Robertson JO, Schuessler RB, et al. Performance of a novel bipolar/monopolar radiofrequency ablation device on the beating heart in an acute porcine model. Innovations. 2013;8:276–83.

    PubMed  Google Scholar 

  1349. Bugge E, Nicholson IA, Thomas SP. Comparison of bipolar and unipolar radiofrequency ablation in an in vivo experimental model. Eur J Cardiothorac Surg. 2005;28:76–80; discussion 80–2.

  1350. Thomas SP, Guy DJR, Boyd AC, Eipper VE, Ross DL, Chard RB. Comparison of epicardial and endocardial linear ablation using handheld probes. Ann Thorac Surg. 2003;75:543–8.

    Article  PubMed  Google Scholar 

  1351. La Meir M. Surgical options for treatment of atrial fibrillation. Ann Cardiothorac Surg. 2014;3:30–7.

    PubMed  PubMed Central  Google Scholar 

  1352. Khiabani AJ, MacGregor RM, Manghelli JL, Ruaengsri C, Carter DI, Melby SJ, et al. Bipolar radiofrequency ablation on explanted human hearts: how to ensure transmural lesions. Ann Thorac Surg. 2020;110:1933–9.

    Article  PubMed  PubMed Central  Google Scholar 

  1353. Jaïs P, Haïssaguerre M, Shah DC, Takahashi A, Hocini M, Lavergne T, et al. Successful irrigated-tip catheter ablation of atrial flutter resistant to conventional radiofrequency ablation. Circulation. 1998;98:835–8.

    Article  PubMed  Google Scholar 

  1354. Haines DE. The biophysics and pathophysiology of lesion formation during radiofrequency catheter ablation. In Zipes DP, Jalife J, Stevenson WG (eds.), Cardiac Electrophysiology: From Cell to Bedside. 4th ed. Philadelphia: WB Saunders Co; 2005;1018–27.

  1355. Melby SJ, Zierer A, Voeller RK, Lall SC, Bailey MS, Moon MR, et al. Wide variations in energy delivery using an impedance-controlled algorithm in bipolar radiofrequency ablation: evidence against fixed time ablation. Innovations. 2007;2:67–72.

    PubMed  Google Scholar 

  1356. Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia. 2003;19:267–94.

    Article  CAS  PubMed  Google Scholar 

  1357. Varzaly JA, Chapman D, Lau DH, Edwards S, Louise J, Edwards J, et al. Contact force and ablation assessment of surgical bipolar radiofrequency clamps in the treatment of atrial fibrillation. Interact Cardiovasc Thorac Surg. 2019;28:85–93.

    Article  PubMed  Google Scholar 

  1358. Schill MR, Melby SJ, Speltz M, Breitbach M, Schuessler RB, Damiano RJ. Evaluation of a novel cryoprobe for atrial ablation in a chronic ovine model. Ann Thorac Surg. 2017;104:1069–73.

    Article  PubMed  PubMed Central  Google Scholar 

  1359. Weimar T, Lee AM, Ray S, Schuessler RB, Damiano RJ. Evaluation of a novel cryoablation system: in vivo testing in a chronic porcine model. Innovations (Phila). 2012;7:410–6.

    Article  PubMed  Google Scholar 

  1360. Cox JL, Malaisrie SC, Churyla A, Mehta C, Kruse J, Kislitsina ON, et al. Cryosurgery for atrial fibrillation: physiologic basis for creating optimal cryolesions. Ann Thorac Surg. 2021;112:354–62.

    Article  PubMed  Google Scholar 

  1361. Masroor S, Jahnke M-E, Carlisle A, Cartier C, LaLonde J-P, MacNeil T, et al. Endocardial hypothermia and pulmonary vein isolation with epicardial cryoablation in a porcine beating-heart model. J Thorac Cardiovasc Surg. 2008;135:1327-33.e5.

    Article  PubMed  Google Scholar 

  1362. Aupperle H, Doll N, Walther T, Ullmann C, Schoon HA, Wilhelm Mohr F. Histological findings induced by different energy sources in experimental atrial ablation in sheep. Interact Cardiovasc Thorac Surg. 2005;4:450–5.

  1363. Schuessler RB, Lee AM, Melby SJ, Voeller RK, Gaynor SL, Sakamoto S, et al. Animal studies of epicardial atrial ablation. Heart Rhythm. 2009;6:S41-5.

    Article  PubMed  PubMed Central  Google Scholar 

  1364. MacGregor RM, Melby SJ, Schuessler RB, Damiano RJ. Energy sources for the surgical treatment of atrial fibrillation. Innovations (Phila). 2019;14:503–8.

    Article  PubMed  Google Scholar 

  1365. Yates TA, McGilvray M, Schill MR, Barron L, Razo N, Roberts HG Jr, et al. Performance of an irrigated bipolar radiofrequency ablation clamp on explanted human hearts. Ann Thorac Surg. 2023;116:307–13.

    Article  PubMed  Google Scholar 

  1366. Yates T-A, McGilvray M, Razo N, McElligott S, Melby SJ, Zemlin C, et al. Efficacy of a novel bipolar radiofrequency clamp: an acute porcine model. Innovations (Phila). 2022;17:409–15.

    Article  PubMed  Google Scholar 

  1367. Watanabe Y, Weimar T, Kazui T, Lee U, Schuessler RB, Damiano RJ Jr. Epicardial ablation performance of a novel radiofrequency device on the beating heart in pigs. Ann Thorac Surg. 2014;97:673–8.

    Article  PubMed  PubMed Central  Google Scholar 

  1368. Lee AM, Aziz A, Clark KL, Schuessler RB, Damiano RJ Jr. Chronic performance of a novel radiofrequency ablation device on the beating heart: limitations of conduction delay to assess transmurality. J Thorac Cardiovasc Surg. 2012;144:859–65.

    Article  PubMed  PubMed Central  Google Scholar 

  1369. Bringmans T, Verrijcken A, La Meir M, Rega F. Atrioesophageal fistula after epicardial ablation for atrial fibrillation. J Thorac Cardiovasc Surg. 2018;155:e19-21.

    Article  PubMed  Google Scholar 

  1370. Kiser AC, Nifong LW, Raman J, Kasirajan V, Campbell N, Chitwood WR Jr. Evaluation of a novel epicardial atrial fibrillation treatment system. Ann Thorac Surg. 2008;85:300–3.

    Article  PubMed  Google Scholar 

  1371. Weimar T, Lee AM, Ray S, Schuessler RB, Damiano RJ Jr. Evaluation of a novel cryoablation system: in vivo testing in a chronic porcine model. Innovations (Phila). 2012;7:410–6.

    Article  PubMed  Google Scholar 

  1372. El Arid J-M, Sénage T, Toquet C, Al Habash O, Mugniot A, Baron O, et al. Human comparative experimental study of surgical treatment of atrial fibrillation by epicardial techniques. J Cardiothorac Surg. 2013;8:140.

    Article  PubMed  PubMed Central  Google Scholar 

  1373. Schill MR, Melby SJ, Speltz M, Breitbach M, Schuessler RB, Damiano RJ Jr. Evaluation of a novel cryoprobe for atrial ablation in a chronic ovine model. Ann Thorac Surg. 2017;104:1069–73.

