Skip to main content

Advertisement

Log in

Pulmonary vein isolation combined with spironolactone or renal sympathetic denervation in patients with chronic kidney disease, uncontrolled hypertension, paroxysmal atrial fibrillation, and a pacemaker

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background

Atrial fibrillation (AF) commonly occurs in chronic kidney disease (CKD), occasioning adverse outcomes. Merging pulmonary vein isolation (PVI) and renal sympathetic denervation (RSD) may decrease the recurrence of AF in subjects with CKD and uncontrolled hypertension. We considered that RSD could reduce the recurrence of AF in patients with CKD by modulating sympathetic hyperactivity. We aimed to evaluate the impact of RSD or spironolactone 50 mg/day associated with PVI in reducing systolic blood pressure (BP), AF recurrence, and AF burden in patients with a history of paroxysmal AF and mild CKD.

Methods

This was a single-center, prospective, longitudinal, randomized, double-blind study. The individuals were randomly divided into two groups (PVI + spironolactone, n = 36, and PVI + RSD, n = 33). All of them were followed for exactly 1 year to assess maintenance of sinus rhythm and to monitor the other variables.

Results

Ambulatory BP measurements were reduced in both groups and at the 12th month also differed between groups. Significantly more patients in the PVI + RSD (61%) than in the PVI + spironolactone group (36%) were AF-free at the 12th month of follow-up, P = 0.0242. Toward the end of the study, the mean AF burden was lower in the PVI + RSD group as compared to PVI + spironolactone group, at the 9th month: ∆ = − 10% (P < 0.0001), and at the 12th month: ∆ = − 12% (P < 0.0001), respectively.

Conclusions

PVI + RSD is safe and appears to be superior to PVI + spironolactone in BP reduction, augmentation of AF event-free rate, reduction of AF burden, and improvement of renal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABPM:

ambulatory blood pressure measurements

AF:

atrial fibrillation

ANS:

autonomic nervous system

BP:

blood pressure

CI:

confidence interval

CKD:

chronic kidney disease

eGFR:

estimated glomerular filtration rate

LA:

left atrium

LV:

left ventricular

LVEF:

left ventricular ejection fraction

PVI:

pulmonary vein isolation

PVs:

pulmonary veins

RF:

radiofrequency

RSD:

renal sympathetic denervation

References

  1. Stewart S, Hart CL, Hole DJ, McMurray JJ. Population prevalence, incidence, and predictors of atrial fibrillation in the Renfrew/Paisley study. Heart. 2001;86(5):516–21. https://doi.org/10.1136/heart.86.5.516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Go AS, Hylek EM, Phillips KA, Chang Y, Henault LE, Selby JV, Singer DE. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA. 2001;285(18):2370–5.

  3. Bansal N, Xie D, Tao K, Chen J, Deo R, Horwitz E, Hsu CY, Kallem RK, Keane MG, Lora CM, Raj D, Soliman EZ, Strauss L, Wolf M, Go AS, CRIC Study. Atrial Fibrillation and Risk of ESRD in Adults with CKD. Clin J Am Soc Nephrol. 2016;11(7):1189–96.

  4. European Heart Rhythm Association; European Association for Cardio-Thoracic Surgery, Camm AJ, Kirchhof P, Lip GY, Schotten U, Savelieva I, et al. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur Heart J. 2010;31:2369–429.

    Article  Google Scholar 

  5. Kiuchi MG, Chen S, Andrea BR, Kiuchi T, Carreira MA, Graciano ML, et al. Renal sympathetic denervation in patients with hypertension and chronic kidney disease: does improvement in renal function follow blood pressure control? J Clin Hypertens (Greenwich). 2014;16(11):794–800. https://doi.org/10.1111/jch.12415.

    Article  Google Scholar 

  6. Kiuchi MG, Graciano ML, Carreira MA, Kiuchi T, Chen S, Lugon JR. Long-term effects of renal sympathetic denervation on hypertensive patients with mild to moderate chronic kidney disease. J Clin Hypertens (Greenwich). 2016;18(3):190–6. https://doi.org/10.1111/jch.12724.

