Skip to main content
Log in

Reduction of radiation exposure during ablation of atrial fibrillation

Verminderung der Strahlenbelastung bei Ablation wegen Vorhofflimmern

  • Original article
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Aims

Pulmonary vein isolation (PVI) during ablation of atrial fibrillation (Afib) may be associated with long fluoroscopy duration. Although most current publications report on fluoroscopy time (FT), the dose–area product (DAP) may be a more valuable parameter for depicting radiation exposure. The aim of our study was to describe a method to reduce DAP by simple means during ablation of Afib.

Methods

Patients undergoing Afib ablation using a three-dimensional (3D) mapping system were assigned to two fluoroscopy protocols: (1) standard settings with 7.5 pictures/s and collimation to the heart, fluoroscopy as needed for the convenience of the operator (standard group, SG); and (2) strict collimation to the left atrium, a frame rate of 4 pictures/s, shortened pulmonary vein angiography sequences, and maximal orientation by the 3D mapping system (redDAP group). The primary endpoint was DAP.

Results

The study comprised 206 patients, who were assigned to the SG (n = 101, 49 %) or to the redDAP group (n = 105, 51 %). Mean FT was significantly reduced from 29.9 ± 11.3 min (SG) to 13.3 ± 8.3 min (redDAP group); mean DAP was reduced by approximately 90 % from 8,690 ± 5,727 to 837 ± 647 cGycm2. The groups did not differ significantly in body mass index (28.8 ± 4.1 vs. 29.0 ± 5.0). PVI could be achieved in 98 of 101 patients (97 %) from the SG group and in all patients (100 %) from the redDAP group. Procedure time was significantly longer in the redDAP group (160.9 ± 35.7 vs. 138.1 ± 34.3 min).

Conclusion

Radiation exposure during Afib ablation procedures can be reduced with simple means by strict collimation to the left atrium, a frame rate of 4 pictures/s, shortened pulmonary vein angiography sequences, and maximal 3D orientation.

Zusammenfassung

Ziel

Die Pulmonalvenenisolation (PVI) bei der Ablation von Vorhofflimmern (VF) kann mit einer langen Durchleuchtungsdauer einhergehen. In den meisten aktuellen Veröffentlichungen wird zwar die Durchleuchtungsdauer angegeben, aber möglicherweise stellt das Dosis-Flächen-Produkt (DFP) einen Parameter von höherer Aussagekraft dar, um die Strahlenbelastung zu erfassen. Ziel der vorliegenden Studie war es, ein Verfahren zur Verminderung des DFP mit einfachen Mitteln bei Ablation von VF zu beschreiben.

Methoden

Patienten, bei denen eine Ablation wegen VF unter Einsatz eines dreidimensionalen (3-D-)Mapping-Systems erfolgte, wurden 2 unterschiedlichen Durchleuchtungsschemata zugeteilt: 1. Standardeinstellungen mit 7,5 Bildern/s und Einblendung auf das Herz, Durchleuchtung nach Erfordernissen des Operateurs (Standardgruppe, SG) und 2. strenge Einblendung auf den linken Vorhof, eine Bildfrequenz von 4 Bildern/s, verkürzte Pulmonalvenenangiographiesequenzen und maximale Orientierung mittels 3-D (redDAP-Gruppe). Primärer Endpunkt war das DFP.

Ergebnisse

Die Studie umfasste 206 Patienten, die der SG (n = 101, 49 %) oder der redDAP-Gruppe zugeteilt wurden (n = 105, 51 %). Die durchschnittliche Durchleuchtungsdauer wurde signifikant von 29,9 ± 11,3 min (SG) auf 13,3 ± 8,3 min (redDAP-Gruppe) reduziert; das durchschnittliche DFP wurde um annähernd 90 % von 8690 ± 5727 auf 837 ± 647 cGycm2 vermindert. Die Gruppen unterschieden sich nicht signifikant beim Body-Mass-Index (28,8 ± 4,1 vs. 29,0 ± 5,0). Die PVI wurde bei 98 von 101 Patienten (97 %) der SG und bei allen Patienten (100 %) der redDAP-Gruppe erzielt. Die Dauer der Prozedur war in der redDAP-Gruppe signifikant länger (160,9 ± 35,7 vs. 138,1 ± 34,3 min).