    Article  PubMed  PubMed Central  Google Scholar 

  1374. Milla F, Skubas N, Briggs WM, Girardi LN, Lee LY, Ko W, et al. Epicardial beating heart cryoablation using a novel argon-based cryoclamp and linear probe. J Thorac Cardiovasc Surg. 2006;131:403–11.

    Article  PubMed  Google Scholar 

  1375. Nitta T, Ishii Y, Miyagi Y, Ohmori H, Sakamoto S-I, Tanaka S. Concurrent multiple left atrial focal activations with fibrillatory conduction and right atrial focal or reentrant activation as the mechanism in atrial fibrillation. J Thorac Cardiovasc Surg. 2004;127:770–8.

    Article  PubMed  Google Scholar 

  1376. Saini A, Hu YL, Kasirajan V, Han FT, Khan MZ, Wolfe L, et al. Long-term outcomes of minimally invasive surgical ablation for atrial fibrillation: a single-center experience. Heart Rhythm. 2017;14:1281–8.

    Article  PubMed  Google Scholar 

  1377. Gillinov AM, Bhavani S, Blackstone EH, Rajeswaran J, Svensson LG, Navia JL, et al. Surgery for permanent atrial fibrillation: impact of patient factors and lesion set. Ann Thorac Surg. 2006;82:502–13; discussion 513–4.

  1378. Saint LL, Bailey MS, Prasad S, Guthrie TJ, Bell J, Moon MR, et al. Cox-maze IV results for patients with lone atrial fibrillation versus concomitant mitral disease. Ann Thorac Surg. 2012;93:789–94; discussion 794–5.

  1379. Enriquez A, Santangeli P, Zado ES, Liang J, Castro S, Garcia FC, et al. Postoperative atrial tachycardias after mitral valve surgery: mechanisms and outcomes of catheter ablation. Heart Rhythm. 2017;14:520–6.

    Article  PubMed  Google Scholar 

  1380. Gwag HB, Jeong DS, Hwang JK, Park S-J, Park K-M, Kim JS, et al. Additional cavotricuspid isthmus ablation may reduce recurrent atrial tachyarrhythmia after total thoracoscopic ablation for persistent atrial fibrillation. Interact Cardiovasc Thorac Surg. 2019;28:177–82.

    Article  PubMed  Google Scholar 

  1381. Ngaage DL, Schaff HV, Mullany CJ, Sundt TM 3rd, Dearani JA, Barnes S, et al. Does preoperative atrial fibrillation influence early and late outcomes of coronary artery bypass grafting? J Thorac Cardiovasc Surg. 2007;133:182–9.

    Article  PubMed  Google Scholar 

  1382. McClure GR, Belley-Cote EP, Jaffer IH, Dvirnik N, An KR, Fortin G, et al. Surgical ablation of atrial fibrillation: a systematic review and metaanalysis of randomized controlled trials. Europace. 2018;20:1442–50.

    Article  PubMed  Google Scholar 

  1383. Johansson B, Houltz B, Berglin E, Brandrup-Wognsen G, Karlsson T, Edvardsson N. Short-term sinus rhythm predicts long-term sinus rhythm and clinical improvement after intraoperative ablation of atrial fibrillation. Europace. 2008;10:610–7.

    Article  PubMed  Google Scholar 

  1384. Grubitzsch H, Dushe S, Beholz S, Dohmen PM, Konertz W. Surgical ablation of atrial fibrillation in patients with congestive heart failure. J Card Fail. 2007;13:509–16.

    Article  PubMed  Google Scholar 

  1385. Saint LL, Damiano RJ Jr, Cuculich PS, Guthrie TJ, Moon MR, Munfakh NA, et al. Incremental risk of the Cox-maze IV procedure for patients with atrial fibrillation undergoing mitral valve surgery. J Thorac Cardiovasc Surg. 2013;146:1072–7.

    Article  PubMed  PubMed Central  Google Scholar 

  1386. Bakir NH, Khiabani AJ, MacGregor RM, Kelly MO, Sinn LA, Schuessler RB, et al. Concomitant surgical ablation for atrial fibrillation is associated with increased risk of acute kidney injury but improved late survival. J Thorac Cardiovasc Surg. 2022;164:1847-57.e3.

    Article  PubMed  Google Scholar 

  1387. Takahashi K, Miyauchi Y, Hayashi M, Iwasaki YK, Yodogawa K, Tsuboi I, et al. Mechanisms of postoperative atrial tachycardia following biatrial surgical ablation of atrial fibrillation in relation to the surgical lesion sets. Heart Rhythm. 2016;13:1059–65.

    Article  PubMed  Google Scholar 

  1388. Ishii Y, Nitta T, Kambe M, Kurita J, Ochi M, Miyauchi Y, et al. Intraoperative verification of conduction block in atrial fibrillation surgery. J Thorac Cardiovasc Surg. 2008;136:998–1004.

    Article  PubMed  Google Scholar 

  1389. Phan K, Xie A, Tsai YC, Kumar N, La Meir M, Yan TD. Biatrial ablation vs. left atrial concomitant surgical ablation for treatment of atrial fibrillation: a metaanalysis. Europace. 2015;17:38–47.

    Article  PubMed  Google Scholar 

  1390. Bogachev-Prokophiev AV, Afanasyev AV, Pivkin AN, Ovcharov MA, Zheleznev SI, Sharifulin RM, et al. A left atrial versus a biatrial lesion set for persistent atrial fibrillation ablation during open heart surgery. Eur J Cardiothorac Surg. 2018;54:738–44.

    Article  PubMed  Google Scholar 

  1391. Kowalewski M, Pasierski M, Finke J, Kołodziejczak M, Staromłyński J, Litwinowicz R, et al. Permanent pacemaker implantation after valve and arrhythmia surgery in patients with preoperative atrial fibrillation. Heart Rhythm. 2022;19:1442–9.

    Article  PubMed  Google Scholar 

  1392. Cox JL, Ad N, Churyla A, Malaisrie SC, Pham DT, Kruse J, et al. The maze procedure and postoperative pacemakers. Ann Thorac Surg. 2018;106:1561–9.

    Article  PubMed  Google Scholar 

  1393. Badhwar V, Rankin JS, Damiano RJ Jr, Gillinov AM, Bakaeen FG, Edgerton JR, et al. The Society of Thoracic Surgeons 2017 clinical practice guidelines for the surgical treatment of atrial fibrillation. Ann Thorac Surg. 2017;103:329–41.

    Article  PubMed  Google Scholar 

  1394. Raanani E, Albage A, David TE, Yau TM, Armstrong S. The efficacy of the Cox/maze procedure combined with mitral valve surgery: a matched control study. Eur J Cardiothorac Surg. 2001;19:438–42.

    Article  CAS  PubMed  Google Scholar 

  1395. Li H, Lin X, Ma X, Tao J, Zou R, Yang S, Liu H, Hua P. Biatrial versus isolated left atrial ablation in atrial fibrillation: a systematic review and metaanalysis. Biomed Res Int. 2018;2018:3651212.

    PubMed  PubMed Central  Google Scholar 

  1396. Kainuma S, Mitsuno M, Toda K, Funatsu T, Nakamura T, Miyagawa S, et al. Dilated left atrium as a predictor of late outcome after pulmonary vein isolation concomitant with aortic valve replacement and/or coronary artery bypass grafting†. Eur J Cardiothorac Surg. 2015;48:765–77; discussion 777.

