Skip to main content
Log in

Hamiltonian deep neural network optimized with pelican optimization algorithm-fostered substrate-integrated waveguide antenna design for 5G

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Due to the growing need for higher speed data, the 5G terrestrial heterogeneous wireless network deployments are expected to happen quickly throughout the world in the next decade. In such type of networks, mm-wave small-cells overlapped the sub-6 GHz macro-cells being used to serve to population-rich areas. Subsequently, many problems appear with the antenna design technologies. The presented antenna is functioning at a frequency range from 24.8 to 31.6 GHz, with a 24% bandwidth and 8.5 dB peak gain at 27 GHz. It encompasses the complete 28 GHz frequency band utilized through 5G applications. Consequently, fifth-generation communication systems are best suited for it. The proposed Hamiltonian deep neural network optimized with pelican Optimization Algorithm-fostered Substrate-Integrated Waveguide Antenna Design for 5G (SIW-HDNN-POA-5G) is implemented, and performance of proposed technique is estimated based on several metrics, including resonant frequency (GHz), reflection coefficient (S11 in dB), mean absolute error (MAE), and root mean square error (RMSE). The proposed SIW-HDNN-POA-5G method provides 24.36%, 33.55% and 44.22% higher gain and 43.21%, 38.87% and 25.65% lesser mean absolute error comparing to the existing designs, like Design of Zero Clearance SIW End fire Antenna Array Based on Machine Learning-Assisted Optimization (SIW-MLAO-5G), SIW-Fed Wideband Filtering Antenna for Millimeter-Wave Applications (SIW-5G-MLOM), and Compact SIW Fed Dual-Port Single Element Annular Slot MIMO Antenna for 5G mm Wave Applications (SIW-FWFA-MMWA), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Nil.

References

  1. Abed, M.M., Abd Malik, N.N., Murad, N.A., Esa, M.R., Ahmad, M.R., Al Radh, O.H., Abdulbari, A.A., Hussein, Y.M., Al-Dhief, F.T.: Design and characterization substrate integrated waveguide antenna for WBANS application. Bull. Electr. Eng. Inform. 11(3), 1390–1398 (2022)

    Article  Google Scholar 

  2. Yang, M., Zhou, J.: Design of a wideband substrate integrated waveguide antenna with high-gain employing two bow-tie-shaped slots. IET Microw. Antennas Propag. 14(12), 1417–1423 (2020)

    Article  Google Scholar 

  3. Nakmouche, M.F., Allam, A.M., Fawzy, D.E., Abdalla, M.A.: Design and measurement of triple h-slotted DGS printed antenna with machine learning. Development 15, 23 (2021)

    Google Scholar 

  4. Li, H., Li, S., Hou, B., Zhang, X., Wen, W., Hu, C.: A digital SIW-slot antenna array, (2022).

  5. Altaf, A., Elahi, M., Abbas, S.M., Yousaf, J., Almajali, E.: A D-band waveguide-SIW transition for 6G applications. J. Electromag. Eng. Sci. 22(4), 419–426 (2022)

    Article  Google Scholar 

  6. Sengupta, R., Chatterjee, A., Mitra, M., Banerjee, S.: FSS superstrate loaded SIW circular cavity-backed cross-shaped slot antenna for wireless applications. J. Electromagn. Waves Appl. 36(16), 2271–2288 (2022)

    Article  Google Scholar 

  7. Di Paola, C., Zhao, K., Pedersen, G.F., Zhang, S.: Multi-mode dual-polarised cavity backed patch antenna array for 5G mobile devices. IET Microw. Antennas Propag. 15(3), 280–288 (2021)

    Article  Google Scholar 

  8. Kota, P.N., Chandak, A.S., Patil, B.P.: IOT‐HML: a hybrid machine learning technique for IoT enabled industrial monitoring and control system. Concurr. Comput. Pract. Exp. 35(3), e7458 (2023). https://doi.org/10.1002/cpe.7458

  9. Ghadeer, S.H., Rahim, S.K.A., Alibakhshikenari, M., Virdee, B.S., Elwi, T.A., Iqbal, A., Al-Hasan, M.: An innovative fractal monopole MIMO antenna for modern 5G applications. AEU-Int. J. Electron. Commun. 159, 154480 (2023)