    Article  Google Scholar 

  7. Kiuchi MG, Mion D Jr, Graciano ML, de Queiroz Carreira MA, Kiuchi T, Chen S, et al. Proof of concept study: improvement of echocardiographic parameters after renal sympathetic denervation in CKD refractory hypertensive patients. Int J Cardiol. 2016;207:6–12. https://doi.org/10.1016/j.ijcard.2016.01.088.

    Article  PubMed  Google Scholar 

  8. Schlaich MP, Bart B, Hering D, Walton A, Marusic P, Mahfoud F, et al. Feasibility of catheter-based renal nerve ablation and effects on sympathetic nerve activity and blood pressure in patients with the end-stage renal disease. Int J Cardiol. 2013;168:2214–20.

    Article  PubMed  Google Scholar 

  9. Pokushalov E, Romanov A, Corbucci G, Artyomenko S, Baranova V, Turov A, et al. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol. 2012;60(13):1163–70. https://doi.org/10.1016/j.jacc.2012.05.036.

    Article  PubMed  Google Scholar 

  10. Gosse P, Cremer A, Pereira H, Bobrie G, Chatellier G, Chamontin B, et al. Twenty-four-hour blood pressure monitoring to predict and assess impact of renal denervation: the DENERHTN study (renal denervation for hypertension). Hypertension. 2017;69(3):494–500. https://doi.org/10.1161/HYPERTENSIONAHA.116.08448.

    Article  CAS  PubMed  Google Scholar 

  11. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34(28):2159–219. https://doi.org/10.1093/eurheartj/eht151.

    Article  PubMed  Google Scholar 

  12. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF III, Feldman HI, et al. CKD-EPI (chronic kidney disease epidemiology collaboration): a new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12. https://doi.org/10.7326/0003-4819-150-9-200905050-00006.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Joshi S, Choi AD, Kamath GS, Raiszadeh F, Marrero D, Badheka A, et al. Prevalence, predictors, and prognosis of atrial fibrillation early after pulmonary vein isolation: findings from 3 months of continuous automatic ECG loop recordings. J Cardiovasc Electrophysiol. 2009;20(10):1089–94. https://doi.org/10.1111/j.1540-8167.2009.01506.x.

    Article  PubMed  Google Scholar 

  14. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Chamber Quantification Writing Group; American Society of Echocardiography’s guidelines and standards committee; European Association of Echocardiography: recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group. J Am Soc Echocardiogr. 2005;18(12):1440–63. https://doi.org/10.1016/j.echo.2005.10.005.

    Article  PubMed  Google Scholar 

  15. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57(6):450–8. https://doi.org/10.1016/0002-9149(86)90771-X.

    Article  CAS  PubMed  Google Scholar 

  16. Mosteller RD. Simplified calculation of body-surface area. N Engl J Med. 1987;317:1098.

    CAS  PubMed  Google Scholar 

  17. Thomas L, Levett K, Boyd A, Leung DYC, Schiller NB, Ross DL. Compensatory changes in atrial volumes with normal aging: is atrial enlargement inevitable? J Am Coll Cardiol. 2002;40(9):1630–5. https://doi.org/10.1016/S0735-1097(02)02371-9.

    Article  PubMed  Google Scholar 

  18. Yamaguchi K, Tanabe K, Tani T, Yagi T, Fujii Y, Konda T, et al. Left atrial volume in normal Japanese adults. Circ J. 2006;70(3):285–8. https://doi.org/10.1253/circj.70.285.

    Article  PubMed  Google Scholar 

  19. Kou S, Caballero L, Dulgheru R, Voilliot D, De Sousa C, Kacharava G, et al. Echocardiographic reference ranges for normal cardiac chamber size: results from the NORRE study. Eur Heart J Cardiovasc Imaging. 2014 (in press;15(6):680–90. https://doi.org/10.1093/ehjci/jet284.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pritchett AM, Jacobsen SJ, Mahoney DW, Rodeheffer RJ, Bailey KR, Redfield MM. Left atrial volume as an index of left atrial size: a population-based study. J Am Coll Cardiol. 2003;41(6):1036–43. https://doi.org/10.1016/S0735-1097(02)02981-9.

    Article  PubMed  Google Scholar 

  21. Vasan RS, Levy D, Larson MG, Benjamin EJ. Interpretation of echocardiographic measurements: a call for standardization. Am Heart J. 2000;139(3):412–22. https://doi.org/10.1016/S0002-8703(00)90084-X.