  1397. Barnett SD, Ad N. Surgical ablation as treatment for the elimination of atrial fibrillation: a metaanalysis. J Thorac Cardiovasc Surg. 2006;131:1029–35.

    Article  PubMed  Google Scholar 

  1398. Kim HJ, Kim JB, Kim SO, Cho MS, Kim JK, Kim WK, et al. Long-term outcomes of surgical ablation for atrial fibrillation: impact of ablation lesion sets. JACC Asia. 2021;1:203–14.

    Article  PubMed  PubMed Central  Google Scholar 

  1399. Kainuma S, Mitsuno M, Toda K, Miyagawa S, Yoshikawa Y, Hata H, et al. Surgical ablation concomitant with nonmitral valve surgery for persistent atrial fibrillation. Ann Thorac Surg. 2021;112:1909–20.

    Article  PubMed  Google Scholar 

  1400. La Meir M, Gelsomino S, Nonneman B. The problem with concomitant atrial fibrillation in non-mitral valve surgery. Ann Cardiothorac Surg. 2014;3:124–9.

    PubMed  PubMed Central  Google Scholar 

  1401. Civello K, Smith C, Boedefeld W. Combined endocardial and epicardial ablation for symptomatic atrial fibrillation: single center experience in 100+ consecutive patients. J Innov Card Rhythm Manag. 2013;4:1–7.

  1402. Gehi AK, Mounsey JP, Pursell I, Landers M, Boyce K, Chung EH, et al. Hybrid epicardial-endocardial ablation using a pericardioscopic technique for the treatment of atrial fibrillation. Heart Rhythm. 2013;10:22–8.

    Article  PubMed  Google Scholar 

  1403. Gersak B, Jan M. Long-term success for the convergent atrial fibrillation procedure: 4-year outcomes. Ann Thorac Surg. 2016;102:1550–7.

    Article  PubMed  Google Scholar 

  1404. Gersak B, Zembala MO, Muller D, Folliguet T, Jan M, Kowalski O, et al. European experience of the convergent atrial fibrillation procedure: multicenter outcomes in consecutive patients. J Thorac Cardiovasc Surg. 2014;147:1411–6.

    Article  PubMed  Google Scholar 

  1405. Gilligan D, Joyner C, Bundy G. Multidisciplinary collaboration for the treatment of atrial fibrillation: convergent procedure outcomes from a single center. J Innov Card Rhythm Manag. 2013;4:1396–403.

    Google Scholar 

  1406. Tonks R, Lantz G, Mahlow J, Hirsh J, Lee LS. Short and intermediate term outcomes of the convergent procedure: initial experience in a tertiary referral center. Ann Thorac Cardiovasc Surg. 2020;26:13–21.

    Article  PubMed  Google Scholar 

  1407. Toplisek J, Pernat A, Ruzic N, Robic B, Sinkovec M, Cvijic M, et al. Improvement of atrial and ventricular remodeling with low atrial fibrillation burden after hybrid ablation of persistent atrial fibrillation. Pacing Clin Electrophysiol. 2016;39:216–24.

    Article  PubMed  Google Scholar 

  1408. Zembala M, Filipiak K, Kowalski O, Buchta P, Niklewski T, Nadziakiewicz P, et al. Staged hybrid ablation for persistent and longstanding persistent atrial fibrillation effectively restores sinus rhythm in long-term observation. Arch Med Sci. 2017;13:109–17.

    Article  PubMed  Google Scholar 

  1409. Kiser AC, Landers M, Horton R, Hume A, Natale A, Gersak B. The convergent procedure: a multidisciplinary atrial fibrillation treatment. Heart Surg Forum. 2010;13:E317-21.

    Article  PubMed  Google Scholar 

  1410. Edgerton Z, Perini AP, Horton R, Trivedi C, Santangeli P, Bai R, et al. Hybrid procedure (endo/epicardial) versus standard manual ablation in patients undergoing ablation of longstanding persistent atrial fibrillation: results from a single center. J Cardiovasc Electrophysiol. 2016;27:524–30.

    Article  PubMed  Google Scholar 

  1411. Jan M, Zizek D, Gersak ZM, Gersak B. Comparison of treatment outcomes between convergent procedure and catheter ablation for paroxysmal atrial fibrillation evaluated with implantable loop recorder monitoring. J Cardiovasc Electrophysiol. 2018;29:1073–80.

    Article  PubMed  Google Scholar 

  1412. Gersak B, Pernat A, Robic B, Sinkovec M. Low rate of atrial fibrillation recurrence verified by implantable loop recorder monitoring following a convergent epicardial and endocardial ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2012;23:1059–66.

    Article  PubMed  Google Scholar 

  1413. Zannis K, Alam W, Sebag FA, Folliguet T, Bars C, Fahed M, et al. The convergent procedure: a hybrid approach for long lasting persistent atrial fibrillation ablation, the French experience. J Cardiovasc Surg (Torino). 2020;61:369–75.

    PubMed  Google Scholar 

  1414. Maclean E, Yap J, Saberwal B, Kolvekar S, Lim W, Wijesuriya N, et al. The convergent procedure versus catheter ablation alone in longstanding persistent atrial fibrillation: a single centre, propensity-matched cohort study. Int J Cardiol. 2020;303:49–53.

    Article  CAS  PubMed  Google Scholar 

  1415. Kiser AC, Landers MD, Boyce K, Sinkovec M, Pernat A, Gersak B. Simultaneous catheter and epicardial ablations enable a comprehensive atrial fibrillation procedure. Innovations (Phila). 2011;6:243–7.

    Article  PubMed  Google Scholar 

  1416. Lee LS. Subxiphoid minimally invasive epicardial ablation (convergent procedure) with left thoracoscopic closure of the left atrial appendage. Oper Tech Thorac Cardiovasc Surg. 2019;23:152–65.

  1417. Thosani AJ, Gerczuk P, Liu E, Belden W, Moraca R. Closed chest convergent epicardial-endocardial ablation of non-paroxysmal atrial fibrillation – a case series and literature review. Arrhythm Electrophysiol Rev. 2013;2:65–8.

    Article  PubMed  PubMed Central  Google Scholar 

  1418. Makati K, Davoudi R, Giedrimas A, Irwin J, Sherman A, Gerogiannis I, et al. Safety and efficacy of a convergent hybrid procedure using cryo as endocardial energy source for the treatment of persistent and longstanding persistent atrial fibrillation. J Am Coll Cardiol. 2020;75:424.

    Article  Google Scholar 

  1419. Starck CT, Steffel J, Emmert MY, Plass A, Mahapatra S, Falk V, et al. Epicardial left atrial appendage clip occlusion also provides the electrical isolation of the left atrial appendage. Interact Cardiovasc Thorac Surg. 2012;15:416–8.

    Article  PubMed  PubMed Central  Google Scholar 

  1420. Lee LS. Subxiphoid minimally invasive epicardial ablation (convergent procedure) with left thoracoscopic closure of the left atrial appendage. Oper Tech Thorac Cardiovasc Surg. 2018;23:152–65.

    Article  Google Scholar 

  1421. Gegochkori N, Yang F, Miller A, Kulbak G, Jacobwitz I, Greenberg Y. Comparison of hybrid ablation for persistent atrial fibrillation with and without left atrial appendage closure: report of 1 year follow up. Presented at Venice Arrhythmias, Venice, Italy, 2019. J Interv Card Electrophysiol. 2020;57:164.