Schlussfolgerung

Die Strahlenbelastung bei Ablation von VF kann mit einfachen Mitteln durch strenge Einblendung auf den linken Vorhof, eine Bildfrequenz von4 Bildern/s, verkürzte PV-Angiographiesequenzen und maximale 3-D-Orientierung reduziert werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Camm AJ, Lip GY, De Caterina R, Savelieva I, Atar D et al (2012) 2012 focused update of the ESC Guidelines for the management of atrial fibrillation: an update of the 2010 ESC Guidelines for the management of atrial fibrillation. Developed with the special contribution of the European Heart Rhythm Association. Eur Heart J 33(21):2719–2747

    Article  PubMed  Google Scholar 

  2. Macle L, Weerasooriya R, Jais P, Scavee C, Raybaud F, Choi KJ, Hocini M, Clementy J, Haissaguerre M (2003) Radiation exposure during radiofrequency catheter ablation for atrial fibrillation. Pacing Clin Electrophysiol 26(1 Pt 2):288–291

    Article  PubMed  Google Scholar 

  3. Estner HL, Deisenhofer I, Luik A, Ndrepepa G, von Bary C et al (2006) Electrical isolation of pulmonary veins in patients with atrial fibrillation: reduction of fluoroscopy exposure and procedure duration by the use of a non-fluoroscopic navigation system (NavX). Europace 8(8):583–587

    Article  PubMed  Google Scholar 

  4. Finlay MC, Hunter RJ, Baker V, Richmond L, Goromonzi F et al (2012) A randomised comparison of Cartomerge vs. NavX fusion in the catheter ablation of atrial fibrillation: the CAVERN Trial. J Interv Card Electrophysiol 33(2):161–169

    Article  PubMed Central  PubMed  Google Scholar 

  5. De Buck S, La Gerche A, Ector J, Wielandts JY, Koopman P et al (2012) Asymmetric collimation can significantly reduce patient radiation dose during pulmonary vein isolation. Europace 14(3):437–444

    Article  PubMed  Google Scholar 

  6. Steven D, Servatius H, Rostock T, Hoffmann B, Drewitz I et al (2010) Reduced fluoroscopy during atrial fibrillation ablation: benefits of robotic guided navigation. J Cardiovasc Electrophysiol 21(1):6–12

    Article  PubMed  Google Scholar 

  7. Lakkireddy D, Nadzam G, Verma A, Prasad S, Ryschon K, Di Biase L, Khan M, Burkhardt D, Schweikert R, Natale A (2009) Impact of a comprehensive safety program on radiation exposure during catheter ablation of atrial fibrillation: a prospective study. J Interv Card Electrophysiol 24(2):105–112

    Article  PubMed  Google Scholar 

  8. Shah AJ, Pascale P, Miyazaki S, Liu X, Roten L, Derval N et al (2012) Prevalence and types of pitfall in the assessment of mitral isthmus linear conduction block. Circ Arrhythm Electrophysiol 5(5):957–967

    Article  PubMed  Google Scholar 

  9. Dixit S, Marchlinski FE, Lin D, Callans DJ, Bala R, Riley MP et al (2012) Randomized ablation strategies for the treatment of persistent atrial fibrillation: RASTA study. Circ Arrhythm Electrophysiol 5(2):287–294

    Article  PubMed  Google Scholar 

  10. Kiuchi K, Kircher S, Watanabe N, Gaspar T, Rolf S, Arya A et al (2012) Quantitative analysis of isolation area and rhythm outcome in patients with paroxysmal atrial fibrillation after circumferential pulmonary vein antrum isolation using the pace-and-ablate technique. Circ Arrhythm Electrophysiol 5(4):667–675

    Article  PubMed  Google Scholar 

  11. Chao TF, Tsao HM, Lin YJ, Tsai CF, Lin WS, Chang SL et al (2012) Clinical outcome of catheter ablation in patients with nonparoxysmal atrial fibrillation: results of 3-year follow-up. Circ Arrhythm Electrophysiol 5(3):514–520

    Article  PubMed  Google Scholar 

  12. Weerasooriya R, Khairy P, Litalien J, Macle L, Hocini M et al (2011) Catheter ablation for atrial fibrillation: are results maintained at 5 years of follow-up? J Am Coll Cardiol 57(2):160–166

    Article  PubMed  Google Scholar 

  13. Rostock T, Salukhe TV, Steven D, Drewitz I, Hoffmann BA et al (2011) Long-term single- and multiple-procedure outcome and predictors of success after catheter ablation for persistent atrial fibrillation. Heart Rhythm 8(9):1391–1397

    Article  PubMed  Google Scholar 

  14. Wieczorek M, Hoeltgen R, Akin E, Salili AR, Oral H, Morady F (2010) Results of short-term and long-term pulmonary vein isolation for paroxysmal atrial fibrillation using duty-cycled bipolar and unipolar radiofrequency energy. J Cardiovasc Electrophysiol 21(4):399–405

    Article  PubMed  Google Scholar 

  15. Stabile G, Scaglione M, del Greco M, De Ponti R, Bongiorni MG et al (2012) Reduced fluoroscopy exposure during ablation of atrial fibrillation using a novel electroanatomical navigation system: a multicentre experience. Europace 14(1):60–65

    Article  PubMed  Google Scholar 

  16. Peyrol M, Sbragia P, Quatre A, Boccara G, Zerrouk Z et al (2013) Pulmonary vein isolation using a single size cryoballoon chosen according to transesophageal echocardiography information. Int J Cardiol 168(1):108–111

    Article  PubMed  Google Scholar 

  17. Rogers DP, England F, Lozhkin K, Lowe MD, Lambiase PD, Chow AW (2011) Improving safety in the electrophysiology laboratory using a simple radiation dose reduction strategy: a study of 1007 radiofrequency ablation procedures. Heart 97(5):366–70