    Article  CAS  PubMed  Google Scholar 

  22. Spencer KT, Mor-Avi V, Gorcsan J, DeMaria AN, Kimball TR, Monaghan MJ, et al. Effects of aging on left atrial reservoir, conduit, and booster pump function: a multi-institution acoustic quantification study. Heart. 2001;85(3):272–7. https://doi.org/10.1136/heart.85.3.272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Knutsen KM, Stugaard M, Michelsen S, Otterstad JE. M-mode echocardiographic findings in apparently healthy, non-athletic Norwegians aged 20–70 years. Influence of age, sex and body surface area. J Intern Med. 1989;225(2):111–5. https://doi.org/10.1111/j.1365-2796.1989.tb00049.x.

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Gutman JM, Heilbron D, Wahr D, Schiller NB. Atrial volume in a normal adult population by two-dimensional echocardiography. Chest. 1984;86(4):595–601. https://doi.org/10.1378/chest.86.4.595.

    Article  CAS  PubMed  Google Scholar 

  25. Stergiou GS, Kollias A, Destounis A, Tzamouranis D. Automated blood pressure measurement in atrial fibrillation: a systematic review and meta-analysis. J Hypertens. 2012;30(11):2074–82. https://doi.org/10.1097/HJH.0b013e32835850d7.

    Article  CAS  PubMed  Google Scholar 

  26. Pokushalov E, Romanov A, Corbucci G, Artyomenko S, Turov A, Shirokova N, et al. Ablation of paroxysmal and persistent atrial fibrillation: 1-year follow-up through continuous subcutaneous monitoring. J Cardiovasc Electrophysiol. 2011;22(4):369–75. https://doi.org/10.1111/j.1540-8167.2010.01923.x.

    Article  PubMed  Google Scholar 

  27. Merten GJ, Burgess WP, Rittase RA, Kennedy TP. Prevention of contrast-induced nephropathy with sodium bicarbonate: an evidence-based protocol. Crit Pathw Cardiol. 2004;3(3):138–43. https://doi.org/10.1097/01.hpc.0000137152.52554.76.

    Article  PubMed  Google Scholar 

  28. ten Dam MA, Wetzels JF. Toxicity of contrast media: an update. Neth J Med. 2008;66(10):416–22.

    PubMed  Google Scholar 

  29. Schlaich MP, Socratous F, Hennebry S, Eikelis N, Lambert EA, Straznicky N, et al. Sympathetic activation in chronic renal failure. J Am Soc Nephrol. 2009;20(5):933–9. https://doi.org/10.1681/ASN.2008040402.

    Article  PubMed  Google Scholar 

  30. Neumann J, Ligtenberg G, Klein II, Koomans HA, Blankestijn PJ. Sympathetic hyperactivity in chronic kidney disease: pathogenesis, clinical relevance, and treatment. Kidney Int. 2004;65(5):1568–76. https://doi.org/10.1111/j.1523-1755.2004.00552.x.

    Article  PubMed  Google Scholar 

  31. McGrath BP, Ledingham JG, Benedict CR. Catecholamines in peripheral venous plasma in patients on chronic haemodialysis. Clin Sci Mol Med. 1978;55(1):89–96.

    CAS  PubMed  Google Scholar 

  32. Grassi G, Bertolli S, Seravalle G. Sympathetic nervous system: role in hypertension and in chronic kidney disease. Curr Opin Nephrol Hypertens. 2012;21(1):46–51. https://doi.org/10.1097/MNH.0b013e32834db45d.

    Article  CAS  PubMed  Google Scholar 

  33. Grassi G. Sympathetic neural activity in hypertension and related diseases. Am J Hypertens. 2010;23(10):1052–60. https://doi.org/10.1038/ajh.2010.154.

    Article  PubMed  Google Scholar 

  34. Grassi G. Assessment of sympathetic cardiovascular drive in human hypertension: achievements and perspectives. Hypertension. 2009;54(4):690–7. https://doi.org/10.1161/HYPERTENSIONAHA.108.119883.

    Article  CAS  PubMed  Google Scholar 

  35. Zoccali C, Mallamaci F, Parlongo S, Cutrupi S, Benedetto FA, Tripepi G, et al. Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end stage renal disease. Circulation. 2002;105(11):1354–9. https://doi.org/10.1161/hc1102.105261.