  1422. Haldar S, Khan HR, Boyalla V, Kralj-Hans I, Jones S, Lord J, et al. Catheter ablation vs. thoracoscopic surgical ablation in long-standing persistent atrial fibrillation: CASA-AF randomized controlled trial. Eur Heart J. 2020;41:4471–80.

    Article  PubMed  PubMed Central  Google Scholar 

  1423. van der Heijden CAJ, Weberndörfer V, Vroomen M, Luermans JG, Chaldoupi S-M, Bidar E, et al. Hybrid ablation versus repeated catheter ablation in persistent atrial fibrillation. JACC Clin Electrophysiol. 2023;9:1013–23.

    Article  PubMed  Google Scholar 

  1424. Doll N, Weimar T, Kosior DA, Bulava A, Mokracek A, Mönnig G, et al. Efficacy and safety of hybrid epicardial and endocardial ablation versus endocardial ablation in patients with persistent and longstanding persistent atrial fibrillation: a randomised, controlled trial. EClinicalMedicine. 2023;61: 102052.

    Article  PubMed  PubMed Central  Google Scholar 

  1425. Pearman CM, Poon SS, Bonnett LJ, Haldar S, Wong T, Mediratta N, et al. Minimally invasive epicardial surgical ablation alone versus hybrid ablation for atrial fibrillation: a systematic review and metaanalysis. Arrhythm Electrophysiol Rev. 2017;6:202–9.

    Article  PubMed  PubMed Central  Google Scholar 

  1426. Bhatia NK, Shah RL, Deb B, Pong T, Kapoor R, Rogers AJ, et al. Mapping atrial fibrillation after surgical therapy to guide endocardial ablation. Circ Arrhythm Electrophysiol. 2022;15: e010502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1427. de Asmundis C, Chierchia GB, Mugnai G, Van Loo I, Nijs J, Czapla J, et al. Midterm clinical outcomes of concomitant thoracoscopic epicardial and transcatheter endocardial ablation for persistent and long-standing persistent atrial fibrillation: a single-centre experience. Europace. 2017;19:58–65.

    PubMed  Google Scholar 

  1428. Blackshear JL, Odell JA. Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation. Ann Thorac Surg. 1996;61:755–9.

    Article  CAS  PubMed  Google Scholar 

  1429. Osmancik P, Herman D, Neuzil P, Hala P, Taborsky M, Kala P, et al. Left atrial appendage closure versus direct oral anticoagulants in high-risk patients with atrial fibrillation. J Am Coll Cardiol. 2020;75:3122–35.

    Article  CAS  PubMed  Google Scholar 

  1430. Brouwer TF, Whang W, Kuroki K, Halperin JL, Reddy VY. Net clinical benefit of left atrial appendage closure versus warfarin in patients with atrial fibrillation: a pooled analysis of the randomized PROTECT-AF and PREVAIL studies. J Am Heart Assoc. 2019;8: e013525.

    Article  PubMed  PubMed Central  Google Scholar 

  1431. Albåge A, Sartipy U, Kennebäck G, Johansson B, Scherstén H, Jidéus L, Swedish Arrhythmia Surgery Group. Long-term risk of ischemic stroke after the Cox-maze III procedure for atrial fibrillation. Ann Thorac Surg. 2017;104:523–9.

    Article  PubMed  Google Scholar 

  1432. Wang H, Han J, Wang Z, Yin Z, Liu Z, Jin Y, et al. A prospective randomized trial of the cut-and-sew maze procedure in patients undergoing surgery for rheumatic mitral valve disease. J Thorac Cardiovasc Surg. 2018;155:608–17.

    Article  PubMed  Google Scholar 

  1433. Ad N, Holmes SD, Massimiano PS, Rongione AJ, Fornaresio LM. Long-term outcome following concomitant mitral valve surgery and Cox maze procedure for atrial fibrillation. J Thorac Cardiovasc Surg. 2018;155:983–94.

    Article  PubMed  Google Scholar 

  1434. Pet M, Robertson JO, Bailey M, Guthrie TJ, Moon MR, Lawton JS, et al. The impact of CHADS2 score on late stroke after the Cox maze procedure. J Thorac Cardiovasc Surg. 2013;146:85–9.

    Article  PubMed  Google Scholar 

  1435. Alqaqa A, Martin S, Hamdan A, Shamoon F, Asgarian KT. Concomitant left atrial appendage clipping during minimally invasive mitral valve surgery: technically feasible and safe. J Atr Fibrillation. 2016;9:1407.

    PubMed  PubMed Central  Google Scholar 

  1436. Suwalski P, Witkowska A, Drobiński D, Rozbicka J, Sypuła S, Liszka I, et al. Stand-alone totally thoracoscopic left atrial appendage exclusion using a novel clipping system in patients with high risk of stroke – initial experience and literature review. Kardiochir Torakochirurgia Pol. 2015;12:298–303.

    PubMed  PubMed Central  Google Scholar 

  1437. Osmancik P, Budera P, Zdarska J, Herman D, Petr R, Fojt R, et al. Residual echocardiographic and computed tomography findings after thoracoscopic occlusion of the left atrial appendage using the AtriClip PRO device. Interact Cardiovasc Thorac Surg. 2018;26:919–25.

    Article  PubMed  Google Scholar 

  1438. Bedeir K, Warriner S, Kofsky E, Gullett C, Ramlawi B. Left atrial appendage epicardial clip (AtriClip): essentials and post-procedure management. J Atr Fibrillation. 2019;11:2087.

    PubMed  PubMed Central  Google Scholar 

  1439. Lee R, Vassallo P, Kruse J, Malaisrie SC, Rigolin V, Andrei A-C, et al. A randomized, prospective pilot comparison of 3 atrial appendage elimination techniques: internal ligation, stapled excision, and surgical excision. J Thorac Cardiovasc Surg. 2016;152:1075–80.

    Article  PubMed  Google Scholar 

  1440. Kanderian AS, Gillinov AM, Pettersson GB, Blackstone E, Klein AL. Success of surgical left atrial appendage closure: assessment by transesophageal echocardiography. J Am Coll Cardiol. 2008;52:924–9.

    Article  PubMed  Google Scholar 

  1441. Vainrib AF, Harb SC, Jaber W, Benenstein RJ, Aizer A, Chinitz LA, et al. Left atrial appendage occlusion/exclusion: procedural image guidance with transesophageal echocardiography. J Am Soc Echocardiogr. 2018;31:454–74.

    Article  PubMed  Google Scholar 

  1442. van Laar C, Verberkmoes NJ, van Es HW, Lewalter T, Dunnington G, Stark S, et al. Thoracoscopic left atrial appendage clipping: a multicenter cohort analysis. JACC Clin Electrophysiol. 2018;4:893–901.

    Article  PubMed  Google Scholar 

  1443. Smith NE, Joseph J, Morgan J, Masroor S. Initial experience with minimally invasive surgical exclusion of the left atrial appendage with an epicardial clip. Innovations. 2017;12:28–32.

    PubMed  Google Scholar 

  1444. Ad N, Massimiano PS, Shuman DJ, Pritchard G, Holmes SD. New approach to exclude the left atrial appendage during minimally invasive cryothermic surgical ablation. Innovations. 2015;10:323–7.