    Article  PubMed  Google Scholar 

  18. Rolf S, Sommer P, Gaspar T, John S, Arya A et al (2012) Ablation of atrial fibrillation using novel 4-dimensional catheter tracking within autoregistered left atrial angiograms. Circ Arrhythm Electrophysiol 5(4):684–690

    Article  PubMed  Google Scholar 

  19. Letsas KP, Siklódy CH, Korantzopoulos P, Weber R, Bürkle G et al (2013) The impact of body mass index on the efficacy and safety of catheter ablation of atrial fibrillation. Int J Cardiol 164(1):94–98

    Article  PubMed  Google Scholar 

  20. Hirshfeld JW Jr, Baiter S, Brinker JA, Kern MJ, Klein LW, Lindsay BD et al (2005) American College of Cardiology Foundation; American Heart Association/; HRS; SCAI; American College of Physicians Task Force on Clinical Competence and Training. ACCF/AHA/HRS/SCAI clinical competence statement on physician knowledge to optimize patient safety and image quality in fluoroscopically guided invasive cardiovascular procedures: a report of the American College of Cardiology Foundation/American Heart Association/American College of Physicians Task Force on Clinical Competence and Training. Circulation 111(4):511–532

    Article  PubMed  Google Scholar 

  21. Caponi D, Corleto A, Scaglione M, Blandino A, Biasco L et al (2010) Ablation of atrial fibrillation: does the addition of three-dimensional magnetic resonance imaging of the left atrium to electroanatomic mapping improve the clinical outcome?: a randomized comparison of Carto-Merge vs. Carto-XP three-dimensional mapping ablation in patients with paroxysmal and persistent atrial fibrillation. Europace 12(8):1098–1104

    Article  PubMed  Google Scholar 

  22. Bänsch D, Bittkau J, Schneider R, Schneider C, Wendig I, Akin I et al (2013) Circumferential pulmonary vein isolation: wait or stop early after initial successful pulmonary vein isolation? Europace 15(2):183–188

    Article  PubMed  Google Scholar 

  23. Rivard L, Hocini M, Rostock T, Cauchemez B, Forclaz A, Jadidi AS et al (2012) Improved outcome following restoration of sinus rhythm prior to catheter ablation of persistent atrial fibrillation: a comparative multicenter study. Heart Rhythm 9(7):1025–1030

    Article  PubMed  Google Scholar 

  24. Kesek M, Wallenius N, Rönn F, Höglund N, Jensen S (2006) Reduction of fluoroscopy duration in radiofrequency ablation obtained by the use of a non-fluoroscopic catheter navigation system. Europace 8(12):1027–1030

    Article  PubMed  Google Scholar 

  25. Estner HL, Deisenhofer I, Luik A, Ndrepepa G, von Bary C, Zrenner B, Schmitt C (2006) Electrical isolation of pulmonary veins in patients with atrial fibrillation: reduction of fluoroscopy exposure and procedure duration by the use of a non fluoroscopic navigation system (NavX). Europace 8(8):583–587

    Article  PubMed  Google Scholar 

  26. Jilek C, Hessling G, Ammar S, Fichtner S, Reents T, Estner HL et al (2011) Visualization of multiple catheters in left atrial ablation procedures. Comparison of two different 3D mapping systems. Herzschrittmacherther Elektrophysiol 22(1):39–45

    Article  CAS  PubMed  Google Scholar 

  27. Reddy VY, Morales G, Ahmed H, Neuzil P, Dukkipati S, Kim S et al (2010) Catheter ablation of atrial fibrillation without the use of fluoroscopy. Heart Rhythm 7(11):1644–1653

    Article  PubMed  Google Scholar 

  28. Wielandts JY, De Buck S, Ector J, Lagerche A, Willems R, Bosmans H et al (2010) Three-dimensional cardiac rotational angiography: effective radiation dose and image quality implications. Europace 12(2):194–201

    Article  PubMed  Google Scholar 

  29. Hart D, Hillier MC, Wall BF (2009) National reference doses for common radiographic, fluoroscopic and dental X-ray examinations in the UK. Br J Radiol 82(973):1–12

    Article  CAS  PubMed  Google Scholar 

  30. Diagnostische Referenzwerte—Bundesamt für Strahlenschutz. www.bfs.de/de/ion/medizin/referenzwerte02.pdf.‎ Accessed 22 June 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Schneider MD.

Ethics declarations

Conflict of interest

R. Schneider, J. Lauschke, C. Schneider, T. Tischer, A. Glass, and D. Bänsch state that there are no conflicts of interest.

Additional information

R. Schneider and J. Lauschke contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, R., Lauschke, J., Schneider, C. et al. Reduction of radiation exposure during ablation of atrial fibrillation. Herz 40, 883–891 (2015). https://doi.org/10.1007/s00059-015-4307-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-015-4307-2

Keywords

Schlüsselwörter

Navigation