    Article  Google Scholar 

  10. Agasti, R., Blosser, C.G., Ruyle, J.E., Sigmarsson, H.H.: Tunable SIW-based evanescent-mode cavity-backed slot antenna with contactless tuning. IEEE Access (2023). https://doi.org/10.1109/ACCESS.2023.3265571

    Article  Google Scholar 

  11. Baghel, N., Mukherjee, S.: A novel half mode SICL based dual beam antenna array for Ka-band application. IEEE Access (2023). https://doi.org/10.1109/ACCESS.2023.3276311

    Article  Google Scholar 

  12. Agrawal, M., Kumar, T.: A wideband circularly polarized antenna using substrate integrated waveguide and truncated-corner patch loaded slot. Wirel. Pers. Commun. 131, 1–15 (2023)

    Article  Google Scholar 

  13. Liang, M.S., Wu, P.F., Hu, Z.Q., Wang, B.Z., Wang, R.: Broadband high-efficiency high-gain dual-beam empty substrate integrated waveguide cavity-backed filtenna. Microw. Opt. Technol. Lett. 64, 2418 (2023)

    Article  Google Scholar 

  14. Balasundaram, G., Jeyapal, R., George, S.: A novel design of recta-tri substrate integrated waveguide antenna for ultra-wideband applications. Microw. Opt. Technol. Lett. 65(2), 663–670 (2023)

    Article  Google Scholar 

  15. Kumari, S., Gupta, V.R., Srivastava, S.: Analysis of staggered-via loss in substrate integrated waveguide. IETE J. Res. 69(1), 203–208 (2023)

    Article  Google Scholar 

  16. Yuan, B., Du, Q., Yuan, Y., Yu, Z.: Broadband high-gain low-temperature cofired ceramic substrate integrated cavity antenna array based on high-order mode for W-band applications. IET Microw. Antennas Propag. 17, 574 (2023)

    Article  Google Scholar 

  17. Kumar, P., Sinha, R., Choubey, A., Mahto, S.K.: A novel metamaterial electromagnetic band gap (MM-EBG) isolator to reduce mutual coupling in low-profile MIMO antenna. J. Electron. Mater. 51(2), 626–634 (2022)

    Article  Google Scholar 

  18. Singh, A.K., Mahto, S.K., Sinha, R.: Compact super-wideband MIMO antenna with improved isolation for wireless communications. Frequenz 75(9–10), 407–417 (2021)

    Article  Google Scholar 

  19. Mahto, S.K., Singh, A.K., Sinha, R., Alibakhshikenari, M., Khan, S., Pau, G.: High isolated four element MIMO antenna for ISM/LTE/5G (Sub-6GHz) applications. IEEE Access (2023). https://doi.org/10.1109/ACCESS.2023.3301185

    Article  Google Scholar 

  20. Singh, A.K., Mahto, S.K., Sinha, R.: A miniaturized MIMO antenna for C, X, and Ku band applications. Prog. Electromagn. Res. C 117, 31–40 (2021)

    Article  Google Scholar 

  21. Mistri, R.K., Singh, A.K., Mahto, S.K., Sinha, R.: Quad element millimetre-wave MIMO antenna for 5G communication. J. Electromagn. Waves Appl. 37(15), 1258–1273 (2023)

    Article  Google Scholar 

  22. Zhang, J., Akinsolu, M.O., Liu, B., Zhang, S.: Design of zero clearance SIW endfire antenna array using machine learning-assisted optimization. IEEE Trans. Antennas Propag. 70(5), 3858–3863 (2021)

    Article  Google Scholar 

  23. Hu, H.T., Chan, C.H.: Substrate-integrated-waveguide-fed wideband filtering antenna for millimeter-wave applications. IEEE Trans. Antennas Propag. 69(12), 8125–8135 (2021)

    Article  Google Scholar 

  24. Usman, M., Kobal, E., Nasir, J., Zhu, Y., Yu, C., Zhu, A.: Compact SIW fed dual-port single element annular slot MIMO antenna for 5G mmWave applications. IEEE Access 9, 91995–92002 (2021)