    PubMed  Google Scholar 

  1445. Starck CT, Steffel J, Emmert MY, Plass A, Mahapatra S, Falk V, et al. Epicardial left atrial appendage clip occlusion also provides the electrical isolation of the left atrial appendage. Interact Cardiovasc Thorac Surg. 2012;15:416–8.

    Article  PubMed  PubMed Central  Google Scholar 

  1446. Toale C, Fitzmaurice GJ, Eaton D, Lyne J, Redmond KC. Outcomes of left atrial appendage occlusion using the AtriClip device: a systematic review. Interact Cardiovasc Thorac Surg. 2019;29:655–62.

    Article  PubMed  Google Scholar 

  1447. Ailawadi G, Gerdisch MW, Harvey RL, Hooker RL, Damiano RJ Jr, Salamon T, et al. Exclusion of the left atrial appendage with a novel device: early results of a multicenter trial. J Thorac Cardiovasc Surg. 2011;142(1002–9):1009.e1.

    PubMed  Google Scholar 

  1448. Emmert MY, Puippe G, Baumüller S, Alkadhi H, Landmesser U, Plass A, et al. Safe, effective and durable epicardial left atrial appendage clip occlusion in patients with atrial fibrillation undergoing cardiac surgery: first long-term results from a prospective device trial. Eur J Cardiothorac Surg. 2014;45:126–31.

    Article  PubMed  Google Scholar 

  1449. Caliskan E, Sahin A, Yilmaz M, Seifert B, Hinzpeter R, Alkadhi H, et al. Epicardial left atrial appendage AtriClip occlusion reduces the incidence of stroke in patients with atrial fibrillation undergoing cardiac surgery. Europace. 2018;20:e105-14.

    Article  PubMed  Google Scholar 

  1450. Zhang S, Cui Y, Li J, Tian H, Yun Y, Zhou X, et al. Concomitant transcatheter occlusion versus thoracoscopic surgical clipping for left atrial appendage in patients undergoing ablation for atrial fibrillation: a metaanalysis. Front Cardiovasc Med. 2022;9: 970847.

    Article  PubMed  PubMed Central  Google Scholar 

  1451. Branzoli S, Guarracini F, Marini M, D’Onghia G, Catanzariti D, Merola E, et al. Heart team for left appendage occlusion without the use of antithrombotic therapy: the epicardial perspective. J Clin Med. 2022;11:6492.

    Article  PubMed  PubMed Central  Google Scholar 

  1452. Zipes DP, Calkins H, Daubert JP, Ellenbogen KA, Field ME, Fisher JD, et al. 2015 ACC/AHA/HRS advanced training statement on clinical cardiac electrophysiology (a revision of the ACC/AHA 2006 update of the clinical competence statement on invasive electrophysiology studies, catheter ablation, and cardioversion). Circ Arrhythm Electrophysiol. 2015;8:1522–51.

    Article  PubMed  Google Scholar 

  1453. Hoffmann R, Parade U, Bauerle H, Winter KD, Rauschenbach U, Mischke K, et al. Safety and acute efficacy of cryoballoon ablation for atrial fibrillation at community hospitals. Europace. 2021;23:1744–50.

    Article  PubMed  Google Scholar 

  1454. Vassilikos VP, Pagourelias ED, Laroche C, Blomström-Lundqvist C, Kautzner J, Maggioni AP, et al. Impact of centre volume on atrial fibrillation ablation outcomes in Europe: a report from the ESC EHRA EORP Atrial Fibrillation Ablation Long-Term (AFA LT) registry. Europace. 2021;23:49–58.

    Article  PubMed  Google Scholar 

  1455. Steinemann S, Berg B, Skinner A, DiTulio A, Anzelon K, Terada K, et al. In situ, multidisciplinary, simulation-based teamwork training improves early trauma care. J Surg Educ. 2011;68:472–7.

    Article  PubMed  Google Scholar 

  1456. Miller D, Crandall C, Washington C 3rd, McLaughlin S. Improving teamwork and communication in trauma care through in situ simulations. Acad Emerg Med. 2012;19:608–12.

    Article  PubMed  Google Scholar 

  1457. Friedman DJ, Pokorney SD, Khanna R, Goldstein L, Atwater BD, Bahnson TD, et al. Catheter ablation of atrial fibrillation with and without on-site cardiothoracic surgery. J Am Coll Cardiol. 2019;73:2487–9.

    Article  PubMed  Google Scholar 

  1458. Pope MTB, Kuklik P, Briosa EGA, Leo M, Mahmoudi M, Paisey J, et al. Impact of adenosine on wavefront propagation in persistent atrial fibrillation: insights from global noncontact charge density mapping of the left atrium. J Am Heart Assoc. 2022;11: e021166.

    Article  PubMed  PubMed Central  Google Scholar 

  1459. Tang S, Razeghi O, Kapoor R, Alhusseini MI, Fazal M, Rogers AJ, et al. Machine learning-enabled multimodal fusion of intra-atrial and body surface signals in prediction of atrial fibrillation ablation outcomes. Circ Arrhythm Electrophysiol. 2022;15: e010850.

    Article  PubMed  PubMed Central  Google Scholar 

  1460. Saglietto A, Gaita F, Blomstrom-Lundqvist C, Arbelo E, Dagres N, Brugada J, et al. AFA-Recur: an ESC EORP AFA-LT registry machine-learning web calculator predicting atrial fibrillation recurrence after ablation. Europace. 2023;25:92–100.

    Article  PubMed  Google Scholar 

  1461. Stojadinovic P, Wichterle D, Peichl P, Nakagawa H, Cihak R, Haskova J, et al. Autonomic changes are more durable after radiofrequency than pulsed electric field pulmonary vein ablation. JACC Clin Electrophysiol. 2022;8:895–904.

    Article  PubMed  Google Scholar 

  1462. Boyle PM, Zghaib T, Zahid S, Ali RL, Deng D, Franceschi WH, et al. Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nat Biomed Eng. 2019;3:870–9.

    Article  PubMed  PubMed Central  Google Scholar 

  1463. Cuculich PS, Schill MR, Kashani R, Mutic S, Lang A, Cooper D, et al. Noninvasive cardiac radiation for ablation of ventricular tachycardia. N Engl J Med. 2017;377:2325–36.

    Article  PubMed  PubMed Central  Google Scholar 

  1464. Qian PC, Azpiri JR, Assad J, Gonzales Aceves EN, Cardona Ibarra CE, de la Pena C, et al. Noninvasive stereotactic radioablation for the treatment of atrial fibrillation: first-in-man experience. J Arrhythm. 2020;36:67–74.

    Article  PubMed  Google Scholar 

  1465. Hohmann S, Deisher AJ, Konishi H, Rettmann ME, Suzuki A, Merrell KW, et al. Catheter-free ablation of infarct scar through proton beam therapy: tissue effects in a porcine model. Heart Rhythm. 2020;17:2190–9.

    Article  PubMed  Google Scholar 

  1466. Avram R, Ramsis M, Cristal AD, Nathan V, Zhu L, Kim J, et al. Validation of an algorithm for continuous monitoring of atrial fibrillation using a consumer smartwatch. Heart Rhythm. 2021;18:1482–90.

