Skip to main content
Log in

Transient drift velocity of photoexcited electrons in CdTe

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The relaxation dynamics of photoexcited carriers of CdTe is vital toward its applications in high-performance optoelectrical devices. In this paper, the dependences of transient drift velocities of photoexcited electrons in bulk CdTe on photoexcitation conditions such as the pump intensity and photoexcitation wavelengths, temperature and externally applied electric field, are systematically investigated by the ensemble Monte Carlo method (EMC). The main scattering mechanisms including nonelastic deformation potential acoustic phonon, deformation potential optical phonon scattering, ionized impurity (II) scattering, and polar optical phonon scattering events, the effects of nonequilibrium phonons, and the Pauli exclusion principle are considered in EMC. The velocity overshoot phenomenon is only found to arise at a low temperature (100 K), with a longer photoexcitation wavelength (640 nm) and under a higher electric field (> 50 kV/cm). The effect of nonequilibrium phonons on electron drift velocity is found to be dependent on the photoexcited carrier density. Our findings may be useful for designing novel CdTe-based optoelectronic devices, which employ nonequilibrium photoexcited carriers to improve the performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Gorai, P., Krasikov, D., Grover, S., Xiong, G., Metzger, W., Stevanovic, V.: A search for new back contacts for CdTe solar cells. Sci. Adv. 9, 1–12 (2023)

    Article  Google Scholar 

  2. Ščajev, P., Mekys, A., Subačius, L., Stanionytė, S., Kuciauskas, D., Lynn, K., Swain, S.: Impact of dopant-induced band tails on optical spectra, charge carrier transport, and dynamics in single-crystal CdTe. Sci. Rep. 12, 12851 (2022)

    Article  Google Scholar 

  3. Rogalski, A.: Infrared detectors: an overview. Infrared Phys. Technol. 43, 187–210 (2002)

    Article  Google Scholar 

  4. Sordo, S., Abbene, L., Caroli, E., Mancini, A., Zappettini, A., Ubertini, P.: Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors 9, 3491–3526 (2009)

    Article  Google Scholar 

  5. Chenault, D., Chipman, R., Lu, S.: Electro-optic coefficient spectrum of cadmium telluride. Appl. Opt. 33, 7382–7389 (1994)

    Article  Google Scholar 

  6. Hu, G., Li, B., Li, H., Cao, H., Ren, Z., Zhao, D., Li, W., Wu, L., Zhang, J.: Study of ultrafast photocarrier dynamics in polycrystalline CdTe films under low illumination. Sol. Energy Mater. Sol. Cells 247, 111925 (2022)

    Article  Google Scholar 

  7. Djurberg, V., Majdi, S., Suntornwipat, N., Isberg, J.: Investigation of photoexcitation energy impact on electron mobility in single crystalline CdTe. Material 14, 4202 (2021)

    Article  Google Scholar 

  8. Desai, H.N., Patel, P.B., Dhimmar, J.M., Modi, B.P.: Approaching new photo-electrics: CdTe nano-crystallite thin film. Solid State Commun. 313, 113910 (2020)

    Article  Google Scholar 

  9. Sun, H., Ma, H., Leng, J.: Femtosecond pump probe reflectivity spectra in CdTe and GaAs crystals at room temperature. Materials 13, 242 (2020)

    Article  Google Scholar 

  10. Chen, Y., Shu, T., Lai, T., Wu, H.: Excitation-density and excess-energy dependence of ultrafast dynamics of photoexcited carriers in intrinsic bulk CdTe. Results Phys. 31, 105047 (2021)

    Article  Google Scholar 

  11. Zhong, Y., Ostach, D., Scholz, M., Epp, S.W., Techert, S., Schlichting, I., Ullrich, J., Krasniqi, F.S.: Hot carrier relaxation in CdTe via phonon–plasmon modes. J. Phys. Condens. Matter 29, 095701 (2017)

    Article  Google Scholar 

  12. He, X., Punpongjareorn, N., Wu, C., Davydov, I., Yang, D.: Ultrafast carrier dynamics of CdTe: surface effects. J. Phys. Chem. C 120, 9350 (2016)

    Article  Google Scholar 

  13. Ma, H., Jin, Z., Ma, G., Liu, W., Tang, S.: Photon energy and carrier density dependence of spin dynamics in bulk CdTe crystal at room temperature. Appl. Phys. Lett. 94, 241112 (2009)

