Skip to main content
Log in

The Effect of Cobalt Oxide Addition on the Conductivity of Ce0.9Gd0.1O1.95

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The conductivity of cobalt oxide doped Ce0.9Gd0.1O1.95 (CGO10) of various doping concentrations, sintering temperatures, dwell times, and cooling rates was investigated by 4-point DC conductivity measurements. In cobalt oxide doped CGO10, an enhanced total conductivity occuring with a low activation energy of 0.54 eV was detected below 250C in quenched samples. If the same samples were cooled down slowly, only the ionic conductivity of undoped CGO with an activation energy of 0.8 eV was found. The increased conductivity is attributed to a percolating network of an electronically conducting grain boundary phase rich in CoO, which can be retained by quenching from temperatures between 900 and 1000C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, and L.J. Gauckler, Solid State Ionics, 131, 79 (2000).

    Article  Google Scholar 

  2. N.Q. Minh, J. Am. Ceram. Soc., 76, 563 (1993).

    Article  Google Scholar 

  3. M. Goedickemeier and L.J. Gauckler, J. Electrochem. Soc., 145, 414 (1998).

    Google Scholar 

  4. B.C.H. Steele, Solid State Ionics, 129, 95 (2000).

    Article  Google Scholar 

  5. D.K. Hohnke, Solid State Ionics, 5, 531 (1981).

    Article  Google Scholar 

  6. A. Overs and I. Riess, J. Am. Ceram. Soc., 65, 606 (1982).

    Google Scholar 

  7. J. Faber, C. Geoffroy, A. Roux, A. Sylvestre, and P. Abelard, Appl. Phys. A-Mater. Sci. Process., 49, 225 (1989).

    Article  Google Scholar 

  8. K.Q. Huang, M. Feng, and J.B. Goodenough, J. Am. Ceram. Soc., 81, 357 (1998).

    Google Scholar 

  9. S.R. Wang, T. Kobayashi, M. Dokiya, and T. Hashimoto, J. Electrochem. Soc., 147, 3606 (2000).

    Article  Google Scholar 

  10. V.V. Kharton, F.M. Figueiredo, L. Navarro, E.N. Naumovich, A.V. Kovalevsky, A.A. Yaremchenko, A.P. Viskup, A. Carneiro, F.M.B. Marques, and J.R. Frade, J. Mater. Sci., 36, 1105 (2001).

    Article  Google Scholar 

  11. T.S. Zhang, P. Hing, H.T. Huang, and J. Kilner, Solid State Ionics, 148, 567 (2002).

    Article  Google Scholar 

  12. J. Van herle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa, and M. Dokiya, Solid State Ionics., 86–88, 1255 (1996).

    Article  Google Scholar 

  13. P.L. Chen and I.W. Chen, J. Am. Ceram. Soc., 79, 1793 (1996).

    Article  Google Scholar 

  14. P.L. Chen and I.W. Chen, J. Am. Ceram. Soc., 79, 3129 (1996).

    Google Scholar 

  15. C. Kleinlogel and L.J. Gauckler, Solid State Ionics, 135, 567 (2000).

    Article  Google Scholar 

  16. G.S. Lewis, A. Atkinson, and B.C.H. Steele, in Fourth European Solid Oxide Fuel Cell Forum, edited by U. Bossel (Oberrohrdorf, Switzerland, 2000), p. 773.

  17. C. Kleinlogel and L.J. Gauckler, Advanced Materials, 13, 1081 (2001).

    Article  Google Scholar 

  18. G.S. Lewis, A. Atkinson, B.C.H. Steele, and J. Drennan, Solid State Ionics, 152, 567 (2002).

    Article  Google Scholar 

  19. D.P. Fagg, J.C.C. Abrantes, D. Perez-Coll, P. Nunez, V.V. Kharton, and J.R. Frade, Electrochim. Acta, 48, 1023 (2003).

    Article  Google Scholar 

  20. E. Jud, C.B. Huwiler and L.J. Gauckler, J. Am. Ceram. Soc. (in press).

  21. E. Jud, C.B. Huwiler, and L.J. Gauckler, submitted to J. Am. Cer. Soc.

  22. J. Luo, H. Wang, and Y.-M. Chiang, J. Am. Ceram. Soc., 82, 916 (1999).

    Google Scholar 

  23. M.I. Mendelson, J. Am. Ceram. Soc., 52, 443 (1969).

    Google Scholar 

  24. B. Hattendorf, C. Latkoczy, D. Gunther, Analytical Chemistry, 75, 341A (2003).

    Article  PubMed  Google Scholar 

  25. R. Gerhardt and A.S. Nowick, J. Am. Ceram. Soc., 69, 641 (1986).

    Article  Google Scholar 

  26. X.D. Zhou, W. Huebner, I. Kosacki, and H.U. Anderson, J. Am. Ceram. Soc., 85, 1757 (2002).

    Google Scholar 

  27. E. Jud and L.J. Gauckler, J. Electroceram., 14, 247 (2005).

    Article  Google Scholar 

  28. C.M. Kleinlogel and L.J. Gauckler, J. Electroceram., 5, 231 (2000).

    Article  Google Scholar 

  29. K. Mocala, A. Navrotsky, and D.M. Sherman, Phys. Chem. Miner., 19, 88 (1992).

    Article  Google Scholar 

  30. E. Jud and L.J. Gauckler, submitted to J. Electroceram.

  31. M. Chen, B. Hallstedt, N.A. Grundy, and L.J. Gauckler, J. Am. Ceram. Soc., 86, 1567 (2003).

    Google Scholar 

  32. N.A. Grundy, private communication (2004).

  33. K. Koumoto and H. Yanagida, Jpn. J. Appl. Phys., 20, 445 (1981).

    Google Scholar 

  34. S. Sakamoto, M. Yoshinaka, K. Hirota, and O. Yamaguchi, J. Am. Ceram. Soc., 80, 267 (1997).

    Google Scholar 

  35. G.M. Christie and F.P.F. vanBerkel, Solid State Ionics, 83, 17 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Jud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jud, E., Gauckler, L.J. The Effect of Cobalt Oxide Addition on the Conductivity of Ce0.9Gd0.1O1.95. J Electroceram 15, 159–166 (2005). https://doi.org/10.1007/s10832-005-2193-3

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-005-2193-3

Keywords

Navigation