    Article  PubMed  Google Scholar 

  1467. Zhu L, Nathan V, Kuang J, Kim J, Avram R, Olgin J, et al. Atrial fibrillation detection and atrial fibrillation burden estimation via wearables. IEEE J Biomed Health Inform. 2022;26:2063–74.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stylianos Tzeis.

Ethics declarations

Conflict of interest:

Tzeis Stylianos, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Abbott: Speaker fees, advisory board fees, honoraria. Bayer: Speaker fees, advisory board fees, honoraria. Pfizer: Speaker fees, advisory board fees, honoraria. Biosense Webster: Speaker fees, advisory board fees, honoraria.

Zeppenfeld Katja, 2021, Research funding from healthcare industry under your direct/personal responsibility (to department or institution). Biosense Webster: Research electrophysiology.

Andrade Jason, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Biosense Webster: Ablation. Medtronic: Ablation, CIED. Servier: SPAF. Bayer Healthcare: SPAF. Bristol Myers Squibb-Pfizer Alliance: SPAF. Employment in healthcare industry (including part time) during the year for which you are declaring. Chair Cardiovascular Disease Network for the provincial government (British Columbia, Canada) - reimbursement <10 k€/year.

Barbhaiya Chirag, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Abbott: Catheter Ablation. Biosense Webster: Catheter Ablation. Zoll Medical: Sudden Cardiac Death.

Baykaner Tina, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Medtronic: Advisory board.

Boveda Serge, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Medtronic: Arrhythmias (cryoablation). Microport: Arrhythmias (ICD). Boston Scientific: Arrhythmias (S-ICD). Pfizer: OAD. Bristol Myers Squibb: OAD. Zoll Medical: WCD.

Calkins Hugh, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Boehringer-Ingelheim: catheter ablation. Boston Scientific: catheter ablation. Medtronic: catheter ablation. Sanofi Aventis: catheter ablation. Atricure: catheter ablation. Abbott Medical: catheter ablation. Johnson and Johnson: catheter ablation. Research funding from healthcare industry under your direct/personal responsibility (to department or institution). Boston Scientific: ventricular tachycardia. Membership or affiliation in political, advocacy or patients organisations working in the field of cardiology. I am a member of the ACC and AHA.

Chan Ngai-Yin, 2021, Nothing to be declared.

Chen Shih-Ann, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Abbott: Cardiac arrhythmias.

Chen Minglong, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Bayer: Lecture fee. Medtronic: Lecture fee. Biosense Webster: Lecture fee. St. Jude Medical: Lecture fee. Boehringer Ingelheim: Lecture fee. Research funding from healthcare industry under your direct/personal responsibility (to department or institution). Biosense Webster: Research funding.

Dagres Nikolaos, 2021, Nothing to be declared.

Damiano Ralph, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Medtronic: Atrial fibrillation ablation. Atricure: Atrial Fibrillation ablation. Edwards Lifesciences: Valve Disease. Research funding from healthcare industry under your direct/personal responsibility (to department or institution). Atricure: AF Ablation. Medtronic: Testing ablation device.

De Potter Tom, 2021, Nothing to be declared.

Deisenhofer Isabel, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Abbott: Catheter ablation. Boston Scientific: Catheter ablation. Bristol Myers Squibb: Catheter ablation. Biosense Webster: Catheter ablation. Volta: catheter ablation, PI in multicenter study. Payment from healthcare industry to your department or institution or any other body for your personal services: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Daiichi Sankyo: Link between AF ablation success and genetic predisposition (multicenter study). Abbott: multipoint high resolution mapping of persistent AF. Abbott: Real world registry of MD. Biosense Webster: Real world registry of MD. Travel and meeting support from healthcare industry, independent of the above activities. Abbott: Travel to the German Arrhythmia fall meeting and to HRS (Boston). Membership or affiliation in political, advocacy or patients organisations working in the field of cardiology. Fellow of Heart Rhythm Society (HRS), member of the German Society of Cardiology (DGK), member of American Heart Association (AHA), member of American College of Cardiology (ACC).

Derval Nicolas, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Biosense Webster: atrial fibrillation. Travel and meeting support from healthcare industry, independent of the above activities. Abbott: arrhythmia. Research funding from healthcare industry under your direct/personal responsibility (to department or institution). Biosense Webster: atrial fibrillation ablation.

Di Biase Luigi, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Abbott: Consultant. Boston Scientific: Consultant. Medtronic: Consultant. Stereotaxis: Consultant. Atricure: Consultant. Baylis: Consultant. Biosense Webster: Consultant for Ablation. Rhythm Management Group: Consultant Remote Medicine. Biotronik: Consultant/Teacher. Zoll Medical: Teaching.

Duytschaever Mattias, 2021, Payment from healthcare industry to your department or institution or any other body for your personal services: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Boston Scientific: atrial fibrillation-speaker. Medtronic: atrial fibrillation-speaker. Biotronik: atrial fibrillation-speaker. Biosense Webster: atrial fibrillation-speaker.

Dyrda Katia, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. thermedical: Catheter ablation. Johnson & Johnson: Ventricular Tachycardia.

Gerstenfeld Edward, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Biosense Webster: Advisory Board. Abbott: Lecture Honoraria. Boston Scientific: Lecture honoraria. Medtronic: Lecture honoraria. Lecture Honoraria: Lecture honoraria. Research funding (personal) from healthcare industry. Abbott: Research grant. Adagio Medical: Research grant.

Hindricks Gerhard, 2021, Nothing to be declared.

Hocini Meleze, 2021, Nothing to be declared.

Kalman Jonathan, 2021, Payment from healthcare industry to your department or institution or any other body for your personal services: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Abbott, Medtronic, Biosense Webster: Speaker fees and Honoraria paid to institutional fund. Travel and meeting support from healthcare industry, independent of the above activities. Biosense Webster: Travel support to attend a meeting at which I was delivering the keynote address, February 2019. Research funding from healthcare industry under your direct/personal responsibility (to department or institution). Abbott, Medtronic, Biosense Webster: Fellowship and research support administered via institutional fund. Membership or affiliation in political, advocacy or patients organisations working in the field of cardiology. Board Member, Hearts for Hearts patient advocacy organisation. Unpaid.

Kim Young-Hoon, 2021, Nothing to be declared.

Michaud Gregory F, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. GE Healthcare: Consulting. Abbott: Honoraria/ Consulting. Boston Scientific: Honoraria/ Consulting. Medtronic: Honoraria/ Consulting. Biosense Webster: Honoraria/ Consulting.

Natale Andrea, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Boston Scientific: catheter ablation. Medtronic: catheter ablation. Biotronik: catheter ablation. Abbott Laboratories: catheter ablation. Biosense Webster: catheter ablation. Baylis: catheter ablation.

Nault Isabelle, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Bayer: anticoagulation and atrial fibrillation. Pfizer: anticoagulation and atrial fibrillation. Servier: anticoagulation and atrial fibrillation. Biosense Webster: atrial fibrillation. Membership or affiliation in political, advocacy or patients organisations working in the field of cardiology. Member of the climate changes committee of the Canadian Cardiology Society.

Nava Townsend Santiago, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Johnson & Johnson: Cardiac ablation. Medtronic: Cardiac Pacing an Defibrillators. Abbott: Cardiac Pacing and Defibrillators. Cook Medical: Lead Extraction.

Nitta Takashi, 2021, Nothing to be declared.