    Article  Google Scholar 

  14. Jyegal, J.: Velocity overshoot decay mechanisms in compound semiconductor field-effect transistors with a submicron characteristic length. AIP Adv. 5, 067118 (2015)

    Article  Google Scholar 

  15. The, N., Hieu, H.: Investigation of velocity overshoot behavior in pin GaAs semiconductor: the contribution of internal electric field. Phys. Lett. A 383, 2314–2317 (2019)

    Article  Google Scholar 

  16. Son, J., Sha, W., Kim, J., Norris, T.B., Whitaker, J.F., Mourou, G.A.: Transient velocity overshoot dynamics in GaAs for electric fields ≤ 200 kV/cm. Appl. Phys. Lett. 63, 923–925 (1993)

    Article  Google Scholar 

  17. Fonthal, G., Tirado-Mejia, L., Hurtado, J., Calderon, H., Mendoza-Alvarezc, J.G.: Temperature dependence of the band gap energy of crystalline CdTe. J. Phys. Chem. Solids 61, 579–583 (2000)

    Article  Google Scholar 

  18. Acoboni, C.J., Lugli, P.: The Monte Carlo Method for Semiconductor Device Simulation, 1st edn. Springer, Wien (1989)

    Book  Google Scholar 

  19. Prajapati, J., Bharadwaj, M., Chatterjee, A., Bhattacharjee, R.: Magnetic field-assisted radiation enhancement from a large aperture photoconductive antenna. IEEE Trans. Microw. Theory Tech. 66, 678–687 (2018)

    Article  Google Scholar 

  20. Yang, J., Shi, L., Wang, L., Wei, S.: Non-radiative carrier recombination enhanced by two level process: a first-principles study. Sci. Rep. 6, 21712 (2016)

    Article  Google Scholar 

  21. MickeviEius, R., Reklaitis, A.: Electron intervalley scattering in gallium arsenide. Second. Sci. Technol. 5, 805–812 (1990)

    Google Scholar 

  22. Lundstrom, M.: Fundamentals of carrier transport, 2nd edn. Cambridge University Press (2000)

    Book  Google Scholar 

  23. Mickevicius, R., Reklaitis, A.: Monte Carlo study of nonequilibrium phonon effects in GaAs. Solid State Commun. 64, 1305–1308 (1987)

    Article  Google Scholar 

  24. Lugli, P., Ferry, D.: Degeneracy in the ensemble Monte Carlo method for high-field transport in semiconductors. IEEE Trans. Electron Devices 32, 2431 (1985)

    Article  Google Scholar 

  25. Zhong, Qi., Dai, Z., Liu, J., Zhao, Y., Meng, S.: The excellent TE performance of photoelectric material CdSe along with a study of Zn(Cd)Se and Zn(Cd)Te based on first-principles. RSC Adv. 9, 25471 (2019)

    Article  Google Scholar 

  26. Reklaitis, A.: Nonequilibrium optical phonon effect on high-field electron transport in InN. J. Appl. Phys. 112, 093706 (2012)

    Article  Google Scholar 

  27. Margik, J., Kral, K.: Effect of Pauli Principle on transport properties of some crystalline compound semiconductors. Czech. J. Phys. B 35, 1180 (1985)

    Article  Google Scholar 

  28. Yadav, D., Pauly, F., Trushin, M.: Charge-carrier thermalization in bulk and monolayer CdTe from first principles. Phys. Rev. B 103, 125113 (2021)

    Article  Google Scholar 

  29. Reklaitis, A., Krotkus, A., Grigaliunaite, G.: Enhanced drift velocity of photoelectrons in a semiconductor with ultrafast carrier recombination. Semicond. Sci. Technol. 14, 945–947 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Science and Technology Program of Guangzhou, China (Grant No. 201804010444).

Funding

Funding for this study was received from the Science and Technology Program of Guangzhou, China, No. 201804010444.

Author information

Authors and Affiliations

Authors

Contributions

All the aspects of this work are completed by Dongfeng Liu.

Corresponding author

Correspondence to Dongfeng Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D. Transient drift velocity of photoexcited electrons in CdTe. J Comput Electron (2024). https://doi.org/10.1007/s10825-024-02165-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10825-024-02165-6

Keywords

Navigation