    Article  CAS  PubMed  Google Scholar 

  36. Wang L, Lu CZ, Zhang X, Luo D, Zhao B, Yu X, et al. The effect of catheter based renal sympathetic denervation on renin–angiotensin–aldosterone system in patients with resistant hypertension. Zhonghua Xin Xue Guan Bing Za Zhi. 2013;41(1):3–7.

    PubMed  Google Scholar 

  37. Shen MJ, Choi EK, Tan AY, Lin SF, Fishbein MC, Chen LS, et al. Neural mechanisms of atria arrhythmias. Nat Rev Cardiol. 2012;9:30–9.

    Article  Google Scholar 

  38. Chou CC, Chen PS. New concepts in atrial fibrillation: neural mechanisms and calcium dynamics. Cardiol Clin. 2009;27(1):35–43. https://doi.org/10.1016/j.ccl.2008.09.003.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schauerte P, Scherlag BJ, Patterson E, Scherlag MA, Matsudaria K, Nakagawa H, et al. Focal atrial fibrillation: experimental evidence for a pathophysiologic role of the autonomic nervous system. J Cardiovasc Electrophysiol. 2001;12(5):592–9. https://doi.org/10.1046/j.1540-8167.2001.00592.x.

    Article  CAS  PubMed  Google Scholar 

  40. Scherlag BJ, Yamanashi WS, Patel U, Lazzara R, Jackman WM. Autonomically induced conversion of pulmonary vein focal firing into atrial fibrillation. J Am Coll Cardiol. 2005;45(11):1878–86. https://doi.org/10.1016/j.jacc.2005.01.057.

    Article  PubMed  Google Scholar 

  41. Patterson E, Po S, Scherlag BJ, Lazzara R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm. 2005;2(6):624–31. https://doi.org/10.1016/j.hrthm.2005.02.012.

    Article  PubMed  Google Scholar 

  42. Schlaich M, Sobotka P, Krum H, et al. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361(9):932–4. https://doi.org/10.1056/NEJMc0904179.

    Article  CAS  PubMed  Google Scholar 

  43. Hering D, Lambert EA, Marusic P, Lambert E, Esler MD. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension. 2013;61(2):457–64. https://doi.org/10.1161/HYPERTENSIONAHA.111.00194.

    Article  CAS  PubMed  Google Scholar 

  44. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275–81. https://doi.org/10.1016/S0140-6736(09)60566-3.

    Article  PubMed  Google Scholar 

  45. Brandt MC, Mahfoud F, Reda S, Schirmer SH, Erdmann E, Böhm M, et al. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012;59(10):901–9. https://doi.org/10.1016/j.jacc.2011.11.034.

    Article  PubMed  Google Scholar 

  46. Romanov A, Pokushalov E, Ponomarev D, Strelnikov A, Shabanov V, Losik D, Karaskov A, Steinberg JS. Pulmonary vein isolation with concomitant renal artery denervation is associated with reduction in both arterial blood pressure and atrial fibrillation burden: Data from implantable cardiac monitor. Cardiovasc Ther. 2017;35(4). https://doi.org/10.1111/1755-5922.12264.

Download references

Acknowledgements

The authors thank all participants of this study and St. Jude Medical by technical support.

Funding

The study was sponsored by health plans in the state of Rio de Janeiro (US$500,000).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the research: M.G.K., S.C., and H.P.

Procedures: M.G.K.

Acquisition of data: T.K.

Analysis and interpretation of the data: S.C. and M.G.K.

Statistical analysis: M.G.K.

Obtaining funding: M.G.K.

Drafting of the manuscript: M.G.K., S.C., N.H., and H.P.

Critical revision of the manuscript for important intellectual content: M.G.K., S.C., N.H., and H.P.

Supervision: H.P.

Corresponding author

Correspondence to Márcio Galindo Kiuchi.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiuchi, M.G., Chen, S., Hoye, N.A. et al. Pulmonary vein isolation combined with spironolactone or renal sympathetic denervation in patients with chronic kidney disease, uncontrolled hypertension, paroxysmal atrial fibrillation, and a pacemaker. J Interv Card Electrophysiol 51, 51–59 (2018). https://doi.org/10.1007/s10840-017-0302-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-017-0302-2

Keywords

Navigation