O’Neill Mark, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Medtronic: Cardiac Electrophysiology. Biosense Webster: Cardiac Electrophysiology, Research funding from healthcare industry under your direct/personal responsibility (to department or institution). Abbott: Cardiac Electrophysiology. Biosense Webster: Cardiac Electrophysiology.

Pak Hui-Nam, 2021, Nothing to be declared.

Piccini Jonathan, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Boston Scientific: Arrhythmia. Philips: Arrhythmia. Biotronik: Arrhythmia. Element Science: Arrhythmia. Itamar: Arrhythmia. Milestone: Arrhythmia. Altathera: Arrhythmia. Abbott: Atrial fibrillation. Sanofi Aventis: Atrial fibrillation. Bayer Healthcare: Atrial fibrillation. Myocardial/BMS: Atrial fibrillation. Electrophysiology Frontiers: Atrial fibrillation. Medtronic: Atrial fibrillation & Pacing. LIvanova: Event Adjudication. Research funding from healthcare industry under your direct/personal responsibility (to department or institution). iRhythm: Arrhythmia. Bayer: Atrial fibrillation. Advancement of Medical Instrumentation: CIED lead safety. Boston Scientific: Core Lab Adjudication. American Heart Association: CV disease. Abbott: Electroanatomic mapping. Philips: Lead management.

Puererfellner Helmut, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Abbott: Arrhythmology. Bayer: Arrhythmology. Boehringer-Ingelheim: Arrhythmology. Boston Scientific: Arrhythmology. Daiichi Sankyo: Arrhythmology. Medtronic: Arrhythmology. Pfizer: Arrhythmology. Bristol Myers Squibb: Arrhythmology. Biosense Webster: Arrhythmology.

Reichlin Tobias, 2021, Payment from healthcare industry to your department or institution or any other body for your personal services: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Medtronic: Leadless Pacemaker, Diabetes, Ablation catheters. Biosense Webster: Mapping & Ablation System. Boston Scientific: Mapping System, Ablation Catheters. Biotronik: Mapping System, Ablation Catheters, Pacemaker. Bayer: NOAC. Research funding from healthcare industry under your direct/personal responsibility (to department or institution). Biosense Webster: Mapping & Ablation. Medtronic: PM & ICD, Ablation. Boston Scientific: PM & ICD, Mapping & Ablation. Biotronik: PM, ICD & ICM.

Saad Eduardo, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Abbott: Speaker Fees. Biotronik: Speaker Fees. Biosense Webster: Speaker Fees.

Saenz Morales Luis Carlos, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Biosense Webster: ABLATION. Payment from healthcare industry to your department or institution or any other body for your personal services: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Biosense Webster: PRECEPTOR.

Sanders Prashanthan, 2021, Payment from healthcare industry to your department or institution or any other body for your personal services: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Boston Scientific: Advisory Board. Medtronic: Advisory Board. CathRx: Advisory Board. Abbott Medical: Advisory Board. Pacemate: Advisory Board. Research funding from healthcare industry under your direct/personal responsibility (to department or institution). Boston Scientific: CAAN AF. Medtronic: Multiple studies. Microport: Multiple studies. Abbott Medical: Multiple studies. Becton Dickenson: POWDER-CIED. Membership or affiliation in political, advocacy or patients organisations working in the field of cardiology. Medical Advisory Committee for Hearts4Heart a patient advocacy organization in Australia.

Schilling Richard, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Abbott: rhythm management. Boston Scientific: rhythm management. Medtronic: rhythm management. Biosense Webster: rhythm management. Direct ownership of shares or direct financial interest in healthcare, media, education companies or in companies related to (suppliers), or in competition with the ESC and its mission: to reduce the burden of cardiovascular disease. Healthcare - ARRHYTHMIAS - Shareholder and chair Rhythm AI limited. Employment in healthcare industry (including part time) during the year for which you are declaring. Consultant to Welbeck Health partners.

Schmidt Boris, 2021, Research funding from healthcare industry under your direct/personal responsibility (to department or institution). Medtronic: AF ablation. Biosense Webster: AF ablation. Abbott: LAA occlusion. Membership or affiliation in political, advocacy or patients organisations working in the field of cardiology. German Cardiac Society - Member of the Working Group for Arrhythmias Member and Fellow of HRS Member of EHRA Member of ALKK - Leading Cardiologists in Germany.

Supple Gregory, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Biotronik: VT ablation. Membership or affiliation in political, advocacy or patients organisations working in the field of cardiology. Heart Rhythm Society.

Thomas Kevin, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Biosense Webster: Racial equity. Membership or affiliation in political, advocacy or patients organisations working in the field of cardiology. American Heart Association American College of Cardiology Heart Rhythm Society Association of Black Cardiologists.

Tondo Claudio, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Boston Scientific: Ablation/LAA. Payment from healthcare industry to your department or institution or any other body for your personal services: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Medtronic: Pacing/Ablation. Travel and meeting support from healthcare industry, independent of the above activities. Boston Scientific: Ablation/LAA.

Verma Atul, 2021, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Medtronic: Consultancy, Investigator. Biosense Webster: Consultancy, Investigator. Adagio Medical: Consultancy, Investigator. Galaxy Medical: Consultancy, Investigator. Medlumics: Consultancy, Investigator. Research funding from healthcare industry under your direct/personal responsibility (to department or institution). Biosense Webster: Investigator-initiated randomized trial.

Wan Elaine, 2021, Research funding (personal) from healthcare industry. National Institute for Health Research: Ion channel research.

Zoghbi William, 2021, Nothing to be declared.

Sepehri Shamloo Alireza, 2022, Nothing to be declared.

Steven Daniel, 2022, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Abbott: Atrial Fibrillation (AF). Boston Scientific: Atrial Fibrillation (AF). Johnson & Johnson: Atrial Fibrillation (AF). Travel and meeting support from healthcare industry, independent of the above activities. Abbott: Atrial Fibrillation (AF). Johnson & Johnson: Atrial Fibrillation (AF). Research funding (personal) from healthcare industry. Abbott: Device Registry, PI.

Agbayani Michael Joseph, 2022, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Bayer: Atrial Fibrillation (AF). Menarini: Atrial Fibrillation (AF). Astra Zeneca: Chronic Heart Failure. Travel and meeting support from healthcare industry, independent of the above activities. Medtronic: Arrhythmias, General.

Bunch T Jared, 2022, Research funding from healthcare industry under your direct/personal responsibility (to department or institution). Abbott Medical: AVEIR DR study, AVEIR DR i2i study, Steering committee, Site PI. Boehringer-Ingelheim: Cognitive Atrial Fibrillation study - randomized trial of dabigatran vs warfarin with assessment of cognition, Principle investigator. Altathera: Sotalol economics analysis for IV versus oral administration, Principle Investigator. Membership or affiliation in political or advocacy groups working in the field of cardiology. Heart Rhythm Society (member), American College of Cardiology (member).

Chugh Aman, 2022, Nothing to be declared.

Diaz Juan, 2022, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Astra Zeneca: Chronic Heart Failure. Medtronic: Device Therapy, Chronic Heart Failure. Boston Scientific: Other. Travel and meeting support from healthcare industry, independent of the above activities. Boston Scientific: Other.