    Article  Google Scholar 

  25. Yang, Y.H., Shao, C., Zhang, H.F., Wang, Z.Y., Zhou, S.G.: A wideband endfire dual circularly polarized antenna for 5G millimeter-wave applications. IEEE Antennas Wirel. Propag. Lett. 21(10), 2000–2004 (2022)

    Article  Google Scholar 

  26. Zhu, Y., Deng, C.: Wideband dual-polarized end-fire phased Array antenna with small ground clearance for 5G mmWave Mobile terminals. IEEE Trans. Antennas Propag. (2023). https://doi.org/10.1109/TAP.2023.3263007

    Article  Google Scholar 

  27. Kumar, L., Nath, V., Reddy, B.V.R.: A wideband substrate integrated waveguide (SIW) antenna using shorted vias for 5G communications. AEU-Int. J. Electron. Commun. 171, 154879 (2023)

    Article  Google Scholar 

  28. Al Soufy, K.A., Al-ashwal, N.H., Swillam, M.A., Al-Kamali, F.S., D’Amours, C., Marish, E.M., Alnajjar, A.N.: Design of 60 GHz millimeter-wave SIW antenna for 5G WLAN/WPAN applications. IET Commun. 17(8), 974–986 (2023)

    Article  Google Scholar 

  29. Galimberti, C.L., Furieri, L., Xu, L., Ferrari-Trecate, G.: Hamiltonian deep neural networks guaranteeing nonvanishing gradients by design. IEEE Trans. Autom. Control 68(5), 3155–3162 (2023)

    Article  MathSciNet  Google Scholar 

  30. Trojovský, P., Dehghani, M.: Pelican optimization algorithm: a novel nature-inspired algorithm for engineering applications. Sensors 22(3), 855 (2022)

    Article  Google Scholar 

  31. Gurulakshmi, A.B., Rajesh, G., Sharma, S.: Numerical analysis on slinky 3 dB power divider for high speed RF sensor system. In: 2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), pp. 1–4, IEEE, (2022)

  32. Gurulakshmi, A.B., Suresh Kumar, N., Dhivya, M., Gundlapalle, R., Sharma, S.: Design and analysis of various non-radiating transmission line structures on a high-speed PCBs. In: International Conference on Computing, Communication, Electrical and Biomedical Systems, pp. 51–57. Springer International Publishing (2022)

  33. Gurulakshmi, A.B., Suresh Kumar, N.: Analysis and modeling of crosstalk in different high speed planar structure using advanced design system, (2006)

  34. Aparna, S., Manidharshana, K., Alaganandam, Y., Gurulakshmi, A.B.: Design and analysis of four-way power divider for high frequency applications. Sigma J. Eng. Nat. Sci. 38, 2193 (2020)

    Google Scholar 

  35. Gurulakshmi, A B., Sharma, S., Manoj, N., Bhinge, N.A., Santhosh, H.M., Yogesh, O. M.: Scheduled line of symmetry solar tracker with MPT and IoT. In: IoT Based Control Networks and Intelligent Systems: Proceedings of 3rd ICICNIS 2022, pp. 265–274. Springer Nature, Singapore (2022)

  36. Gurulakshmi, A.B., Kumar, N.N., Sharan, S., Jakkaraddi, A., Kabilan, K., Kumar, R.: Development of a mobile disinfectant robot with UV lamps for the prevention of covid-19. In: 2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), pp. 1–6. IEEE (2022)

Download references

Acknowledgements

Not applicable.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

A. B. Guru Lakshmi is the corresponding author and contributed to conceptualization, methodology, writing—original draft preparation. G. Rajesh: supervision. B. Saroja: contributed to supervision. T. Jackulin: contributed to supervision.

Corresponding author

Correspondence to A. B. Gurulakshmi.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval and consent to participate

Nil.

Consent for publication

Nil.

Human and animal ethics

Nil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurulakshmi, A.B., Rajesh, G., Saroja, B. et al. Hamiltonian deep neural network optimized with pelican optimization algorithm-fostered substrate-integrated waveguide antenna design for 5G. J Comput Electron (2024). https://doi.org/10.1007/s10825-024-02154-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10825-024-02154-9

Keywords

Navigation