Freeman James, 2022, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. American College of Cardiology: Atrial Fibrillation (AF), Stroke. Biosense Webster: Atrial Fibrillation (AF), Ventricular Arrhythmias and Sudden Cardiac Death (SCD). Boston Scientific: Device Therapy. Medtronic: Device Therapy. Research funding (personal) from healthcare industry. NIH: R01 grant, PI.

Hardy Carina Abigail, 2022, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Biosense Webster: Interventional Cardiology.

Heidbuchel Hein, 2022, Payment from healthcare industry to your department or institution or any other body for your personal services: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Daiichi Sankyo: Arrhythmias, General, Atrial Fibrillation (AF). Pfizer: Arrhythmias, General, Atrial Fibrillation (AF). Biotronik: Arrhythmias, General, Atrial Fibrillation (AF). Medscape: Arrhythmias, General, Atrial Fibrillation (AF). European Society of Cardiology: Arrhythmias, General, Atrial Fibrillation (AF). BMS: Arrhythmias, General, Atrial Fibrillation (AF). Milestone Pharmaceuticals: Arrhythmias, General, Atrial Fibrillation (AF). Springer Healthcare Ltd.: Arrhythmias, General, Atrial Fibrillation (AF). Centrix India: Arrhythmias, General, Atrial Fibrillation (AF). CTI Germany: Arrhythmias, General, Atrial Fibrillation (AF). Research funding from healthcare industry under your direct/personal responsibility (to department or institution). Fibricheck-Qompium: site investigator, site investigator. Abbott: Whole portfolio of investigator-initiated studies of the Antwerp University Cardiology Research Fund , site investigator. Bayer: Whole portfolio of investigator-initiated studies of the Antwerp University Cardiology Research Fund , site investigator. Boston Scientific: Whole portfolio of investigator-initiated studies of the Antwerp University Cardiology Research Fund , site investigator. Daiichi Sankyo: Whole portfolio of investigator-initiated studies of the Antwerp University Cardiology Research Fund , site investigator. Medtronic: Whole portfolio of investigator-initiated studies of the Antwerp University Cardiology Research Fund , site investigator. Pfizer/BMS: Whole portfolio of investigator-initiated studies of the Antwerp University Cardiology Research Fund , site investigator. Biosense-Webster: Whole portfolio of investigator-initiated studies of the Antwerp University Cardiology Research Fund , site investigator. Fibricheck/Qompium: Whole portfolio of investigator-initiated studies of the Antwerp University Cardiology Research Fund , site investigator. Any other interest (financial or otherwise) that should be declared in view of holding an ESC position. Shareholder and executive officer of my VAT-compliant speaker company Jorestha Solutions BV, as required by Belgian law, including official reporting of payments to Jorestha Solutions bv according to the Belgian Sunshine Act, for all lectures and advisory committee work reported under 2.A above.

Johar Sofian, 2022, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Biosense Webster: Atrial Fibrillation (AF).

Linz Dominik, 2022, Nothing to be declared.

Llorente Jose, 2022, Nothing to be declared.

Maesen Bart, 2022, Payment from healthcare industry to your department or institution or any other body for your personal services: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Medtronic: Atrial Fibrillation (AF). Atricure: Atrial Fibrillation (AF). Research funding from healthcare industry under your direct/personal responsibility (to department or institution). Medtronic: research grant 1 95.000 EUR over 2 years, research grant 2 240.000 EUR over 4 years , PI.

Nair Devi, 2022, Research funding from healthcare industry under your direct/personal responsibility (to department or institution). Medtronic: IDE Trial, Principal Investigator. Abbott: IDE Trials, Principal Investigator. Boston Scientific: IDE Trials, Principal Investigator. Biosense Webster: IDE Trials, Principal Investigator.

Noseworthy Peter, 2022, Receipt of royalties for intellectual property. Anumana: Risk Factors and Prevention.

Oh Seil, 2022, Membership or affiliation in political or advocacy groups working in the field of cardiology. Fellow of the Heart RHythm Society (FHRS).

Porta-Sanchez Andreu, 2022, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Boston Scientific: Arrhythmias, General. Biosense Webster: Atrial Fibrillation (AF). Abbott Laboratories: Ventricular Arrhythmias and Sudden Cardiac Death (SCD). Travel and meeting support from healthcare industry, independent of the above activities. Biosense Webster: Ventricular Arrhythmias and Sudden Cardiac Death (SCD).

Potpara Tatjana, 2022, Nothing to be declared.

Rodriguez-Diez Gerardo, 2022, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Medtronic: Atrial Fibrillation (AF).

Sacher Frederic, 2022, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Inheart medical: 5 items checked. Boston Scientific: Arrhythmias, General. Biosense Webster: Arrhythmias, General. Abbott: Ventricular Arrhythmias and Sudden Cardiac Death (SCD).

Sepehri Shamloo Alireza, 2022, Nothing to be declared.

Steven Daniel, 2022, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Abbott: Atrial Fibrillation (AF). Boston Scientific: Atrial Fibrillation (AF). Johnson & Johnson: Atrial Fibrillation (AF). Travel and meeting support from healthcare industry, independent of the above activities. Abbott: Atrial Fibrillation (AF). Johnson & Johnson: Atrial Fibrillation (AF). Research funding (personal) from healthcare industry. Abbott: Device Registry, PI.

Suwalski Piotr, 2022, Direct personal payment from healthcare industry: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Medtronic: 4 items checked. Atricure: Atrial Fibrillation (AF).

Trines Serge Alexander, 2022, Payment from healthcare industry to your department or institution or any other body for your personal services: speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member, etc. Biosense Webster: Atrial Fibrillation (AF), Ventricular Arrhythmias and Sudden Cardiac Death (SCD), Training and Education. Any other interest (financial or otherwise) that should be declared in view of holding an ESC position. Member of the Supervisory Board, Netherlands Society for Cardiology.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons licence. You do not have permission under this licence to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Document Reviewers: Daniel Steven (Reviewer Coordinator), Michael-Joseph Agbayani, T. Jared Bunch, Aman Chugh, Juan Carlos Díaz, James V. Freeman, Carina Abigail Hardy, Hein Heidbuchel, Sofian Johar, Dominik Linz, Bart Maesen, Peter A. Noseworthy, Seil Oh, Andreu Porta-Sanchez, Tatjana Potpara, Gerardo Rodríguez Diez, Frederic Sacher, Piotr Suwalski, and Serge Alexander Trines.

Developed in partnership with and endorsed by the European Heart Rhythm Association (EHRA), a branch of the European Society of Cardiology (ESC), the Heart Rhythm Society (HRS), the Asia Pacific Heart Rhythm Society (APHRS), and the Latin American Heart Rhythm Society (LAHRS). The document was peer-reviewed (anonymous review) by official external reviewers representing EHRA, HRS, APHRS, and LAHRS. This article has been co-published with permission in Europace, Heart Rhythm, Journal of Arrhythmia and Journal of Interventional Cardiac Electrophysiology. © Heart Rhythm Society, the European Society of Cardiology, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society 2024. The articles are identical except for minor stylistic and spelling differences in keeping with each journal’s style. Any citation can be used when citing this article.

Supplementary Information

Supplementary material is available at Europace online.

Supplementary file 1 (DOCX 88 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzeis, S., Gerstenfeld, E.P., Kalman, J. et al. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. J Interv Card Electrophysiol (2024). https://doi.org/10.1007/s10840-024-01771-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10840-024-01771-5

Keywords

Navigation